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Abstract. In this paper we obtain results about the regularity of the transfer map between
two cocycles over an Anosov system, with values in either a diffeomorphism or a Lie
group. We also explain how certain examples of de la Llave show that our results are
essentially optimal.

1. Introduction
Let G be a group acting on a compact Riemannian manifold without boundaryM by
α : G×M → M, (g, x) 7→ αg(x) ≡ gx. Let 0 be some topological group. A cocycle
β over the actionα is a continuous functionβ : G×M → 0 such that

β(g1g2, x) = β(g1, g2x)β(g2, x), (1.1)

for all g1, g2 ∈ G, x ∈ M.
A geometric interpretation of a cocycle is the following. Consider the trivial principal

0-bundleE = M × 0 overM. Then the cocycleβ described above corresponds to a
lift of the actionα to an actionα̃ : G × E → E by principal bundle maps. Namely,
g ∈ G induces the map̃αg : E → E given by(x, h) 7→ (αg(x), β(g, x)h). The cocycle
equation (1.1) is equivalent to the fact thatα̃ is an action, i.e.̃αg1α̃g2 = α̃g1g2.

If 0 = Aut(F ) for some spaceF , then a cocycleβ : G×M → 0 also corresponds to
a lift of α to an action by bundle maps on the trivial bundleM × F . In this caseg ∈ G
acts by(x, ξ) 7→ (αg(x), β(g, x)(ξ)). Here ‘Aut(·)’ has the meaning appropriate for the
structure ofF . It can be GL(·) for F a linear space, or Diff(·) for F a manifold.

The natural equivalence relation for cocycles is the cohomology. Two cocyclesβ1

andβ2 are called cohomologous if there exists a continuous mapP : M → 0 such that

β1(g, x) = P(gx)β2(g, x)P (x)
−1, (1.2)
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for all g ∈ G, x ∈ M.
We callP a transfer mapbetweenβ1 andβ2. We will refer to (1.2) as thecohomology

equation.
In terms of the geometric interpretations given above, two cocycles are cohomologous

if the two induced lifts of the action are conjugated through a (principal) bundle map:

α̃1(g) = P ◦ α̃2(g) ◦ P−1, g ∈ G,
whereP(x, y) := (x, P (x)y) and α̃1, α̃2 are the lifts corresponding toβ1, β2.

A cocycleβ : G×M → 0 is calledcohomologically trivial if the equation

β(g, x) = P(gx)P (x)−1

has a continuous solutionP : M → 0. We will refer to this equation as theLivsic
cohomology equation.

The following question turns out to be quite important for many rigidity results:what
can be said about the regularity of the solutionP of the Livsic cohomology equation,
provided thatβ and the actionα areCK (K = 1,2, . . . , ω)?

Results in this direction were first obtained by Livsic, for real valued cocycles over
Anosov Z-actions. He showed that if the cocycleβ is C1, then the trivializationP is
alsoC1 [L1]. For some linear actions on a torus he also showed that if the cocycle is
C∞, respectivelyCω, then so is the solution [L2]; this was obtained by studying the
decay of the Fourier coefficients.

Later, Guillemin and Kazhdan [GK1, GK2] showedC∞-regularity of the solutions
in the case of geodesic flows on negatively curved surfaces. Colletet al [CEG] proved
a Cω version for geodesic flows of constant negative curvature.

The final conclusion for theC∞ case appears in the paper by de la Llaveet al
[LMM ]. One of the technical results involved is that if a function is smooth along two
transverse foliations which are absolutely continuous and whose Jacobians have some
regularity properties, then it is smooth globally. This was proved in [LMM ] using
properties of elliptic operators. Later, a more general result was proved by Journé [J]
(see Theorem 5.1 in the sequel), relying mainly on Taylor expansions and the estimate
of the error. Another approach is presented in Hurder and Katok [HuK ], based on
an unpublished idea of C. Toll. Here the decay of the Fourier coefficients is used to
characterize smoothness. The method can be applied for spanning families of foliations
which have the same property as those used in [LMM ]. Note that foliations arising from
Anosov diffeomorphisms have this property. Using the approach in [HuK ], de la Llave
proved the analytic case in [Lla1].

In [NT2] the same question was considered for cocycles taking values in Lie and
diffeomorphism groups.

Notice that for0 an abelian group, the cohomology equation (1.2) can be restated in
terms of a cohomologically trivial cocycle. However, for a general0, one has to address
the following question: if two CK -cocycles are cohomologous through a continuous
transfer mapP , what can be said about the regularity ofP?

The goal of this paper is to answer this question in some instances for0 a Lie group or
a group of diffeomorphisms. It is organized as follows. In§2 we state the main results;



Regularity of the transfer map for cohomologous cocycles 1189

in §3 some facts about (partially) hyperbolic diffeomorphisms are given, followed in§4
by a counterexample due to de la Llave and a variant of it which show that results of
this type cannot be improved; the proofs are given in§§5 and 6. The Remark in§5
discusses the difference between our approach and the one used for the previous results.
We finish with an Appendix.

Notation. In the sequelA stands for eitherZ or R. In order to be able to refer to
both cases simultaneously, the elements of anA-action are denoted bys ∈ A 7→ T s .
Therefore,T 1 is either the time-one map of a flow or the diffeomorphism generating a
Z-action.

2. The main results
Let M andN be compact manifolds, and consider an Anosov actionT : A ×M → M

(i.e. an Anosov diffeomorphism forA = Z and an Anosov flow forA = R; see§3
for the definitions). Letβ, β̃ : A × M → Diff K(N) be twoCK cocycles which are
cohomologous through the transfer mapP : M → Diff K(N), i.e.

β(g, x) = P(gx)β̃(g, x)P (x)−1. (2.1)

For G a finite-dimensional Lie group one can also consider twoCK cocyclesβ, β̃ :
A ×M → G which are cohomologous through a transfer mapP : M → G.

We will discuss regularity results for the solutionP of equation (2.1), both for Diff-
and Lie group valued cocycles. In some cases the results generalize those of [NT2].

To obtain the regularity of the transfer map, we have to require that it is already
Hölder of some order. That this condition is essential follows from§4. The examples
presented there also show that Theorems 2.2 and 2.4 are in a sense optimal.

We first define continuous or differentiable Diff-valued functions.

Definition 2.1.Assume thatK = 1,2, . . . , ω andα ∈ [0,1). Let f : A×M → Diff K(X)
be a function. One can identifyf with a functionf̄ : A ×M ×X → X.

We say thatf is continuous if it is continuous into theCK -topology on DiffK(X).
We say thatf is CK+α if f̄ is CK+α.

THEOREM 2.2. LetM andN be compact Riemannian manifolds, and letβ, β̃ : A×M →
Diff K(N) be twoCK cocycles over theCK Anosov actionT : A × M → M, where
K = 1,2, . . . , ω. Assume thatβ and β̃ are cohomologous through a continuous transfer
mapP : M → Diff K(N). Denote

λ− = lim
n→∞ ‖DT n|Es‖1/n,

λ+ = lim
n→∞ ‖DT −n|Eu‖−1/n,

µ+ = lim
n→∞ sup

x∈M
‖DNβ(n, x)‖1/n,

µ− = lim
n→∞ inf

x∈M
‖DNβ(n, x)

−1‖−1/n,
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whereTM = Es ⊕ E0 ⊕ Eu is theA-invariant splitting ofTM. Note thatµ− ≤ µ+.
Assume thatλ− < µ− ≤ µ+ < λ+, and set

α0 = max

{
lnµ+
ln λ+

,
lnµ−
ln λ−

}
.

If α0 = 0 (possible only ifµ− = µ+ = 1) and

lim sup
n→∞

sup
x∈M

‖DNβ(n, x)‖ < ∞,

lim sup
n→∞

sup
x∈M

‖DNβ(n, x)
−1‖ < ∞,

(2.2)

thenP : M → Diff K(N) is CK−ε for any smallε > 0.
In general, ifP : M×N → N is α-Hölder for someα > α0, thenP : M → Diff K(N)

is CK−ε for any smallε > 0. (For K ∈ {1,∞, ω}, K − ε := K.)

