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Abstract In this paper we obtain results about the regularity of the transfer map between
two cocycles over an Anosov system, with values in either a diffeomorphism or a Lie

group. We also explain how certain examples of de la Llave show that our results are
essentially optimal.

1. Introduction

Let G be a group acting on a compact Riemannian manifold without bountfatyy
a:GxM— M, (g x)~ a,(x) = gx. LetT" be some topological group. A cocycle
B over the actiorx is a continuous functio : G x M — T" such that

B(g182, x) = B(g1, g2x)B(g2, x), 1.1

forall g1,g.€ G, x e M.

A geometric interpretation of a cocycle is the following. Consider the trivial principal
I-bundleE = M x " over M. Then the cocyclegd described above corresponds to a
lift of the action« to an actione : G x E — E by principal bundle maps. Namely,
g € G induces the mag, : E — E given by (x, 1) — (. (x), B(g, x)h). The cocycle
equation (1.1) is equivalent to the fact tliais an action, i.ed,,ag, = yg,q,-

If ' = Aut(F) for some spacé’, then a cocyclgs : G x M — T" also corresponds to
a lift of o to an action by bundle maps on the trivial bundfex F. In this caseg € G
acts by(x, &) = (ag(x), B(g, x)(£)). Here ‘Aut(-)’ has the meaning appropriate for the
structure ofF. It can be GI(-) for F a linear space, or Diff) for F a manifold.

The natural equivalence relation for cocycles is the cohomology. Two cocggles
and B, are called cohomologous if there exists a continuous ap/ — I' such that

Br(g, x) = P(gx)Ba(g, x)P(x)" 1, (1.2)
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forall ge G, x e M.

We call P atransfer mapbetweens; and8,. We will refer to (1.2) as theohomology
equation

In terms of the geometric interpretations given above, two cocycles are cohomologous
if the two induced lifts of the action are conjugated through a (principal) bundle map:

d1(g) =Poay(g) o Pt geg,

whereP(x, y) := (x, P(x)y) anday, &, are the lifts corresponding t6;, S-.
A cocycle : G x M — T is calledcohomologically trivialif the equation

Blg,x) = P(gx)P(x)"

has a continuous solutioR : M — I'". We will refer to this equation as theivsic
cohomology equation

The following question turns out to be quite important for many rigidity reswitsat
can be said about the regularity of the solutighof the Livsic cohomology equation,
provided thatg and the actiorw are CX (K =1,2,..., w)?

Results in this direction were first obtained by Livsic, for real valued cocycles over
Anosov Z-actions. He showed that if the cocygieis C?, then the trivializationP is
alsoC? [L1]. For some linear actions on a torus he also showed that if the cocycle is
C, respectivelyC®, then so is the solutionLR]; this was obtained by studying the
decay of the Fourier coefficients.

Later, Guillemin and KazhdandK1, GK2] showedC-regularity of the solutions
in the case of geodesic flows on negatively curved surfaces. @blEt[CEG] proved
a C* version for geodesic flows of constant negative curvature.

The final conclusion for theC> case appears in the paper by de la Llateal
[LMM ]. One of the technical results involved is that if a function is smooth along two
transverse foliations which are absolutely continuous and whose Jacobians have some
regularity properties, then it is smooth globally. This was provedLiM§l ] using
properties of elliptic operators. Later, a more general result was proved byeJplirn
(see Theorem 5.1 in the sequel), relying mainly on Taylor expansions and the estimate
of the error. Another approach is presented in Hurder and Kathk], based on
an unpublished idea of C. Toll. Here the decay of the Fourier coefficients is used to
characterize smoothness. The method can be applied for spanning families of foliations
which have the same property as those usedlidM ]. Note that foliations arising from
Anosov diffeomorphisms have this property. Using the approachiK], de la Llave
proved the analytic case ihlpl].

In [NT2] the same question was considered for cocycles taking values in Lie and
diffeomorphism groups.

Notice that forl" an abelian group, the cohomology equation (1.2) can be restated in
terms of a cohomologically trivial cocycle. However, for a genérabne has to address
the following question: if two CX-cocycles are cohomologous through a continuous
transfer mapP, what can be said about the regularity 8f?

The goal of this paper is to answer this question in some instanc&sddie group or
a group of diffeomorphisms. It is organized as follows.§thwe state the main results;
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in §3 some facts about (partially) hyperbolic diffeomorphisms are given, followeéd in

by a counterexample due to de la Llave and a variant of it which show that results of
this type cannot be improved; the proofs are giverjb and 6. The Remark i§5
discusses the difference between our approach and the one used for the previous results.
We finish with an Appendix.

Notation. In the sequeld stands for eitheZ or R. In order to be able to refer to
both cases simultaneously, the elements of4aaction are denoted by € A — T*.
Therefore,T? is either the time-one map of a flow or the diffeomorphism generating a
Z-action.

2. The main results

Let M and N be compact manifolds, and consider an Anosov acfiond x M — M
(i.e. an Anosov diffeomorphism fad = Z and an Anosov flow fotd = R; see§3
for the definitions). Letg, B : A x M — Diff¥(N) be two CX cocycles which are
cohomologous through the transfer mAp M — Diff € (N), i.e.

B(g, x) = P(gx)B(g, x)P(x)"". 2.1

For G a finite-dimensional Lie group one can also consider b cocyclesg, 8 :
A x M — G which are cohomologous through a transfer ntapM — G.

We will discuss regularity results for the solutidh of equation (2.1), both for Diff-
and Lie group valued cocycles. In some cases the results generalize thdSE2pf [

To obtain the regularity of the transfer map, we have to require that it is already
Holder of some order. That this condition is essential follows fig¥m The examples
presented there also show that Theorems 2.2 and 2.4 are in a sense optimal.

We first define continuous or differentiable Diff-valued functions.

Definition 2.1.Assume thak = 1,2, ..., w anda € [0, 1). Let f : Ax M — Diff X (X)
be a function. One can identify with a functionf : A x M x X — X.