Remarks.0. By the spectral radius theorem, the limits definingλ± andµ± exist and equal
the bounds of the spectra ofDT 1 andDT̃ 1

β on the complexification ofTM, respectively

of the kernel of the natural projectionT (M ×N) → TM (hereT̃ tβ stands for the lift of
T t to M ×N via β). See also§3.

1. The relationλ− < µ− ≤ µ+ < λ+ holds for cocycles that are close enough to IdN .
Indeed,µ+ ≤ supx∈M ‖DNβ(1, x)‖ andµ− ≥ infx∈M ‖DNβ(1, x)−1‖−1.

2. By (2.1) and the boundedness ofDNP
±1
x , the quantitiesµ± are the same forβ and

β̃. The same is true about condition (2.2).
3. One can get a statement similar to Theorem 2.2 for cocycles taking values in a

compact Lie group0, because letting0 act on itself by left translations gives an inclusion
0 ↪→ Diff ω(0) of 0 into the group of diffeomorphisms of a compact manifold. Note
that in this caseα0 = 0.

By takingβ ≡ IdN one obtains the following strengthening of [NT2, Theorem 2].

COROLLARY 2.3. Let K, N and T : A × M → M be as in Theorem 2.2. Assume that
β̃ : A × M → Diff K(N) is a CK -cocycle which is cohomologically trivialized by the
continuous transfer mapP : M → Diff K(N). ThenP is CK−ε for any smallε > 0.

As an application of Theorem 2.2, we obtain the following result for Lie groups. The
conditions are more restrictive than in Theorem 2.2 (see Remark 3 after Theorem 2.4).

THEOREM 2.4. Assume thatG is a (closed subgroup in a) finite-dimensional Lie group that
admits a cocompact lattice. LetK, T : A×M → M andλ± be as in Theorem 2.2 and let
β, β̃ beCK -cocycles taking values inG which are cohomologous through a continuous
transfer mapP : M → G. Denote

µ+ = lim
n→∞ sup

x∈M
‖Adβ(n,x)‖1/n,

µ− = lim
n→∞ inf

x∈M
‖Adβ(n,x)−1‖−1/n,

whereg is the Lie algebra ofG, Ad : G → Aut(g) with Adg being the differential at the
identity of the inner automorphismh ∈ G 7→ ghg−1, and‖ · ‖ denotes the operator norm
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on Aut(g) with respect to some fixed norm ong. Assume thatλ− < µ− ≤ µ+ < λ+, and
set

α0 = max

{
lnµ+
ln λ+

,
lnµ−
ln λ−

}
.

If α0 = 0 (possible only ifµ− = µ+ = 1) and

lim sup
n→∞

sup
x∈M

‖Adβ(n,x)‖ < ∞,

lim sup
n→∞

sup
x∈M

‖Adβ(n,x)−1‖ < ∞,

thenP : M → G is CK−ε for any smallε > 0.
In general, ifP : M → G is α-Hölder for someα > α0, thenP is CK−ε for any small

ε > 0. (Note that since the image ofP is compact inG, the fact thatP is α-Hölder is
independent of the smooth metric chosen onG.)

Proof. EndowG with a right invariant metric. Assume that0 is a cocompact lattice of
G, and letN = G/0, with the induced metric. SinceG acts onN by left multiplication,
P and the cocyclesβ and β̃ can be seen as taking values in Diffω(N). The valuesµ±
defined for Adβ coincide with the values introduced in Theorem 2.2 for the corresponding
Diff (N)-valued cocycles. �
Remarks.1. Remarks 1 and 2 after Theorem 2.2 are valid here too, applied to Adβ .

2. By a result of Borel [B], GL(d,R) ∼= Z2×R×SL(d,R), as well as any semisimple
Lie group, admits a cocompact lattice.

3. ForG a closed subgroup of GL(d,R) andβ aG-valued cocycle, consider

µ̃+ = lim
n→∞ sup

x∈M
‖β(n, x)‖1/n,

µ̃− = lim
n→∞ inf

x∈M
‖β(n, x)−1‖−1/n,

where‖ · ‖ denotes the matrix norm. Then

µ̃− · µ̃−1
+ ≤ µ− ≤ µ+ ≤ µ̃+ · µ̃−1

− .

One obtains the following generalization of [NT2, Theorem 3].

COROLLARY 2.5. Let G, K and T : A × M → M be as in Theorem 2.4. Assume that
β, β̃ : A×M → G are twoCK -cocycles which are cohomologous through a continuous
transfer mapP : M → G. If one of the cocycles takes values in a compact subgroup of
G, thenP is CK−ε for any smallε > 0.

3. Partially hyperbolic diffeomorphisms
We first recall the definition of an Anosov diffeomorphism, respectively flow.

LetM be a compact manifold andT : A×M → M aC1-action (A = Z corresponds
to a diffeomorphism,A = R to a flow). The actionT is called Anosov if there is a
continuous invariant splitting of the tangent bundleTM = Es ⊕E0 ⊕Eu and constants
C > 0, χ− < 0< χ+ such that fort ∈ A, t ≥ 0,

‖DT tvs‖ ≤ Cetχ−‖vs‖, vs ∈ Es,
‖DT −t vu‖ ≤ Ce−tχ+‖vu‖, vu ∈ Eu,
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where if A = Z then E0 = {0} and if A = R then E0 is spanned by the nowhere
vanishing vector field which generates the flow.

The sub-bundlesEs and Eu are calledstable, respectivelyunstable, distributions.
These distributions are integrable. We denote byWs(x) and Wu(x) the stable,
respectivelyunstable, manifolds of the pointx ∈ M. If the diffeomorphismT 1 ∈
CK(M), then the stable and unstable foliations are alsoCK , K = 1,2, . . . , ω (see
Theorem 3.1).

Note that by aCK -foliation (K = 1,2, . . . , ω) we mean aC0-foliation whose
leaves are embeddedCK -submanifolds, and these submanifolds depend continuously
in the CK -topology of embeddings on the point through which the leaf is considered.
(See Definition 6.2 for theCω-topology.) By two transversefoliations we mean two
C1-foliations whose tangent spaces have trivial intersection at each point.

We now give the definition of a partially hyperbolic diffeomorphism. Our definition
relies on the Mather spectrum. Note that in our application the center distribution is
smooth and integrable, hence one could use the setup of Hirschet al [HPS], where what
we describe corresponds to anabsolutely 1-normally hyperbolicmap.

Let M be a compact Riemannian manifold andf a C1-diffeomorphism ofM. We
consider the Banach space00(M) of continuous vector fields onM, on whichf acts as
an invertible bounded linear operatorf∗. We complexify00(M). The Mather spectrum
σ(f ) of f is the spectrum off∗ on this complex Banach space. If the non-periodic
points off are dense inM thenσ(f ) is a union of circles{|z| = a}. See [M ].
f is a partially hyperbolic diffeomorphismif there are constants 0< λ− < µ− ≤

µ+ < λ+, λ− < 1 < λ+, such that the spectrum off is contained in the union of the
rings {z ∈ C : |z| ≥ λ+}, {z ∈ C : µ− ≤ |z| ≤ µ+} and{z ∈ C : |z| ≤ λ−}.

This is equivalent to the fact that there is anf -invariant continuous splitting
TM = Es ⊕ E0 ⊕ Eu with the property that given any smallδ > 0 there is a constant
C > 0 such that for anyk ≥ 0

‖Df k|Es‖ ≤ C(λ− + δ)k, (3.1)

‖Df −k|Eu‖ ≤ C(λ+ − δ)−k, (3.2)

‖Df −k|E0‖ ≤ C(µ−δ)−k, (3.3)

‖Df k|E0‖ ≤ C(µ+ + δ)k. (3.4)

As in the case of Anosov diffeomorphisms, for any fixed smallδ > 0, one can find
another smooth Riemannian metric, equivalent to the initial one, for whichC = 1 (see
[M ]). Notice that, according to our definition, both an Anosov diffeomorphism and the
time-one map of an Anosov flow are partially hyperbolic.

The following theorem shows that the distributionsEs , Eu are integrable and
characterize the leafs of the resulting foliations. It summarizes and extends some results
from [P] and [HPS].

THEOREM 3.1. ([P, HPS])
(a) Assume thatM is a compact Riemannian manifold andf ∈ Diff K(M) is a partially

hyperbolic diffeomorphism (K = 1,2, . . . , ω). Then each of the distributionsEs

andEu is integrable. The corresponding foliations are called the stable, respectively
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unstable, foliations, and are denoted byWs , respectivelyWu. The leavesWs(x) and
Wu(x) areCK , and depend continuously on the pointx ∈ M in theCK topology.
These foliations can be characterized as follows. Letλ− < ν− < min{µ−,1} ≤
max{µ+,1} < ν+ < λ+. Then:

y ∈ Ws(x) ⇔ lim
k→∞

ν−k
− distM(f

k(y), f k(x)) = 0,

y ∈ Wu(x) ⇔ lim
k→∞

ν−k
+ distM(f

−k(y), f −k(x)) = 0.

(b) If, in addition,E0 ⊕ Eu is integrable to aC1-foliation and
– eitherµ− > 1
– or µ− ≤ 1 and (3.3) holds withδ = 0,
thenν− can be taken equal tomin{µ−,1}. Similarly for ν+.

Proof. ForK = 1,2, . . . ,∞, (a) follows from either [P] or [HPS, Theorem 5.5].
For K = ω, one can use the approach in [HPS]. EndowM with an analytic metric.

Consider the complex analytic extensioñM of M, endowed with a smooth extension of
the Riemannian metric ofM. Let F : M̃0 → M̃ be the complex analytic extension off ,
whereM ⊂ M̃0 ⊂ M̃, M̃0 open inM̃. The exponential map ofM also admits an analytic
extension, hence we can liftF to a complex analytic map̂F0 : (TCM̃0)2r → TCM̃ for
some smallr > 0 (byEr we denote the sub-bundle of balls of radiusr of the bundleE;
TCM̃ denotes the tangent bundle ofM̃ endowed with the natural complex structure,J ).
Viewing E := TCM̃|M as a real bundle only, extend̂F0|E2r to aC∞ map F̂ : E → E

which coincides withF̂0 on Er and is close toDF |E . IntroduceEu
C

:= Eu ⊕ JEu

andEcs
C

:= Ecs ⊕ JEcs , whereEcs := E0 ⊕ Es . ThenDF |E preserves the splitting
E = Eu

C
⊕ Ecs

C
, and has similar exponential estimates as those ofDf for the splitting

TM = Eu⊕Ecs . ViewingE as a real bundle, the conclusion of [HPS, §5] holds: seeE
as a bundle overEu

C
via the projection alongEcs

C
, and consider in the space of sections

the set

00(1) := {σ ∈ 0(Eu
C
, E) : σ(0p) = 0, ‖σ |Eu

C,p
‖Lip ≤ 1 for eachp ∈ M}

endowed with the metric‖σ − σ ′‖∗ := supp∈M sup06=x∈Eu
C,p

‖σ(x) − σ ′(x)‖/‖x‖. Then

the graph transformF̂# is a contraction on00(1) with respect to the metric‖ · ‖∗, and
the graph of the restriction of the invariant sectionσF̂ to Eu gives the exponential map
via the unstable manifolds off .

Let ε > 0 be such that(Eu
C
)ε ⊕ (Ecs

C
)ε ⊂ (TCM̃|M)r . Consider the subset of00(1)

given by

0ω := {σ ∈ 00(1) : σp,ε is complex analytic

and depends continuously inCω on p ∈ M},
whereσp,ε := σ |(Eu

C,p)ε
: (Eu

C,p)ε → Ecs
C,p. Notice that0ω is closed under‖ · ‖∗, and

it is easy to check that ifF̂ is close enough toDF |M then0ω is invariant underF̂#.
ThereforeσF̂ ∈ 0ω, which yields the desired conclusion.

Case (b) is proven in [HPS, Corollary 5.6]. �
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Remark.If the distributionEs ⊕ E0 is integrable, the corresponding foliation is called
‘center-stable’ (similarly for ‘center-unstable’). We will use these foliations only for
K = 1,2, . . . ,∞ and either a flow or cases constructed as in the next theorem from an
element of anA-action, when their existence and smoothness are immediate.

The following theorem shows how cocycles are related to this situation. It is a
straightforward extension of [BP, Theorem 2.2] (note that the hypothesis in the original
version is equivalent to (3.5) by the spectral radius theorem).

THEOREM 3.2. Assume thatM is a compact manifold andT ∈ Diff K(M) is a partially
hyperbolic diffeomorphism, with Mather spectrum contained in the rings{z ∈ C : |z| ≥
λ+}, {z ∈ C : µ− ≤ |z| ≤ µ+} and {z ∈ C : |z| ≤ λ−}, where0< λ− < µ− ≤ µ+ < λ+,
λ− < 1< λ+. LetF be a compact Riemannian manifold andβ : Z ×M → DiffK(F ) a
CK cocycle. Denote bỹT the lifted action onM ×F , i.e. T̃ (x, y) = (T x, β(1, x)(y)). If

ν+ := lim
k→∞

sup
x∈M

‖DFβ(k, x)‖1/k < λ+,

ν− := lim
k→∞

sup
x∈M

‖DFβ(k, x)
−1‖−1/k > λ−,

(3.5)

thenT̃ is a partially hyperbolic diffeomorphism.
Its spectrum is contained in the rings{z ∈ C : |z| ≥ λ+}, {z ∈ C : µ̃− ≤ |z| ≤ µ̃+}

and {z ∈ C : |z| ≤ λ−}, whereµ̃+ = max{µ+, ν+}, µ̃− = min{µ−, ν−}. The stable
and unstable distributions of̃T project throughDπ onto those ofT , hence the stable
and unstable foliations project onto the stable, respectively unstable, foliations ofT . The
center distribution ofT̃ is given by the preimage underDπ of the center distribution
of T . If the center distribution ofT is integrable than so is that of̃T , and the center
foliation of T̃ is given by the preimage underπ of the center foliation ofT . In this case
the center-stable and center-unstable foliations ofT̃ are the preimages throughπ of those
of T .

4. Limitations on regularity
We are going to discuss an example due to de la Llave and a variant of it which shows
that Theorems 2.2 and 2.4 are sharp as far as the Hölder assumption on the transfer map
is concerned.

de la Llave used this counterexample in connection with the conjugacy of Anosov
maps. Katok noticed that it can be used for the problem we are interested in. We
will consider it from the viewpoint of partially hyperbolic maps, a class which includes
cocycles close to the identity over Anosov actions (by Theorem 3.2). We will first
describe the example, relate it to partially hyperbolic maps and make some remarks. We
will then construct a similar example for the case of Lie-group valued cocycles (although
the original example can be seen as taking values in the group of affine transformations,
it does not give the bound we need).

Consider a linear hyperbolicZ-action onT2 given byA ∈ SL(2,Z) and a constant
cocycleβ(1, ·) ≡ B ∈ Diff (Td), whereB ∈ SL(d,Z), d ≥ 2.
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THEOREM 4.1. (de la Llave [Lla2, Theorem 6.3])For a dense set of valuesr ∈ (0,∞)

there is a choice ofA andB for which there are arbitrarilyC∞-small smooth perturbations
β̃ of β with the property that for anyε > 0 the cocyclesβ and β̃ are cohomologous by a
Cr−ε transfer map, but not by aCr+ε transfer map.

Assume thatA ∈ SL(2,Z) andB ∈ SL(d,Z) are hyperbolic matrices such thatB has
a real eigenvalue in the interval(1,∞). Let 0< λ < 1 be one of the eigenvalues ofA
(hence the other one isλ−1), and letµ > 1 be a real eigenvalue ofB. We denote the
corresponding normalized eigenvectors as

Av− = λv−,

Av+ = λ−1v+,

Beµ = µeµ.

Consider a functionϕ : T2 → R and the following actions onT2 × Td :

f (x, y) = (Ax, By),

f̃ (x, y) = (Ax, By + ϕ(x)eµ).