We say thatf is continuous if it is continuous into th€X -topology on Diff (X).
We say thatf is CX* if f is CK+,

THEOREM 2.2. Let M and N be compact Riemannian manifolds, anddef : Ax M —
Diff ¥ (N) be twoCX cocycles over th&X Anosov actionT : A x M — M, where

K =1,2,...,». Assume thap and B are cohomologous through a continuous transfer
map P : M — Diff ¥(N). Denote

A = lim |[DT"|p M,
n—oo

Ay o= lim DT g 7",
n—0o0

pny = lim sup|[DyBn, x)|M",

l‘l*)OOXEM

p— = lim inf [DyB(n, )"V,
n—-ooxeM
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whereTM = E° @ E° @ E* is the A-invariant splitting of 7M. Note thatu_ < ..
Assume that_ < u_ < uy < Ay, and set

Ny Inp_
Ny’ Ina_ |’

og = max{

If ap = 0 (possible only ifu_ = u, = 1) and
lim supsup|[ Dy B(n, x)|| < oo,
n—-oo xeM

limsupsup||DyB(n, x)~

n—>o0o0 xeM

1 (2.2
| < o0,
thenP : M — Diff (N) is CX~¢ for any smalle > 0.
In general, ifP : M x N — N is a-Holder for somer > «g, thenP : M — Diff X (N)
is CX—¢ for any smalle > 0. (For K € {1, 00, w}, K —e:=K.)

Remarks0. By the spectral radius theorem, the limits definingand ... exist and equal
the bounds of the spectra 87! and Df"ﬂl on the complexification of’ M, respectively
of the kernel of the natural projectioch(M x N) - TM (herefé stands for the lift of
T'to M x N via B). See alsg;3.

1. The relatiom_ < u_ < u, < A, holds for cocycles that are close enough tg.ld
Indeed, it < sup.y IDvB(L )|l and u_ > infeey | DyB(L x) 74| 7L

2. By (2.1) and the boundednessPf; P*!, the quantities:.. are the same fof and
B. The same is true about condition (2.2).

3. One can get a statement similar to Theorem 2.2 for cocycles taking values in a
compact Lie groufi’, because lettin@ act on itself by left translations gives an inclusion
I — Diff(T") of ' into the group of diffeomorphisms of a compact manifold. Note
that in this casexg = 0.

By taking 8 = Idy one obtains the following strengthening ™2, Theorem 2].

COROLLARY 2.3.LetK, NandT : A x M — M be as in Theorem 2.2. Assume that
B : Ax M — Diff (N) is a CX¥-cocycle which is cohomologically trivialized by the
continuous transfer map : M — Diff (N). ThenP is CX—¢ for any smalle > O.

As an application of Theorem 2.2, we obtain the following result for Lie groups. The
conditions are more restrictive than in Theorem 2.2 (see Remark 3 after Theorem 2.4).

THEOREM 2.4. Assume tha is a (closed subgroup in a) finite-dimensional Lie group that
admits a cocompact lattice. L&t, 7 : Ax M — M andAi. be as in Theorem 2.2 and let
B, B be CX-cocycles taking values i which are cohomologous through a continuous
transfer mapP : M — G. Denote

py = lim supl|Adgg. . IV,

nﬁooxeM

_ H P Y
M- = n'me;2L||Adﬁ(n,x)l|| ,

whereg is the Lie algebra oG, Ad : G — Aut(g) with Ad, being the differential at the
identity of the inner automorphisine G +— ghg™!, and|| - | denotes the operator norm
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on Aut(g) with respect to some fixed norm gnAssume that - < u_ < u, < A4, and
set

In Inp_
aozmax{ H+ M}.

Ny’ Ina_
If ag = 0 (possible only ifu_ = u, = 1) and
limsupsup||Adg,qll < oo,

n—-o0o xeM

limsupsup||Adg 1l < oo,

n—>o00 xeM
thenP : M — G is CX~¢ for any smalle > 0.
In general, ifP : M — G is a-Holder for somex > «g, thenP is CX~¢ for any small
¢ > 0. (Note that since the image & is compact inG, the fact thatP is a-Holder is
independent of the smooth metric chosernGop

Proof. Endow G with a right invariant metric. Assume th&tis a cocompact lattice of

G, and letN = G/ T, with the induced metric. Sino& acts onN by left multiplication,

P and the cocycleg and can be seen as taking values in BifV). The valuesu.
defined for Ag coincide with the values introduced in Theorem 2.2 for the corresponding
Diff (N)-valued cocycles. O

Remarksl1. Remarks 1 and 2 after Theorem 2.2 are valid here too, applied go Ad
2. By aresult of BorelB], GL(d, R) = Z, x R x SL(d, R), as well as any semisimple
Lie group, admits a cocompact lattice.
3. For G a closed subgroup of GU, R) andg a G-valued cocycle, consider

iy = lim sup|lBGm, 0",
nﬁooxeM

i o= lim inf 1B, x) 7YY,
n—o00 xeM

where]|| - || denotes the matrix norm. Then
ﬁ—'ﬁ;liﬂ— <y <y fT
One obtains the following generalization ®T2, Theorem 3].

COROLLARY 2.5.LetG, K andT : A x M — M be as in Theorem 2.4. Assume that
B.B: Ax M — G are twoC¥-cocycles which are cohomologous through a continuous
transfer mapP : M — G. If one of the cocycles takes values in a compact subgroup of
G, thenP is CX~¢ for any smalls > 0.

3. Partially hyperbolic diffeomorphisms
We first recall the definition of an Anosov diffeomorphism, respectively flow.

Let M be a compact manifold arifl : A x M — M a C*-action (4 = Z corresponds
to a diffeomorphism,4A = R to a flow). The actionT is called Anosovif there is a
continuous invariant splitting of the tangent bundid/ = E* @ E° @ E* and constants
C >0, x_ <0< x4 suchthat for € A, r >0,

IDT'v|| < Ce*|v'|, v e E",
DT~ < Ce "™ |v"|, v"eE",
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where if A = Z then E® = {0} and if A = R then E° is spanned by the nowhere
vanishing vector field which generates the flow.

The sub-bundles® and E* are calledstable respectivelyunstable distributions.
These distributions are integrable. We denote Wy (x) and W*(x) the stable
respectivelyunstable manifolds of the pointt € M. If the diffeomorphismT?! ¢
CX (M), then the stable and unstable foliations are al¥o, K = 1,2,...,w (See
Theorem 3.1).

Note that by aCX-foliation (K = 1,2,...,») we mean aC%foliation whose
leaves are embedded® -submanifolds, and these submanifolds depend continuously
in the CX-topology of embeddings on the point through which the leaf is considered.
(See Definition 6.2 for the”“-topology.) By twotransversefoliations we mean two
C!-foliations whose tangent spaces have trivial intersection at each point.

We now give the definition of a partially hyperbolic diffeomorphism. Our definition
relies on the Mather spectrum. Note that in our application the center distribution is
smooth and integrable, hence one could use the setup of HitsdjHPS], where what
we describe corresponds to ahsolutely 1-normally hyperbolimap.