(We see the quantityϕ(x)eµ as its image inTd = Rd/Zd , which is an abelian group.)
Note thatf is hyperbolic, hence, forC1-small ϕ, f̃ is also hyperbolic and there is a

homeomorphismh ∈ Homeo(T2 × Td) close to identity such that

hf̃ = f h. (4.1)

Moreover, this homeomorphism is unique among the homeomorphisms which are
homotopic to identity. The unique solution to (4.1) homotopic to identity is given by

h(x, y) = (x, y + ψ(x)eµ),

provided thatψ : T2 → R satisfies the equation

µψ(x)− ψ(Ax) = ϕ(x). (4.2)

Equation (4.2) admits a unique bounded solution, namely

ψ(x) = µ−1
∞∑
k=0

µ−kϕ(Akx).

It remains to find out how smoothψ is, assuming thatϕ is C∞.
Let

αC := lnµ

ln λ−1
.

It can be proven by a straightforward computation thatψ is of classCα for anyα < αC .
By choosingϕ to be a trigonometric polynomial and using Fourier series, de la Llave

shows that
ψ /∈ Cr, for any r > αC.

Since multiplyingϕ by a constant changesψ by the same factor, we see that the
perturbation can be made as small as desired, while preserving the loss of regularity.
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Note also thatαC can take a dense set of values in(0,∞) if we replaceA andB by
their powers.

We can seef and f̃ as Diff(Td)-valued cocycles over the hyperbolic actionx ∈
T2 7→ Ax ∈ T2. f corresponds toβ(1, x)(y) = By and f̃ to

β̃(1, x)(y) = By + ϕ(x)eµ.

Sinceh−1 is a bundle map, it corresponds to a transfer map betweenβ and β̃ given
by

x ∈ T2 7→ Px(·) = · − ψ(x)eµ ∈ Diff ∞(Td),

i.e.
β̃(g, x) = Pgx ◦ B ◦ P−1

x .

This clarifies Theorem 4.1.
Let us now assume that‖B±1‖ < λ−1. Thenf and f̃ become partially hyperbolic

diffeomorphisms (by Theorem 3.2).
Notice that in this case the critical valueαC < 1. HenceP fails to beC1.

Remark.In the example considered above, if the spectrum ofB is contained in the ring
{z ∈ C : µ−1 ≤ |z| ≤ µ}, then the critical orderαC whereP fails to be Ḧolder is exactly
the valueα0 of Theorem 2.2.

Given a partially hyperbolic diffeomorphism of a compact manifold, by ahorizontal
foliation we mean aC1-foliation which is transverse and complementary to the neutral
distribution. Note that anyC1 invariant horizontal foliation has to contain (and hence,
is spanned by) the stable and unstable foliations (because the only invariant distribution
which is not tangent to the center one has to be contained inEs ⊕ Eu).

But any (invariant)C0 foliation spanned by the stable and unstable foliations of a
Cr partially hyperbolic diffeomorphism is actuallyCr−ε, because Journé’s Theorem 5.1
implies that if two uniformlyCr foliations F1 andF2 span aC0-foliation F , then the
latter isCr−ε. Indeed, consider a leafL of F ; choose smooth local coordinates in such a
way that a small open set ofL can be seen as the graph of a functionφ : U → V defined
on a small domainU whose tangent space is close to the span of the tangent spaces of
F1 andF2. Sinceφ is uniformlyCr along each of the two transversal foliations obtained
by projectingF1 ∩ L andF2 ∩ L alongV to U , we conclude thatφ is Cr−ε.

Sinceβ and β̃ are cohomologous, one obtains an invariantC0-foliation for β̃ (more
precisely, forf̃ ) by taking the image underP of the horizontal invariant foliation off .
The horizontal invariant foliation off has leavesL(x, y) = T2 × {y}, (x, y) ∈ T2 × Td .
Its image underP has leavesL̃(x, y) = {(z, Pz ◦ P−1

x (y)) : z ∈ T2}.
SinceP is notC1, L̃(x, y) is notC1 either, hence it cannot contain the leaves off̃ .
Indeed, one computes that theDf̃ invariant splittingEs

f̃
⊕E0 ⊕Eu

f̃
of T (T2 ×Td) ∼=

TT2 × TTd is given by

Es
f̃
(x, y) = R(v−, ρs(x)eµ), Eu

f̃
(x, y) = R(v+, ρu(x)eµ),

ρs(x) : = −µ−1

[ ∞∑
k=0

(
λ

µ

)k
DϕAkx(v−)

]
,
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ρu(x) : = λ

[ ∞∑
k=0

(λµ)kDϕA−k−1x(v+)
]
.

Note that the distributionEs
f̃

is transversallyC1. The stable leaves are

Ws

f̃
(x, y) = {(x + tv−, y + ωsx,y(t)eµ) : t ∈ R},

ωsx,y(t) := −µ−1
∞∑
k=0

µ−k[ϕ(Ak(x + tv−))− ϕ(Ak(x))],

and the unstable leaves are

Wu

f̃
(x, y) = {(x + tv+, y + ωux,y(t)eµ) : t ∈ R},

ωux,y(t) :=
∞∑
k=0

µk[ϕ(A−k−1(x + tv+))− ϕ(A−k−1(x))].

HenceP(Wu
f (x, y)) * Wu

f̃
(P(x, y)), butP(Ws

f (x, y)) ⊂ Ws

f̃
(P(x, y))! Note thatP |Ws

A

is as smooth asϕ, and the breakdown in the smoothness ofP occurs alongWu
A. These

facts are in agreement with the results to be discussed next.
We turn now to the case of Lie-group valued cocycles. We describe only the simplest

situation, taking values in GL(2,R).

THEOREM 4.2. LetA ∈ SL(2,Z) be a hyperbolic matrix with eigenvaluesλ±1, 0< λ < 1,
which acts onT2 andβ the constant cocycle given by

β(1, ·) ≡ B :=
(
µ 0
0 ν

)
,

where0< ν < µ. Let r := ln(µν−1)/ln λ−1.
There are arbitrarilyC∞-small smooth perturbations̃β(1, ·) : T2 → GL(2,R) of β

with the property that for anyε > 0 the cocyclesβ and β̃ are cohomologous by aCr−ε

transfer map, but not by aCr+ε transfer map.

Proof. Considerβ̃ andP given by

β̃(1, x) :=
(
µ ϕ(x)

0 ν

)
, P (x) :=

(
1 ψ(x)

0 1

)
.

The cohomology equation (2.1) is equivalent to

(µν−1)ψ(x)− ψ(Ax) = ν−1ϕ(x), (4.3)

and by the same arguments as before it admits a solutionψ : T2 → R of classCr−ε,
providedϕ is smooth enough. Moreover, by the argument of de la Llave, we can choose
a smooth functionϕ such that (4.3) does not admit solutionsψ of classCr+ε for any
ε > 0.

It remains to show that no other transfer map betweenβ and β̃ can have a higher
regularity. This follows from the fact that the transfer map is essentially unique.
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Assume thatQ : T2 → GL(2,R) is continuous andβ(n, x) = Q(Anx)β̃(n, x)Q(x)−1.
Let R(x) := P(x)Q(x)−1, whereP is the transfer map found above. Thenβ(n, x) =
R(Anx)β(n, x)R(x)−1, i.e.

R(x) = B−nR(Anx)Bn. (4.4)

But for R continuous this can happen only ifR is a constant diagonal matrix. Indeed, if
we write

R(x) =
(
s(x) t (x)

u(x) v(x)

)
,

then (4.4) implies
s(x) = s(Anx), t (x) = (µ−1ν)nt (Anx),

u(x) = (µ−1ν)nu(A−nx), v(x) = v(Anx),

which shows thatt ≡ 0, u ≡ 0 ands, v are constant (becauseA is transitive). �

Thus we see that in Theorem 2.4 one indeed needs a more restrictive assumption on
the transfer map than in Theorem2.2.

5. Proof of Theorem 2.2 for1 ≤ K ≤ ∞
For the proof we need the following.

THEOREM 5.1. (Jourńe [J]) Assume on a manifold that we are given two continuous
transverse foliations,Fs and Fu, with uniformly smooth leaves. If the functionf
is uniformly CK+α-smooth along the leaves ofFs and Fu, then f is CK+α-smooth
(1 ≤ K ≤ ∞, α ∈ (0,1)).

The idea of the proof of Theorem 2.2 is the following. The conditionλ− < µ− ≤
µ+ < λ+ implies that the liftsf, f̃ ∈ Diff K(M ×N) of T 1 corresponding toβ(1, ·) and
β̃(1, ·) are partially hyperbolic diffeomorphisms. The Hölder assumption onP implies

that the conjugacy(x, y) ∈ M×N P7→ (x, Px(y)) maps the stable and unstable foliations
of f̃ into those off . Due to the special form off and f̃ , this implies thatP is CK

along the foliations off̃ . The smoothness along the center foliation follows easily from
the hypotheses—invoking Journé’s theorem for the case of a flow—and repeated use of
this theorem gives the desired conclusion.

Note that one can apply this approach to a conjugacy between two partially hyperbolic
diffeomorphisms having integrable center distributions (say, with compact leaves). The
following conditions are required: that the neutral foliations be transversally smooth,
that they be mapped one onto the other by the conjugacy, and that the two Anosov
maps induced on the quotient spaces be smoothly conjugated. However, one can obtain
a better result for actions ofZk, k ≥ 2, if the stable foliations produce a ‘trellis’ of
one-dimensional leaves which is complementary to the neutral foliation (see [H] or [KL ]
for the definition of a trellis). Such an argument is used in [NT1, §7].

Remark. The difference between this approach and the previous results [LMM,
Lla1, NT2] is the following. In the cited papers one proved regularity results for
cohomologically trivial cocycles by exhibiting the derivative of the transfer map (P in
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our notation) along the horizontal lifts of the stable and unstable foliations of the action
on the base (T t in our case). The same computation in the case considered here does
not seem to lead to a convergent expression, even with the Hölder assumption. As one
can see, the directions along which the derivatives are natural are the stable and unstable
leaves of the lifted action (which are indeed horizontal for the trivial cocycle). The
computational part is taken care of by Theorem 3.1(a), respectively Theorem A.1.

Let us now give the details of the proof.
Denote theA-invariant splitting ofTM by Es ⊕ E0 ⊕ Eu, and the corresponding

foliations of T 1 by Ws
0, Wc

0 andWu
0 , respectively.

Considerf, f̃ ∈ Diff K(M × N) given byf (x, y) := (T 1x, β(1, x)(y)), respectively
f̃ (x, y) := (T 1x, β̃(1, x)(y)). By Theorem 3.2,f andf̃ are partially hyperbolic. Denote
theDf -invariant splitting ofT (M ×N) ∼= TM × TN by F s ⊕ F 0 ⊕ Fu, and the stable
and unstable foliations off by Ws , respectivelyWu. The corresponding notations for
f̃ are F̃ s ⊕ F 0 ⊕ F̃ u, W̃ s , respectivelyW̃ u.

Note thatF 0 = {0}×TN⊕E0×{0}. Hence there is a constantC such that for eachk

‖Df k|F 0‖ ≤ C

(
sup
x∈M

‖DNβ(k, x)‖ + sup
x∈M

‖DT k|E0‖
)
,

and similarly forf̃ . The second term in the above sum is bounded uniformly with respect
to k becauseDT preserves the vector field which generates the flow.

ConsiderP ∈ Homeo(M × N) given by P(x, y) := (x, Px(y)), wherePx = P(x).
ThenfP = Pf̃ , becauseP is a transfer map betweenβ and β̃.

It is immediate that ifP : M × N → N is α-Hölder then the same holds forP. We
claim that the fact thatP : M×N → N is α-Hölder implies thatP−1 : M×N → N , and
thereforeP−1, are alsoα-Hölder. Indeed, notice that in theN -variableP : M×N → N

is C1, hence Lipschitz. This property remains true forP−1 : M × N → N . We only
have to check the Ḧolder property in theM-variable. Forx ′, x ′′ ∈ M and y ∈ N one
has

distN(P
−1
x ′ (y), P

−1
x ′′ (y)) = distN(P

−1
x ′ (Px ′′(P−1

x ′′ (y))), P
−1
x ′ (Px ′(P−1

x ′′ (y))))

≤ Lip(P−1
x ′ )distN(Px ′′(P−1

x ′′ (y)), Px ′(P−1
x ′′ (y)))

≤ Lip(P−1
x ′ ) · C · [distM(x

′, x ′′)]α.

By Theorem 3.2, the Mather spectra off andf̃ are contained in the rings bounded by
the circles of radii 0 andλ−, µ− andµ+, respectivelyλ+ and∞. Their stable foliations
are characterized by Theorem 3.1. Letz ∈ W̃ s(u), u, z ∈ M ×N . For ν̃− > λ− one has

lim
k→∞

ν̃−k
− distM×N(f̃ k(z), f̃ k(u)) = 0.

Assume thatP is α-Hölder for someα > 0. Since

distM×N(f k(P(z)), f k(P(u))) = distM×N(P(f̃ k(z)),P(f̃ k(u)))

≤ C ′[distM×N(f̃ k(z), f̃ k(u))]α,

it follows that
lim
k→∞

ν̃−αk
− distM×N(f k(P(z)), f k(P(u))) = 0. (5.1)
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By Theorem 3.1(a), this implies thatP(z) ∈ Ws(P(u)), provided thatν̃α− < µ−. If
α > lnµ−/ln λ− one can find ãν− > λ− which satisfies this condition, thus proving that
P(W̃ s(u)) ⊂ Ws(P(u)).

Assume now thatα0 = 0 andP : M × N → N is only continuous (without any
Hölder assumption). Then instead of (5.1) we obtain only that

lim
k→∞

distM×N(f k(P(z)), f k(P(u))) = 0.

However, by our additional hypothesis,

lim
k→∞

‖(Df −k|F 0)‖ < ∞,

hence Theorem 3.1(b) implies thatP(z) ∈ Ws(P(u)), as desired.
In conclusion, we have proved that under the hypotheses of the theoremP(W̃ s(u)) ⊂

Ws(P(u)).
However, bothW̃ s(u) andWs(P(u)) are graphs of some functions̃γ(x,y), γ(x,P (x,y)) :

Ws
0(x) → N , where u = (x, y) ∈ M × N and γ̃(x,y)(x) = y, γ(x,P (x,y))(x) =

P(x, y). Since P preserves each vertical fiber, the inclusion has to be equality, and
P(t, γ̃u(t)) = γP(u)(t), for all t ∈ Ws

0(x). Since the foliationsWs and W̃ s are
CK (in the sense specified in§3), it follows that γ(x,y), γ̃(x,P (x,y)) are CK functions,
whose derivatives vary continuously with(x, y) ∈ M × N and t ∈ Ws

0(x). From the
inverse function theorem applied tot ∈ Ws

0(x) 7→ (t, γ̃u(t)) ∈ W̃ s(u), one obtains that
P|W̃ s (u) : W̃ s(u) → Ws(P(u)) ⊂ M × N is CK , with the same continuous dependence.

Note that we have a similar statement forP−1|Ws(P(u)) : Ws(P(u)) → W̃ s(u).
We proved thatP is uniformly CK along W̃ s , and P−1 is uniformly CK alongWs .

Repeating the proof forf −1 and f̃ −1 we obtain thatP is uniformly CK alongW̃ u, and
P−1 is uniformly CK alongWu.

The center foliationWc of both f and f̃ is spanned by the transverse foliationsWc
v

andWc
h corresponding to the vertical fibers, respectively the center foliation ofT 1: the

former is tangent to{0} × TN , the latter toE0 × {0}. P is uniformly CK alongWc
v by

the hypothesis. For the case of a flow, the cohomology equation (2.1) gives

P(T t (x), y) = β(t, x) ◦ Px ◦ β̃(t, x)−1(y)

which shows thatP is uniformly CK alongWc
h as well. SinceWc and W̃ s can be

integrated into the center-stable foliation and the latter together withW̃ u span the whole
manifoldM ×N , applying Jourńe’s Theorem 5.1 successively we obtain thatP is CK−ε

for any smallε > 0. Note that ifK = 1 then there is no need for Theorem 5.1, hence
no loss of regularity occurs. �

6. The analytic case
The reason we have to consider this case separately is that Journé’s Theorem 5.1
does not include theCω case. The alternative approach is to estimate the decay of
Fourier coefficients. This was done in [Lla1]. The following is a paraphrase of [Lla1,
Lemma 2.5]. Its proof is the same as for the original statement.