Let M be a compact Riemannian manifold ayida C*-diffeomorphism ofM. We
consider the Banach spaE&(M) of continuous vector fields oM, on which f acts as
an invertible bounded linear operatgy. We complexifyI'°(M). The Mather spectrum
o (f) of f is the spectrum off, on this complex Banach space. If the non-periodic
points of f are dense il theno (f) is a union of circled|z| = a}. See M].

f is a partially hyperbolic diffeomorphisnif there are constants & »_ < u_ <
Uy < Ay, A- < 1 < Ay, such that the spectrum of is contained in the union of the
rngs{zeC:lz|>A},{zeCinu_=<lzl<wus}and{zeC:|z] <Ar_}.

This is equivalent to the fact that there is gftinvariant continuous splitting
TM = E* ® E° @ E* with the property that given any small> 0 there is a constant
C > 0 such that for anyg > 0

IDf el < COm+ 8, (3.1)
IDf gl < COy—8)7F, (3.2)
IDf gl = C(u-87F, (3.3)
IDf ol < Cluy + 8. (3.9)

As in the case of Anosov diffeomorphisms, for any fixed sria#f 0, one can find
another smooth Riemannian metric, equivalent to the initial one, for wiiieh 1 (see
[M]). Notice that, according to our definition, both an Anosov diffeomorphism and the
time-one map of an Anosov flow are partially hyperbolic.

The following theorem shows that the distributiods, E* are integrable and
characterize the leafs of the resulting foliations. It summarizes and extends some results
from [P] and HPS].

THEOREM 3.1. ([P, HPY)

(@) Assume thad/ is a compact Riemannian manifold arfde Diff X (M) is a partially
hyperbolic diffeomorphismK = 1,2, ..., ). Then each of the distributions*
and E" is integrable. The corresponding foliations are called the stable, respectively
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unstable, foliations, and are denoted W/, respectivelyW*. The leavedV*(x) and
WH(x) are CX, and depend continuously on the paint M in the CX topology.
These foliations can be characterized as follows. let< v < min{fu_, 1} <
max{+, 1} < vy < As. Then:

yEW () & lim v=¥disty (/). f5(x) =0,

yEW' () & lim vidisty(f (), () =0.

(b) If, in addition, E° @ E* is integrable to aC'-foliation and
— eitheru_>1
— orpu_ <1land (3.3) holds witts = 0,
thenv_ can be taken equal tmin{x_, 1}. Similarly forv, .

Proof. ForK = 1,2, ..., o0, (a) follows from either IP] or [HPS, Theorem 5.5].

For K = w, one can use the approach HHS]. Endow M with an analytic metric.
Consider the complex analytic extensishof M, endowed with a smooth extension of
the Riemannian metric aff. Let F : My — M be the complex analytic extension gf
whereM c Mo C M, My open inM. The exponential map o¥f also admits an analytic
extension, hence we can liff to a complex analytic map?o : (TeMg)ar — TeM for
some small > 0 (by E, we denote the sub-bundle of balls of radiusf the bundleF;
TcM denotes the tangent bundle &f endowed with the natural complex structusd),
Viewing E := TcM|,y as a real bundle only, extenla)|E2, toaC®mapF :E — E
which coincides Withﬁo on E, and is close toDF|g. IntroduceE{ = E"* @ JE*
and E& = E“ @ JE®, whereE“ := E° @ E°. Then DF|r preserves the splitting
E = E{ ® EZ, and has similar exponential estimates as thos® fffor the splitting
TM = E*® E*. Viewing E as a real bundle, the conclusion &fRS, §5] holds: seef
as a bundle oveE via the projection alond@¢, and consider in the space of sections
the set

Fo(1) :={o e T(E¢, E) :0(0,) =0, loles llip < 1 for eachp € M}

endowed with the metrido — o'|l« := SUP,cy SURLepx llo(x) — o’ (x)]I/llx]l. Then

the graph transfornf’s is a contraction olo(1) with respect to the metri¢ - ||, and
the graph of the restriction of the invariant sectigpto E* gives the exponential map
via the unstable manifolds of.

Let ¢ > O be such thatEy), @ (EE), C (TcM|y),. Consider the subset dfy(1)
given by

' :={o e€I'o()) : 0, is complex analytic
and depends continuously & on p € M},

whereo, . = ol . @ (B¢ e = EE,. Notice thatI'® is closed undet] - |, and
it is easy to check that i is close enough td F|, thenT is invariant underﬁ#.
Therefores; € I', which yields the desired conclusion.

Case (b) is proven inHPS, Corollary 5.6]. O
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Remark.If the distribution E* @ E° is integrable, the corresponding foliation is called
‘center-stable’ (similarly for ‘center-unstable’). We will use these foliations only for
K =12 ..., and either a flow or cases constructed as in the next theorem from an
element of and-action, when their existence and smoothness are immediate.

The following theorem shows how cocycles are related to this situation. It is a
straightforward extension oBJP, Theorem 2.2] (note that the hypothesis in the original
version is equivalent to (3.5) by the spectral radius theorem).

THEOREM 3.2. Assume thad/ is a compact manifold and@ e Diff (M) is a partially
hyperbolic diffeomorphism, with Mather spectrum contained in the riags C : |z| >
MhizeCiu_<l|zl<puistand{z € C:lz] <A_},where0 < A_ < u_ <y < Ay,
A_ <1< A,. Let F be a compact Riemannian manifold afd Z x M — Diff X (F) a
CX cocycle. Denote by the lifted action onM x F, i.e.T(x, y) = (Tx, (L, x)(y)). If

vy = kILm sup||DrBk, x)IV* < ry,

X xeM (3 5)
v 1= lim sup||DppBk, x) 1 7V* > a_, '

O xeM

thenT is a partially hyperbolic diffeomorphism.

Its spectrum is contained inthe rings € C : |z| > A}, {z € C: G- < |z| < fiy}
and{z € C : |z|] < A_}, whereji, = maXxu,,v.}, i = min{u_,v_}. The stable
and unstable distributions of project throughDx onto those ofl’, hence the stable
and unstable foliations project onto the stable, respectively unstable, foliatidhs Biie
center distribution off is given by the preimage undédx of the center distribution
of 7. If the center distribution of is integrable than so is that of, and the center
foliation of T is given by the preimage under of the center foliation of". In this case
the center-stable and center-unstable foliationg afre the preimages through of those
of T.