Regularity of the transfer map for cohomologous cocycles 1201

THEOREM 6.1. (de la Llave [Lla1]) Assume that the real-analytic compact manifoldX is
spanned by a family ofCω-foliationsF1,F2, . . . ,Fk with the property that the Jacobian
Ji of Fi is in CωFi (X,R), i = 1, . . . , k. Then

k⋂
i=1

CωFi (X,R) = Cω(X,R).

Note that this is a local result, and this is how we are going to use it.
The Jacobian of a foliation is defined in Theorem 6.4. ByCωF (X,R) we mean functions

which are analytic along the leaves of the foliationF and depend continuously in the
Cω-topology on the point of the manifold through which the (local) leaf is considered.
(See Definition 6.2 for the description of theCω-topology.)

In order to use Theorem 6.1, we have to show that the Jacobians of the stable/unstable
foliations of an analytic partially hyperbolic diffeomorphism are analytic along the leaves.
This was done for a flow in [Lla1] using the set-up of Anosov [A] and some results of
[LMM ]. We are going to follow the paper of Pugh and Shub [PS], where an expression
for the Jacobian is given. We obtain expressions for the Jacobian and its derivative along
the leaf which are counterparts of the infinitesimal versions found in [LMM ]. These are
(6.3) and (6.5). Although here we consider theCω case, these formulae hold whenever
the partially hyperbolic diffeomorphism is at leastC2. From (6.5) one can obtain the
higher derivatives by a straightforward differentiation.

Let us first recall the precise definitions.

Definition 6.2.Let U ⊂ Rn be an open set. The (vector) spaceCω(U,R`) of analytic
mappings fromU to R` is topologized by the following system of neighborhoods of the
origin: f is in Vr,L if it admits a complex-analytic extensioñf : Ur → C` such
that supz∈Ur ‖f (z)‖ < L, whereUr := {z = (z1, z2, . . . , zn) ∈ Cn : |Im zi | ≤ r,
(Rez1,Rez2, . . . ,Rezn) ∈ U}.

Assume thatX is a compact analytic manifold, with aCω Riemannian metric.
Consider a partially hyperbolic diffeomorphismf ∈ Diff ω(X). Denote the splitting
of TX by TX = Eu ⊕Ecs whereEcs = E0 ⊕Es , and the unstable foliation byWu. By
Theorem 3.1(a),Wu is aCω-foliation.

Definition 6.3Given aCK -foliation (K = 1,2, . . . , ω), by aCK foliated chart we mean
a mapχ : U × V → X which is a homeomorphism onto an open subset ofX and such
that, for eachv ∈ V , χv := χ(·, v) : U → X describes locally a leaf of the foliation,χv
is CK , and depends continuously onv ∈ V in theCK -topology.

Let µ be the measure induced by the Riemannian metric onX.

THEOREM 6.4. Given any pointx0 ∈ X, there is aCω foliated chartχ : U × V → X of
Wu aroundx0 such thatχ∗µ = ρ(t, v) dt dv, with the Jacobianρ continuous onU ×V ,
analytic in theU -variable, and such thatv ∈ V 7→ ρ(·, v) ∈ Cω(U) is continuous.

Proof. Let �′ and�′′ be two smooth transversals toWu, and denote byh : �′ → �′′

the holonomy alongWu. Pugh and Shub [PS, Theorem 2.1] showed thath is absolutely
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continuous with respect to the measure induced on the transversals by the Riemannian
metric. The Radon–Nikodym derivative is given by

J�
′

�′′(y) = lim
n→∞

det(f −n|Ty�′)
det(f −n|Th(y)�′′)

, y ∈ �′, (6.1)

the limit being uniform.
Here by det(f |V ), whereV ⊂ TxX is a vector space, we mean the absolute value

of the determinant ofDfx |V with respect to a pair of orthonormal bases ofV ⊂ TxX,
respectivelyDxf (V ) ⊂ Tf (x)X.

We want to show that this Jacobian isCω along the leaves ofWu.
First we have to write (6.1) in a different form. This expression of the Jacobian is

valid whenever (6.1) holds.
Choose a continuous bundlẽF which is complementary toEu. Denote byπ̃ : TX →

F̃ the projection alongEu. Denote byf̃ := π̃ ◦ Df |F̃ the compression ofDf to F̃ .
Sincef̃ preservesEu, the matrix ofDf with respect to the decompositionTX = Eu⊕F̃
has the form

Df =
( ∗ ∗

0 f̃

)
. (6.2)

Note thatf̃ is an invertible bundle map oñF .

CLAIM 1.

J�
′

�′′(y) = lim
n→∞

det(f̃ −n|F̃y)
det(f̃ −n|F̃h(y))

· det(π̃ |Ty�′)
det(π̃ |Th(y)�′′)

, y ∈ �′, (6.3)

the limit being uniform.

Proof. Denote byπ : TX → Ecs the projection alongEu. Then

J�
′

�′′(y) = lim
n→∞

det(f −n|Ecsy )
det(f −n|Ecsh(y))

· det(π |Ty�′)
det(π |Th(y)�′′)

, y ∈ �′,

the limit being uniform. Note that this is equivalent to (6.1):π commutes with
Df , henceDf −n|Ty�′ = (π |Tf−n(y)f −n(�′))

−1 ◦ Df −n|Ecsy ◦ π |Ty�′ , which implies that
det(f −n|Ty�′) = det(f −n|Ecsy )det(π |Ty�′)/det(π |Tf −n(y)f

−n(�′)), and the denominator
converges uniformly to 1 asn → ∞. See [PS, formula (b′′)].

Sincef̃ k ◦ π̃ |Ecs = π̃ ◦Df k|Ecs , one obtains that

det(f −n|Ecsz ) = det(f̃ −n|F̃z)det(π̃z|Ecsz )det(π̃f −n(z)|Ecsf −n(z))
−1,

and sinceπ̃ ◦ π = π̃ ,

det(πz|Tz�) = det(π̃z|Tz�)det(π̃z|Ecsz )−1.

Therefore fory ∈ �′,

det(f −n|Ecsy )det(π |Ty�′)

det(f −n|Ecsh(y))det(π |Th(y)�′′)
= det(f̃ −n|F̃y)det(π̃ |Ty�′)

det(f̃ −n|F̃h(y))det(π̃ |Th(y)�′′)
· det(π̃ |Ecsf −n(h(y)))

det(π̃ |Ecsf −n(y))

and then (6.3) follows from the fact thath(y) ∈ Wu(y), hence dist(f −n(h(y)), f −n(y))
converges uniformly to zero asn → ∞. �
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We introduce the coordinate systemχ as follows. Consider an analytic system of
coordinates aroundx0, ρ : Ū × V̄ ⊂ RdimEu × RdimEcs → X, such thatx0 = ρ(0,0) and
ρt := ρ(t, ·) : V̄ → X are transversals toWu for eacht ∈ Ū . Denote the image ofρ(t, ·)
by �t ⊂ X. For a pointx close tox0 define its coordinatesχ−1(x) = (t, v) ∈ Ū × V̄

by the condition thatx = �t ∩Wu
0,loc(ρ(0, v)).

That is,χ(t, v) = ht (ρ(0, v)), whereht : �0 → �t is the holonomy map alongWu.
The domain ofχ will be an open subsetU × V ⊂ Ū × V̄ containing the origin.χ has
the required analyticity properties. It remains to show that its Jacobian is as desired.

Note thatρ−1 ◦ χ(t, v) = (t, h̃t (v)), whereh̃t = ρ−1
t ◦ ht ◦ ρ0. Hence, up to some

Cω functions and changes of variable, the Jacobian ofχ is given byJ (t, y) := J
�0
�t
(y),

with t ∈ U andy ∈ �0. We are done once we prove the following.

CLAIM 2. J (t, y) is analytic int ∈ U , uniformly with respect toy ∈ �0.

Proof. Choose asF̃ an analytic bundle onX which is complementary toEu, and denote
D(z) := det(f̃ |F̃z). In view of (6.2), one can rewrite (6.3) as

J (t, y) = lim
n→∞

det(f̃ −n|F̃y)∏n−1
k=0 D ◦ f −k(ht (y))

· det(π̃ |Ty�0)

det(π̃ |Tht (y)�t )
.