4. Limitations on regularity
We are going to discuss an example due to de la Llave and a variant of it which shows
that Theorems 2.2 and 2.4 are sharp as far as tddfl assumption on the transfer map
is concerned.

de la Llave used this counterexample in connection with the conjugacy of Anosov
maps. Katok noticed that it can be used for the problem we are interested in. We
will consider it from the viewpoint of partially hyperbolic maps, a class which includes
cocycles close to the identity over Anosov actions (by Theorem 3.2). We will first
describe the example, relate it to partially hyperbolic maps and make some remarks. We
will then construct a similar example for the case of Lie-group valued cocycles (although
the original example can be seen as taking values in the group of affine transformations,
it does not give the bound we need).

Consider a linear hyperbolig-action onT? given by A € SL(2, Z) and a constant
cocycleB(1, -) = B e Diff (T?), whereB € SL(d, Z), d > 2.
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THEOREM 4.1. (de la Llave I[la2, Theorem 6.3]}or a dense set of valuese (0, co)
there is a choice ol and B for which there are arbitrarilyC*-small smooth perturbations
B of B with the property that for any > 0 the cocycle$ and g are cohomologous by a
C"~¢ transfer map, but not by &”*¢ transfer map.

Assume thatd € SL(2,Z) and B € SL(d, Z) are hyperbolic matrices such thBthas
a real eigenvalue in the intervél, co). Let 0 < A < 1 be one of the eigenvalues df
(hence the other one is71), and letu > 1 be a real eigenvalue d&. We denote the
corresponding normalized eigenvectors as

Av_ = Av_,
AV+ = )\,_1V+ ’
Be, = pue,.

Consider a functiorp : T? — R and the following actions off? x T¢:
f(x,y) = (Ax, By),

f(x,y) = (Ax, By + p(x)e,).

(We see the quantity(x)e, as its image ifl¥ = R?/Z4, which is an abelian group.)
Note thatf is hyperbolic, hence, fo€'-small ¢, f is also hyperbolic and there is a
homeomorphisnk € HomedT? x T¢) close to identity such that

hf = fh. (4.1)

Moreover, this homeomorphism is unique among the homeomorphisms which are
homotopic to identity. The unique solution to (4.1) homotopic to identity is given by

h(x,y) = (x,y + ¥ ()€,

provided thaty : T? — R satisfies the equation

pyr (x) — ¥ (Ax) = ¢(x). (4.2)

Equation (4.2) admits a unique bounded solution, namely
v =puty oAty
k=0

It remains to find out how smootit is, assuming thap is C*.
Let
o Inp
oc .= m
It can be proven by a straightforward computation thas of classC® for anyo < ac.
By choosingy to be a trigonometric polynomial and using Fourier series, de la Llave
shows that
Yy ¢ C", foranyr > ac.

Since multiplyinge by a constant changeg by the same factor, we see that the
perturbation can be made as small as desired, while preserving the loss of regularity.
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Note also thatxc can take a dense set of values(d) oo) if we replaceA and B by
their powers.

We can seef and f as Diff(T%)-valued cocycles over the hyperbolic actisne
T? > Ax € T2. f corresponds t@(L, x)(y) = By and f to

B, x)(y) = By + ¢(x)e,.

Sinces~! is a bundle map, it corresponds to a transfer map betyseand given

by
x € T? = P.(-) = - — ¥ (x)e, € Diff *(T?),

,g(g, x)=Py0Bo Px’l.

This clarifies Theorem 4.1.

Let us now assume thatB*| < A~1. Then f and f become partially hyperbolic
diffeomorphisms (by Theorem 3.2).

Notice that in this case the critical valug < 1. HenceP fails to beC?.

Remark.In the example considered above, if the spectrunB a$é contained in the ring
{z € C:u™t < |z| < u}, then the critical ordetrc where P fails to be Hlder is exactly
the valueag of Theorem 2.2.

Given a partially hyperbolic diffeomorphism of a compact manifold, bdyoaizontal
foliation we mean aC'-foliation which is transverse and complementary to the neutral
distribution. Note that any’! invariant horizontal foliation has to contain (and hence,
is spanned by) the stable and unstable foliations (because the only invariant distribution
which is not tangent to the center one has to be containgtdf i E").

But any (invariant)C° foliation spanned by the stable and unstable foliations of a
C" partially hyperbolic diffeomorphism is actually”—¢, because Joué&s Theorem 5.1
implies that if two uniformlyC” foliations ; and F, span aC°foliation 7, then the
latter isC”"*. Indeed, consider a led of F; choose smooth local coordinates in such a
way that a small open set @f can be seen as the graph of a funcigonU — V defined
on a small domairU whose tangent space is close to the span of the tangent spaces of
F1 andF,. Sinceg is uniformly C" along each of the two transversal foliations obtained
by projectingF; N £ and 7, N £ alongV to U, we conclude thad is C"¢.

Since and 8 are cohomologous, one obtains an invari@ftfoliation for 8 (more
precisely, for f) by taking the image undé® of the horizontal invariant foliation of.

The horizontal invariant foliation of has leaves(x, y) = T? x {y}, (x, y) € T? x T¢.
Its image undeP has leave<(x, y) = {(z, P. o P7X(y)) : z € T?}.
Since P is notCY, £(x, y) is not C! either, hence it cannot contain the leavesfof
Indeed, one computes that tiief invariant spIittingE}EB E°q E; of T(T? x T%) =

TT? x TT? is given by

Eir,y) = RO, MeE),  E4x,y) =Ry, p'(1)ey),

o) A k
plx): = —M‘{Z(;) Dwx(v)},

k=0
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pl(x) = A[Z(Au)"walx(Vn}
k=0

Note that the distributiorE;‘; is transversallyC!. The stable leaves are

Wale, y) ={r +1vo, y + o) ()€) 11 € R},

o) () ==Y T (AR (x4 vo)) — p(AR ()],
k=0

and the unstable leaves are

Wi, y) ={x + vy, y + oy (18,) 11 € R},

o
o () =) lp(AT T x +1v,) — p(ATF )],
k=0
HenceP(W”(x ) ¢ W”(P(x ), butP(W (x,y)) C W (P(x, y))! Note thatP |y,
is as smooth ag, and the breakdown in the smoothnessPobccurs alongwy. These
facts are in agreement with the results to be discussed next.
We turn now to the case of Lie-group valued cocycles. We describe only the simplest
situation, taking values in G2, R).

THEOREM 4.2. Let A € SL(2, Z) be a hyperbolic matrix with eigenvalug$?, 0 < A < 1,
which acts oril? and g8 the constant cocycle given by

_p._(n O
ﬂ(lv):B_(O v>v

where0 < v < . Letr :=In(uv=1)/In A2,

There are arbitrarily C*-small smooth perturbationg(1, -) : T2 — GL(2, R) of B
with the property that for any > 0 the cocycless andﬁ are cohomologous by @ ¢
transfer map, but not by &”*¢ transfer map.

Proof. Considerﬁ and P given by

= (n ekx) (1 v
ﬁ(l,x)._(o Ny ) P(x)._(o 1 )

The cohomology equation (2.1) is equivalent to

(™ HY(x) — Y (Ax) = v (x), 4.3

and by the same arguments as before it admits a solgtiorilT?> — R of classC"~¢,
providedy is smooth enough. Moreover, by the argument of de la Llave, we can choose
a smooth functiony such that (4.3) does not admit solutiofisof classC”*¢ for any
e > 0.

It remains to show that no other transfer map betwﬁede can have a higher
regularity. This follows from the fact that the transfer map is essentially unique.
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Assume thap : T2 — GL(2, R) is continuous ang@ (n, x) = Q(A"x)B(n, x) Q(x) L.
Let R(x) := P(x)Q(x)~!, where P is the transfer map found above. Thgwm, x) =
R(A"x)B(n, x)R(x)71, i.e.

R(x) = B"R(A"x)B". (4.4)

But for R continuous this can happen onlyAfis a constant diagonal matrix. Indeed, if

we write - -
S(X r(x
Rm:(u(x) v(x))’

then (4.4) implies
s(x) = s(A"x), t(x) = (L V)"H(A"X),

u(x) = (W) "u(A™"x),  v(x) = v(A"),
which shows that = 0, u = 0 ands, v are constant (becausgis transitive). O

Thus we see that in Theorem 2.4 one indeed needs a more restrictive assumption on
the transfer map than in Theorem2.2.

5. Proof of Theorem 2.2 fot < K < o0
For the proof we need the following.

THEOREM 5.1. (Joureé [J]) Assume on a manifold that we are given two continuous
transverse foliations,F; and F,, with uniformly smooth leaves. If the functigh

is uniformly CX¥+%-smooth along the leaves df, and F,, then f is CX+*-smooth
(1<K <o0,a€(0,1)).

The idea of the proof of Theorem 2.2 is the following. The condition< p_ <
i < Ay implies that the liftsf, f € Diff X (M x N) of T corresponding t@(1, -) and

B(1, -) are partially hyperbolic diffeomorphisms. Thedlder assumption o implies

that the conjugacyx, y) € M x N i (x, P.(y)) maps the stable and unstable foliations
of f into those of f. Due to the special form of and f, this implies thatP is C¥
along the foliations off. The smoothness along the center foliation follows easily from
the hypotheses—invoking Jow's theorem for the case of a flow—and repeated use of
this theorem gives the desired conclusion.

Note that one can apply this approach to a conjugacy between two partially hyperbolic
diffeomorphisms having integrable center distributions (say, with compact leaves). The
following conditions are required: that the neutral foliations be transversally smooth,
that they be mapped one onto the other by the conjugacy, and that the two Anosov
maps induced on the quotient spaces be smoothly conjugated. However, one can obtain
a better result for actions d¢f*, k > 2, if the stable foliations produce a ‘trellis’ of
one-dimensional leaves which is complementary to the neutral foliation K§esr [KL ]
for the definition of a trellis). Such an argument is usedNT1, §7].

Remark. The difference between this approach and the previous resulEVI]
Llal, NT2] is the following. In the cited papers one proved regularity results for
cohomologically trivial cocycles by exhibiting the derivative of the transfer m@pn(
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our notation) along the horizontal lifts of the stable and unstable foliations of the action
on the baseT’ in our case). The same computation in the case considered here does
not seem to lead to a convergent expression, even with théeld assumption. As one

can see, the directions along which the derivatives are natural are the stable and unstable
leaves of the lifted action (which are indeed horizontal for the trivial cocycle). The
computational part is taken care of by Theorem 3.1(a), respectively Theorem A.1.

Let us now give the details of the proof.

Denote theA-invariant splitting of TM by E* @ E° @ E*, and the corresponding
foliations of 71 by W§, W and WY, respectively.

Considerf, f € Diff¥ (M x N) given by f(x, y) := (T'x, B(1, x)(y)), respectively
f(x,y) := (Tx, B(1, x)(y)). By Theorem 3.2 and f are partially hyperbolic. Denote
the Df-invariant splitting of (M x N) = TM x TN by F°* & F°@ F*, and the stable
and unstable foliations of by W*, respectivelyW". The corresponding notations for
f areF* @ FO@ F*, W*, respectivelyW*.

Note thatF° = {0} x TN & E° x {0}. Hence there is a constafitsuch that for each

IDf¥ poll < c(suanNﬁ(k,x)n + sup||DT"|Eo||),
xeM xeM

and similarly for f. The second term in the above sum is bounded uniformly with respect
to k becauseDT preserves the vector field which generates the flow.

ConsiderP € HomeqM x N) given by P(x, y) := (x, P.(y)), where P, = P(x).
Then fP = Pf, becauseP is a transfer map betweehand 5.

It is immediate that ifP : M x N — N is a-Holder then the same holds f&x We
claim that the fact thaP : M x N — N is a-Holder implies thatP~* : M x N — N, and
thereforeP—1, are alsax-Holder. Indeed, notice that in thé-variableP : M x N — N
is C1, hence Lipschitz. This property remains true for* : M x N — N. We only
have to check the &lder property in theM-variable. Forx’,x” € M andy € N one
has

disty (P, (P (PLR(0))), PoH(Pe(PLE())))
Lip(P. %) disty (P (PL(y)). Po(P2E(3)))
< Lip(P;Y - C - [disty (x', x")]*.

disty (P 1(y), PL1(y))

A

By Theorem 3.2, the Mather spectrapfand f are contained in the rings bounded by
the circles of radii 0 and_, u_ andu., respectivelyr, andoco. Their stable foliations
are characterized by Theorem 3.1. ket W*(u), u,z € M x N. Forv_ > A_ one has

lim b= disty v (f*(2), fXu)) = 0.
Assume thatP is «-Holder for somex > 0. Since

distyn (f*(P2)), f*(P))) disty v (P(f*(2)), P(f*(u)))
C'[distyxn (f*(2), fF @),

IA

it follows that
lim 5= disty . v (f*(P(2)), f*(P(u))) = 0. (5.1)

k—o00
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By Theorem 3.1(a), this implies th&(z) € W*(P(u)), provided thatv® < u_. If
o >Inu_/Inx_ one can find &_ > A_ which satisfies this condition, thus proving that
P(W*(u)) C W*(P(u)).