Note thatD ∈ CωWu(X,R). Indeed, one can choose locally trivializing frames ofTX

consisting of the union of a frame forEu and an analytic frame for̃F . The vector fields
in the former can be chosen to be inCωWu . Then all the entries of the matrix ofDf with
respect to these frame are inCωWu(X,R), hence the same holds for̃f as well. We also
obtain thatπ̃ : TX → F̃ has entries inCωWu(X,R).

Given a product of positive real valued functionsP = an−1 · · · a1a0, its derivative is
given byDP = P [D(logan−1)+ · · · +D(loga1)+D(loga0)].

Denote byDu the differential in theU -variable (i.e. alongWu), and let

Jn(t, y) := det(f̃ −n|F̃y)∏n−1
k=0 D ◦ f −k(ht (y))

· det(π̃ |Ty�0)

det(π̃ |Tht (y)�t )
.

Then

DuJn(t, y) = −Jn(t, y)
(
Du log(det(π̃ |Tht (y)�t ))+

n−1∑
k=0

Du log(D ◦ f −k(ht (y)))
)

= −Jn(t, v)
(
Du log(det(π̃ |Tht (y)�t ))

+
n−1∑
k=0

Du logD|f −k(ht (y))Duf
−k|ht (y)Duht |y

)
. (6.4)

Due to the factorDuf
−k and the uniform convergence ofJn one obtains thatDuJn

converges uniformly, henceJ is differentiable along the leaf and

Du log(J (t, y)) = −
(
Du log(det(π̃ |Tht (y)�t ))+

∞∑
k=0

Du log(D ◦ f −k(ht (y)))
)
. (6.5)

We proved so far that the Jacobian ofWu is C1. To obtain that it isCω, notice that
the right-hand side in (6.5) is analytic, uniformly with respect toy. Indeed, each factor
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involved in the sum in (6.4) is analytic int , uniformly with respect toy, and the sum
remains convergent when evaluated on the complexification of the unstable leaves.�

We can now complete the proof of Theorem 2.2.

Proof of Theorem 2.2 forK = ω. The discussion of§5 shows that under the hypotheses
of the theorem,P(x, y) := (x, Px(y)) maps stable/unstable leaves into stable/unstable
leaves. Since these foliations are analytic, one obtains thatP is uniformly Cω along
their leaves. The center foliation can be dealt with as in§5. ThereforeP has the desired
smoothness along three (four ifA = R) Cω foliations which spanM×N . Their Jacobians
satisfy the requirements of Theorem 6.1, either by the hypotheses or Theorem 6.4.�

Acknowledgements.We are indebted to the referee for the proof of Theorem 2.4. It
simplifies and extends our original proof of the caseG ⊂ GL(d,R). Our approach was
based on the construction of stable and unstable foliations for certain skew-products.
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Appendix. Existence of stable and unstable foliations
We describe here how one can obtain an analogue of the stable and unstable foliations
for some skew-products. Using these, one can prove Theorem 2.4 forG ⊂ GL(d,R)
in a similar way to Theorem 2.3: if two cocyclesβ and β̃ are cohomologous, i.e.
β(n, x) = P(T nx)β̃(n, x)P (T x)−1, and P is Hölder of a prescribed order, then the
corresponding foliations are mapped one onto the other.

Given a cocycleβ : A ×M → GL(d,R) over the actionT : A ×M → M, one can
considerf ∈ Diff ∞(M × Rd) defined byf (x, ξ) = (T 1x, β(1, x)ξ), x ∈ M, ξ ∈ Rd .

Note that although we speak about invariant foliations forf , the statement is about a
family of functions with values in the group.

By Ws
0, Wc

0 andWu
0 we denote the stable, center and unstable foliations ofT 1.

THEOREM A.1. LetK, T andλ± be as in Theorem 2.4, andβ aCK -cocycle taking values
in GL(d,R). Consider

µ̃+ = lim
n→∞ sup

x∈M
‖β(n, x)‖1/n,

µ̃− = lim
n→∞ inf

x∈M
‖β(n, x)−1‖−1/n,

where‖ · ‖ denotes the matrix norm.
Assume thatλ− < µ̃− · µ̃−1

+ . Then there areCK -functionsγx : Ws
0(x) → GL(d,R),

x ∈ M, satisfying the conditions:
(1) γx(x) = I ;
(2) the family of ‘graphs’Ws(x, ξ) := {(t, γx(t)ξ) : t ∈ Ws

0(x)}, x ∈ M, ξ ∈ Rd , gives
an f -invariant foliation ofM × Rd .
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These functions are defined by the formula

γx(t) = lim
n→∞β(n, t)

−1β(n, x), t ∈ Ws
0(x),

and depend continuously on the pointx ∈ M in theCK -topology.
The graphGraph(γx) ⊂ Ws

0(x)× GL(d,R) is characterized by

(t, u) ∈ Graph(γx) ⇔ lim
n→∞ ‖β(n, x)−1‖ · ‖β(n, x)− β(n, t)u‖ = 0

⇔ lim
n→∞ ν

−n
− ‖β(n, x)− β(n, t)u‖ = 0

for λ− ·µ̃+ < ν− < µ̃−. In particular, the family{γx}x∈M is the unique family of functions
which satisfies conditions (1) and (2) above and is uniformly Lipschitz onWs

0,loc.
Similar results hold for the unstable direction.

Proof. Note that the invariance property of the family{Ws(x, ξ)}x∈M,ξ∈Rd amounts to the
relation

β(1, t)γx(t) = γT 1x(T
1t)β(1, x), t ∈ Ws

0(x),

that is

γx(t) = β(1, t)−1γT 1x(T
1t)β(1, x). (A.1)

Iterating (A.1) we obtain that

γx(t) = β(n, t)−1 · γT nx(T nt) · β(n, x). (A.2)

This suggests that we defineγx by the formula used in the theorem.
Consider the functionsγx,n : Ws

0(x) → GL(n,R) given by γx,n(t) := β(n, t)−1 ·
β(n, x). Denoteβ(1, ·) by β(·).

Givenλ− · µ̃+ < ν− < µ̃−, chooseκ− > λ− andν+ > µ̃+ such thatν+ · ν−1
− · κ− < 1.

There is a constantC0 > 0 such that forn ≥ 0 andt ∈ Ws
0,loc(x),

‖DT n|Es‖ ≤ C0κ
n
−,

distM(T
nt, T nx) ≤ C0κ

n
− distM(t, x),

sup
y∈M

‖β(n, y)−1‖ ≤ C0ν
−n
− , (A.3)

sup
y∈M

‖β(n, y)‖ ≤ C0ν
n
+.

Note that it is enough to construct eachγx on Ws
0,loc(x) only, and then extend them

by (A.1).

CLAIM 1. The limit γx := limn→∞ γx,n exists uniformly onWs
0,loc(x) and defines a

continuous functionγx : Ws
0,loc(x) → GL(d,R). The functionsγx defined this way satisfy

(A.1). Moreover,γx(t) is bounded by a constant which is independent ofx ∈ M and
t ∈ Ws

0,loc(x). Denote this constant byC∗.
Sinceγx(t) = γx ′(t)γx(x

′) for t, x ′ ∈ Ws
0,loc(x), the family{Ws(x, ξ) : x ∈ M, ξ ∈ Rd}

gives a partition ofM × Rd .



1206 V. Niţică and A. Török

Proof. We show that the sequence{γx,n} is uniformly Cauchy. Letm > n be positive
integers and lett ∈ Ws

0,loc(x). Then:

‖γx,m(t)− γx,n(t)‖ ≤
m−1∑
k=n

‖γx,k+1(t)− γx,k(t)‖

=
m−1∑
k=n

‖β(k, t)−1β(T k+1t)−1β(T k+1x)β(k, x)

−β(k, t)−1β(T k+1t)−1β(T k+1t)β(k, x)‖

≤
m−1∑
k=n

C2
0 · ν−k−1

− · νk+ · ‖β(T k+1x)− β(T k+1t)‖

≤ C3
0ν

−1
+

m−1∑
k=n
(ν−1

− · ν+ · κ−)k+1‖β‖Lip distM(t, x)

≤ C(ν−1
− · ν+ · κ−)n,

where the constantC does not depend onm, n, x or t .
The rest of the Claim follows from the identitiesγx,n(t) = γx ′,n(t)γx,n(x

′) and
γx,n+1(t) = β(1, t)−1γT 1x,n(T

1t)β(1, x). �

CLAIM 2. The functionsγx : Ws
0,loc(x) → GL(d,R) are Lipschitz and their Lipschitz

norm is bounded by some constantL∗, independently ofx ∈ M.