Assume now thatyy = 0 and P : M x N — N is only continuous (without any
Holder assumption). Then instead of (5.1) we obtain only that

lim disty .y (*(P@), f*(P(u)) = 0.
However, by our additional hypothesis,
Jim [(Df o)l < o0,

hence Theorem 3.1(b) implies thatz) € W*(P(u)), as desired.

In conclusion, we have proved that under the hypotheses of the thd{iéf(u)) C
W5 (P(w)). i

However, bothW*(x) and W*(P(u)) are graphs of some functions, ), v, p.y)) :
Wi(x) — N, whereu = (x,y) € M x N and pn(®) = ¥, Yu.Peyp®) =
P(x,y). SinceP preserves each vertical fiber, the inclusion has to be equality, and
P, yu(1)) = ypw(), for all 1 € Wi(x). Since the foliationsW* and W* are
CX (in the sense specified i§3), it follows that y(. ), ¥ r,y) are CX functions,
whose derivatives vary continuously witl, y) € M x N andr € Wg(x). From the
inverse function theorem applied toe Wy (x) — (, 7. (1)) € W*(u), one obtains that
Plisw) : Ws(u) — WS(P(w)) C M x N is CX, with the same continuous dependence.
Note that we have a similar statement 1|y ) : W (P(u)) — W5 ).

We proved thalP is uniformly CX along W*, and P~ is uniformly C¥ along W*.
Repeating the proof fof ! and /~! we obtain tha® is uniformly CX along W*, and
P~1is uniformly C¥ along W*.

The center foliationW¢ of both f and f is spanned by the transverse foliatioW$
and Wy corresponding to the vertical fibers, respectively the center foliatiofi'ofthe
former is tangent td0} x TN, the latter toE® x {0}. P is uniformly CX along W¢ by
the hypothesis. For the case of a flow, the cohomology equation (2.1) gives

P(T'(x),y) = B(t,x) o Py o B(t, x)"X(y)

which shows that is uniformly C* along Wy as well. SinceWw* and WS can be
integrated into the center-stable foliation and the latter together Witlspan the whole
manifold M x N, applying Jouré’s Theorem 5.1 successively we obtain tRds CX—*

for any smalle > 0. Note that ifK = 1 then there is no need for Theorem 5.1, hence
no loss of regularity occurs. O

6. The analytic case

The reason we have to consider this case separately is thatédourheorem 5.1
does not include th&“ case. The alternative approach is to estimate the decay of
Fourier coefficients. This was done ihl§1]. The following is a paraphrase oLlgl,
Lemma 2.5]. Its proof is the same as for the original statement.
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THEOREM 6.1. (de la Llave [[lal]) Assume that the real-analytic compact manif&lds
spanned by a family af“-foliations 71, 7>, ..., F; with the property that the Jacobian
J; of Fiisin C;‘;’(X,}R), i=1,...,k. Then

k
[C%(X.R) = C”(X, R).
i=1

Note that this is a local result, and this is how we are going to use it.

The Jacobian of a foliation is defined in Theorem 6.4.@BY X, R) we mean functions
which are analytic along the leaves of the foliatidhand depend continuously in the
C“-topology on the point of the manifold through which the (local) leaf is considered.
(See Definition 6.2 for the description of tli& -topology.)

In order to use Theorem 6.1, we have to show that the Jacobians of the stable/unstable
foliations of an analytic partially hyperbolic diffeomorphism are analytic along the leaves.
This was done for a flow inllal] using the set-up of Anosow]] and some results of
[LMM ]. We are going to follow the paper of Pugh and ShBI§|[ where an expression
for the Jacobian is given. We obtain expressions for the Jacobian and its derivative along
the leaf which are counterparts of the infinitesimal versions foundl il ]. These are
(6.3) and (6.5). Although here we consider tfi¢ case, these formulae hold whenever
the partially hyperbolic diffeomorphism is at leaSt. From (6.5) one can obtain the
higher derivatives by a straightforward differentiation.

Let us first recall the precise definitions.

Definition 6.2.Let U C R" be an open set. The (vector) space(U, R¢) of analytic
mappings from to R* is topologized by the following system of neighborhoods of the
origin: f is in V,, if it admits a complex-analytic extensiofi : U, — C' such
that sup_, If @l < L, whereU, = {z = (z1,22,...,2,) € C" : |Imz| < r,
(Rezi, Rezy, ..., Rez,) € U}.

Assume thatX is a compact analytic manifold, with € Riemannian metric.
Consider a partially hyperbolic diffeomorphisth € Diff“(X). Denote the splitting
of TX by TX = E*® E whereE¢ = E°@ E*, and the unstable foliation by*. By
Theorem 3.1(a)W* is a C*-foliation.

Definition 6.3Given aCX-foliation (K = 1,2, ..., ), by aC¥X foliated chart we mean
amapy : U x V — X which is a homeomorphism onto an open subseX and such
that, for eachv € V, x, := x(-,v) : U — X describes locally a leaf of the foliatiom,
is CX, and depends continuously enc V in the CX-topology.

Let u be the measure induced by the Riemannian metri&on
THEOREM 6.4. Given any pointg € X, there is aC foliated charty : U x V — X of

W aroundxg such thaty*u = p(t, v) dt dv, with the Jacobiarp continuous orUV x V,
analytic in theU-variable, and such that € V — p(-, v) € C®(U) is continuous.

Proof. Let ' and Q” be two smooth transversals W*, and denote by: : Q' — Q"
the holonomy alongv”. Pugh and ShubHS, Theorem 2.1] showed thatis absolutely
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continuous with respect to the measure induced on the transversals by the Riemannian
metric. The Radon—Nikodym derivative is given by

180 = lm SO T)

———, yeQ, 6.1
-0 de‘(finuwh(y)Q”) ( )

the limit being uniform.

Here by detf|V), whereV C T,X is a vector space, we mean the absolute value
of the determinant oDf,|y with respect to a pair of orthonormal basesWfc T, X,
respectivelyD, f (V) C T X.

We want to show that this Jacobian@¥ along the leaves oW*.

First we have to write (6.1) in a different form. This expression of the Jacobian is
valid whenever (6.1) holds.

Choose a continuous bundféwhich is complementary t&*. Denote byz : TX —

F the projection alongt”. Denote byf := # o Df|; the compression oDf to F.
Since f preservesz", the matrix of D with respect to the decompositidhX = E*& F

has the form
Df = (’8 ;i) (6.2)

Note thatf is an invertible bundle map oA.

CLAM 1. L
, det( f | F. det(#| T,
J&(y) = lim et(;f |~y) : e'f”' »$) , ye, (6.3)
n—oo det( f | Fyy)) det@|Th) ")

the limit being uniform
Proof. Denote byr : TX — E* the projection alongz*. Then

/ det( f"|E ,
J& () = lim (fIEY)  detr|T,Q)

cs ’ AN € Q/’
n—00 det(fin|EhA(y)) de‘(ﬂ|Th(y)Q )

the limit being uniform. Note that this is equivalent to (6.1} commutes with
Df, henceDf |50 = (n|Tf7”(y>ffn(Q,))*1 o Df"|ge o |7, Which implies that
det( f~"|T, Q) = del(f*"|E§5) det(w | T, Q") /det(w | Ty, f 7" (")), and the denominator
converges uniformly to 1 as — oco. See PS, formula ()].

Since f* o 7 |gs = 7 o Df*|ges, One obtains that

det(f " |ES) = det(f"|F,) det(, | ES") det(Fpn ()| EfS )~
and sincetr o = 7,
detr,|T,Q) = det(#,|T,) det(x, | ES) L.
Therefore fory € €/,

det(f"|E{)det|T,Q)  det(f"|F)) det#|T,Q)  de(FIEf . ))
det(f_n IE}iiy))det(n|Th(y) QN) de‘(f7" |Fh(y)) de‘(ﬁ’ |Th(y)9”) del(ﬁ' |chts—n(y))

and then (6.3) follows from the fact thaty) € W*(y), hence distf " (h(y)), f " (y))
converges uniformly to zero as— . (]
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We introduce the coordinate systemas follows. Consider an analytic system of
coordinates aroundy, p : U x V c RAME" » RAMES _, ¥ sych thatyg = p(0, 0) and
o i=p(t,-) 1 V — X are transversals t&“ for eachr € U. Denote the image qi(z, -)
by @, ¢ X. For a pointx close toxg define its coordinateg *(x) = (r,v) e U x V
by the condition thak = €, N Wg,.(0(0, v)).

That is, x (¢, v) = h,(p(0, v)), whereh, : Qo — , is the holonomy map alon@“.
The domain ofy will be an open subsel x V ¢ U x V containing the origin.y has
the required analyticity propertles It remains to show that its Jacobian is as desired.

Note thatp~1 o x (7, v) = (¢, h,(v)), whereh, = p; L oh, o po. Hence, up to some
C¢ functions and changes of variable, the Jacobian @ given by J (¢, y) := JQ,O(Y)'
with t € U andy € Q0. We are done once we prove the following.

CLAIM 2. J (¢, y) is analytic int € U, uniformly with respect toy € Q.

Proof. Choose ag” an analytic bundle otX which is complementary t&*, and denote
D(z) := det(f|F.). In view of (6.2), one can rewrite (6.3) as

J(t,y) = lim detf 1) | _detEIT o)
=% [[iZgDo f~*(h(y)) deUF|Ty,)€2)

Note thatD € Cy,.(X, R). Indeed, one can choose locally trivializing frames7of
consisting of the union of a frame fd#* and an analytic frame fof. The vector fields
in the former can be chosen to bed¥f,.. Then all the entries of the matrix df with
respect to these frame are @f;. (X, R), hence the same holds fgr as well. We also
obtain that? : TX — F has entries irC%. (X, R).

Given a product of positive real valued functioRs= a,,_1 - - - a1ag, its derivative is
given byDP = P[D(loga,_1) + - -- + D(loga;) + D(logao)].

Denote byD, the differential in thelU-variable (i.e. along¥"), and let

det(f~"|F)) det(#|T,0)
Ja(t,y) = —— R .
LoD o f*h(y) detT|Th,)$2)
Then
n—1
D, Ju(t,y) = —Jna,y)(Du log(det(# | Ty, ,y2)) + Y _ D, Iog(Dof"(ht(y»))
k=0
= —J(, v)(DM log(det(7 | Ty, () S))
n—1
+ > D109 D\ -1, ) D f ™ Iy Duhs |y). (6.4)
k=0

Due to the factorD, f~* and the uniform convergence df one obtains thaD, J,
converges uniformly, hence is differentiable along the leaf and

D, log(J (1, y)) = —(Du log(det(7 |Th, sy 2)) + Y _ Dulog(D o f "(ht(y))))- (6.5)
k=0

We proved so far that the Jacobian W# is C1. To obtain that it isC®, notice that
the right-hand side in (6.5) is analytic, uniformly with respectytolndeed, each factor



1204 V. Nitica and A. Drok

involved in the sum in (6.4) is analytic in uniformly with respect toy, and the sum
remains convergent when evaluated on the complexification of the unstable ledves.

We can now complete the proof of Theorem 2.2.

Proof of Theorem 2.2 foK = w. The discussion 0§5 shows that under the hypotheses
of the theorempP(x, y) := (x, P,(y)) maps stable/unstable leaves into stable/unstable
leaves. Since these foliations are analytic, one obtainsRhat uniformly C“ along
their leaves. The center foliation can be dealt with ag5nThereforeP has the desired
smoothness along three (foucdf = R) C* foliations which sparM x N. Their Jacobians
satisfy the requirements of Theorem 6.1, either by the hypotheses or Theorem(8.4.

Acknowledgements.We are indebted to the referee for the proof of Theorem 2.4. It
simplifies and extends our original proof of the c&ge- GL(d, R). Our approach was
based on the construction of stable and unstable foliations for certain skew-products.
Since this construction has applications beyond Theorem 2.4 Bd¢eaind [KNT]), we
present it in the Appendix.

We would like to thank A. Katok for pointing out to us that de la Llave's
counterexample is relevant to the problem we consider.

Appendix. Existence of stable and unstable foliations
We describe here how one can obtain an analogue of the stable and unstable foliations
for some skew-products. Using these, one can prove Theorem 2@ forGL(d, R)
in a similar way to Theorem 2.3: if two cocyclgs and g are cohomologous, i.e.
B(n,x) = P(T"x)B(n,x)P(Tx)~L, and P is Holder of a prescribed order, then the
corresponding foliations are mapped one onto the other.

Given a cocycle8 : A x M — GL(d, R) over the actionT : A x M — M, one can
considerf e Diff (M x R?) defined byf(x, &) = (Tx, (L, x)&), x € M, £ € RY.

Note that although we speak about invariant foliations fothe statement is about a
family of functions with values in the group.