Proof. Let t, t ′ ∈ Ws
0,loc(x) andn > 0. Then:

‖γx,n+1(t)− γx,n+1(t
′)‖

= ‖β−1(t) · · ·β−1(T nt)β−1(T nx) · · ·β−1(x)

−β−1(t ′) · · ·β−1(T nt ′)β−1(T nx) · · ·β−1(x)‖

≤
n∑
k=0

‖β−1(t ′) · · ·β−1(T k−1t ′)β−1(T kt)β−1(T k+1t) · · ·β−1(T nt)β(T nx) · · ·β(x)

−β−1(t ′) · · ·β−1(T kt ′)β−1(T k+1t) · · ·β−1(T nt)β(T nx) · · ·β(x)‖

≤
n∑
k=0

‖β(k, t ′)−1‖ · ‖β−1(T kt ′)− β−1(T kt)‖ · ‖γT k+1x,n−k(T k+1t)‖ · ‖β(k + 1, x)‖

≤
n∑
k=0

(C0ν
−k
− ) · (‖β−1‖LipC0κ

k
− distM(t

′, t)) · C∗ · (C0ν
k+1
+ )

≤ L∗ distM(t, t
′),

whereL∗ does not depend onn, x, t or t ′. Now take the limit asn → ∞. �

CLAIM 3. The functionsγx : Ws
0,loc(x) → GL(d,R) areC1.

Proof. We denote byDs the derivative alongWs
0. Then fort ∈ Ws

0,loc(x),

Dsγx,n+1|t = Ds [β
−1(t)β−1(T 1t) · · ·β−1(T nt) · β(T nx) · · ·β(x)]
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=
n∑
k=0

β−1(t) · · ·β−1(T k−1t) ·Dsβ
−1|T kt · β−1(T k+1t) · · ·β−1(T nt)

·β(T nx) · · ·β(x)DsT
k|t

=
n∑
k=0

β(k, t)−1 ·Dsβ
−1|T kt · β(n− k, T k+1t)−1 · β(n+ 1, x) ·DsT

k|t .

We now use (A.2) and the cocycle relation to obtain

Dsγx,n+1|t =
n∑
k=0

β(k, t)−1 ·Dsβ
−1|T kt · γT k+1x(T

k+1t)

·β(n− k, T k+1x)−1γ−1
T n+1x

(T n+1t)β(n− k, T k+1x)

·β(k + 1, x)DsT
k|t

=
n∑
k=0

β(k, t)−1 ·Dsβ
−1|T kt · γT k+1x(T

k+1t) · β(k + 1, x)DsT
k|t

+
n∑
k=0

β(k, t)−1Dsβ
−1|T kt · γT k+1x(T

k+1t)

·�(n− k, T k+1x, T k+1t) · β(k + 1, x)DsT
k|t , (A.4)

where
�(k, y, s) = β(k, y)−1 · [γT ky(T

ks)− I ] · β(k, y).
Sinceγx is Lipschitz with normL∗, we see that fort ∈ Ws

0,loc(x) andk ≤ n,

‖�(n− k, T k+1x, T k+1t)‖ ≤ L∗C3
0ν

−(n−k)
− · νn−k+ · κn+1

− ≤ L∗C3
0.

Using this estimate in (A.4), and once more (A.2), we obtain thatDsγx,n|t converges
uniformly to

∞∑
k=0

γx(t) · β(k, x)−1 · γT kx(T kt)−1Dsβ
−1|T kt · γT k+1x(T

k+1t) · β(k + 1, x)DsT
k|t . (A.5)

Note that this is an absolutely convergent series, which is continuous with respect to
x ∈ M and t ∈ Ws

0(x). �

CLAIM 4. The functionsγx : Ws
0(x) → GL(d,R) are CK and depend continuously on

the pointx ∈ M in theCK -topology.

Proof. From the comment preceding Lemma 2.3 in [LMM ] it follows that

‖Dl
sT

k‖ ≤ (l + 1)!Clk
l+1κk−l+1

− .

Then a direct computation from the expression (A.5) ofDsγx shows that the higher
derivatives ofγx can be found by term-wise differentiation of (A.5). The resulting series
also have the required continuity. This solves the caseK ≤ ∞.

The caseK = ω follows from the observation that the uniform convergence proved
in Claim 1 also holds on the complexification ofWs

0,loc (Ws
0 is a Cω-foliation by

Theorem 3.1(a)).
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Indeed, sinceM, T 1 andβ(1, ·) are analytic, there is a complex analytic manifoldM̃
containingM and analytic extensions ofT 1 andβ(1, ·) to T̃ : M̃0 → M̃ and respectively
β̃0 : M̃0 → GL(d,C), where M̃0 is an open neighborhood ofM in M̃. Each leaf
Ws

0,loc(x), x ∈ M, has a uniform extension to a complex analytic sub-manifoldW̃ s
0,loc(x)

of M̃0, T̃ (W̃ s
0,loc(x)) ⊂ W̃ s

0,loc(T
1(x)), andT̃ acts as a contraction on these complexified

leaves. OnM̃s := ⋃
x∈M W̃

s
0,loc(x) one can define a ‘cocycle’̃β+ : Z+×M̃s → GL(d,C)

over T̃ . The corresponding constantsλ̃− andµ̃± can be made as close toλ−, respectively
µ̃±, as desired by shrinking̃M0 (note that the limits defining these numbers are actually
infima).

Then γ̃x,n(t) := β̃+(n, t)−1 · β̃+(n, x) is defined onW̃ s
0,loc(x) for x ∈ M and is an

analytic extension ofγx,n. The computation of Claim 1 carries over toγ̃x,n and we obtain
the existence of a uniform limit asn → ∞, bounded onW̃ s

0,loc(x) by some constant which
is independent ofx. We conclude thatγx is analytic and depends continuously inCω on
x ∈ M.

Note that for the unstable foliation we have to use a different extension of the cocycle,
but the constants are still given bỹµ±. �

CLAIM 5. Given(t, u) ∈ Ws
0(x)× GL(d,R), one has

(t, u) ∈ Graph(γx) ⇒ lim
n→∞ ν

−n
− ‖β(n, x)− β(n, t)u‖ = 0

⇒ lim
n→∞ ‖β(n, x)−1‖ · ‖β(n, x)− β(n, t)u‖ = 0

⇒ (t, u) ∈ Graph(γx).

Since the first implication follows from the conclusion of Claim 2 and conditions (1) and
(2), this proves the characterization as uniformly Lipschitz functions as well.

Proof. Indeed, forn large enough so thatT nt ∈ Ws
0,loc(T

nx), one obtains by (A.2),
condition (1), Claim 2 and (A.3) that

ν−n
− ‖β(n, x)− β(n, t)γx(t)‖ = ν−n

− ‖(I − γT nx(T
nt))β(n, x)‖

≤ L∗ distM(T
nt, T nx)ν−n

− ‖β(n, x)‖
≤ C(λ− · ν−1

− · ν+)n,

which proves the first implication. The second follows by (A.3).
For the third, writeu = γx(t)v, v ∈ GL(d,R). Then, using the first implication and

the inequality‖AB‖ ≥ ‖A−1‖−1‖B‖ for A,B ∈ Mat(d,R), A invertible, one obtains

‖β(n, x)−1‖ · ‖β(n, x)− β(n, t)u‖
= ‖β(n, x)−1‖ · ‖β(n, x)(I − v)+ (I − γT nx(T

nt))β(n, x)v‖
≥ ‖I − v‖ − C(λ− · ν−1

− · ν+)n‖v‖,

which yields the desired conclusion. �
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[NT1] V. Ni ţică and A. T̈orök. Cohomology of dynamical systems and rigidity of partially hyperbolic

actions of higher rank lattices.Duke Math. J.79 (1995), 751–810.
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