By W3, W§ and W¢ we denote the stable, center and unstable foliatiori&of

THEOREMA.1. LetK, T andA. be as in Theorem 2.4, angla CX -cocycle taking values

in GL(d, R). Consider

~ . 1
fiy = lim sup||B(n, )|*",
n—)OOng

i = lim inf [|B(n, x)"Y ",
n—->o00 xeM

where|| - || denotes the matrix norm.
Assume that_ < (i_ - ;2;1. Then there areC®-functionsy, : W§(x) — GL(d, R),
x € M, satisfying the conditions:
1) v =1,
(2) the family of ‘graphs'W*(x, &) = {(t, . (1)) 1 t € W§(x)}, x € M, & € R?, gives
an f-invariant foliation of M x R¢.
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These functions are defined by the formula
v = lim B(n, 7 p(n,x), 1€ W3x),

and depend continuously on the paint M in the CX-topology.
The graphGraph(y,) C W5 (x) x GL(d, R) is characterized by

(t,u) € Graphy,) & lim (1B, )7 - B, x) = B(n, )u] = O
& nleoo v "|B(n, x) — B(n, Hul =0
forA_-fiy < v_ < fi_. In particular, the family{y, }cu is the unique family of functions

which satisfies conditions (1) and (2) above and is uniformly Lipschit# ..
Similar results hold for the unstable direction.

Proof. Note that the invariance property of the fam{lW* (x, &)},cp ccre @mounts to the
relation

B Oye(t) = yra(T'HB(L x), € Wi(x),
that is
ye(®) = B )y (T AL, x). (A1)

Iterating (A.1) we obtain that
Ye(@) = B, )y (T71) - B(n, x). (A2)

This suggests that we defing by the formula used in the theorem.
Consider the functions, , : Wj(x) — GL(n,R) given by y, ,(t) = Bn, 1)~

B(n, x). Denotep(1, -) by B(-).
Giveni_-ji, < v_ < ji_, choosec_ > A_ andv, > jiy such thab, -v=1-x_ < 1.
There is a constarp > 0 such that fom > 0 andr € Wg,..(x),

IDT"|Es|l < Cok”,
disty (T"t, T"x) < Cok”" disty (¢, x),

supl|B(n, y) |l < Cov", (A.3)
yeM

supl|B(n. )|l < Cov’.

yeM

Note that it is enough to construct eaghon Wg,,.(x) only, and then extend them
by (A.1).

CL,aM 1. The limit y, = lim,— yx.n €Xists uniformly onWg o6 (x) and defines a
continuous functiony, : Wy ,.(x) = GL(d, R). The functiong, defined this way satisfy
(A.1). Moreover,y,(t) is bounded by a constant which is independent af M and
t € W 0c(x). Denote this constant by...

Sincey, (1) = yu )y (x") fort, x” € Wg . (x), the family{W*(x, &) 1 x € M, § € R7)
gives a partition ofM x R?.
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Proof. We show that the sequenge, ,} is uniformly Cauchy. Letn > n be positive
integers and let € Wg,,.(x). Then:

m—1
1Yem® = ven Ol = Y 1¥esra®) = vex @l
k=n

m—1
= Y Bk, BT TIBT ) Bk, x)
k=n

—Bk, BT )BT Bk, 1)l

IA

m—1
DG v A BT ) — BT
k=n

m—1
< CitY Tt vg k )MYIBIILp dist (7, x)
k=n

< COI'vpk),

where the constar® does not depend om, n, x or ¢.
The rest of the Claim follows from the identitieg. ,(t) = yv..(*)yr.(x’) and

yx,nJrl(t) = 13(1’ t)ilyTlx.n(Tlt)ﬂ(la x). g

CLAM 2. The functionsy, : Wy ,.(x) — GL(d, R) are Lipschitz and their Lipschitz
norm is bounded by some constdnt, independently of € M.

Proof. Let ¢, " € W ,.(x) andn > 0. Then:

”)/x,nJrl(t) - Vx,n+1(t/)”
= 187X - BTHT " )BTHT ) - BH(X)
—B7Hy - BTHTYBTHT X) - )|

< DB pTHTEOBTHT BT ) - BT BT ) - B(X)
k=0
—pr) - BTHT) BT ) - BTHTTHB(T ) - B

< D IBG YT IBTHTH) = BHTEOI - Iy at (TN - 1Bt + 1 1) |
k=0

< an(cov:’w - (I8 luipCor disty (1", 1)) - Cs - (Cov™)

< ZodistM(t, '),
where L, does not depend om, x, ¢ or t. Now take the limit as: — oc. O
CLAM 3. The functionsy, : Wg,,.(x) — GL(d. R) are C*.

Proof. We denote byD; the derivative along¥;. Then forz € Wg . (x),

DyVinsile = DB HTY) - pHT"t) - B(T"x) - - - B(x)]
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S BN BT DB gy - BTN ) BRI
k=0

B(T"x)--- B(x)DsTH,

> Bl DB N - B — k, T B+ 1, x) - DT,
k=0
We now use (A.2) and the cocycle relation to obtain

n
Dyyinsale = Y BT D ey - yproa (TF )
k=0

B —k, Tyl (T"HDB(0 — &, T )
Bk +1,)D, T,

= Y B,y DB gk yrean (T - Bk + 1, x) D, T,

k=0
+Y Bk, ) ID B gy - yrrea (TF 1)
k=0
Q@ —k, T, Ty . Bk + 1, x)D, T, (A.4)

where
Qk, y,8) = Bk, y) 1 [yrey(Ths) — 11 - Bk, y).

Sincey, is Lipschitz with normL,, we see that for € Wg,,.(x) andk < n,
I — k, T, T )| < L= - vi* " < L.C.

Using this estimate in (A.4), and once more (A.2), we obtain fat, ,|, converges
uniformly to

D v @ Bl )y (T )T DB sy - yrinae(TH) - Bk + 1, x) DT, (A5)
k=0

Note that this is an absolutely convergent series, which is continuous with respect to
x € M andt € W§(x). O

CLAaM 4. The functionsy, : W3(x) — GL(d, R) are C¥ and depend continuously on
the pointx € M in the CX-topology.

Proof. From the comment preceding Lemma 2.3 MM ] it follows that
IDTH|| < (1 4 DICK kT,

Then a direct computation from the expression (A.5)Infy, shows that the higher
derivatives ofy, can be found by term-wise differentiation of (A.5). The resulting series
also have the required continuity. This solves the diisg oc.

The caseK = w follows from the observation that the uniform convergence proved
in Claim 1 also holds on the complexification &%, (W is a C”-foliation by
Theorem 3.1(a)).
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Indeed, sinceM, T and B(1, ) are analytic, there is a complex analytic manifold
containingM and analytic extensions @f' andg(1, -) to T : Mo — M and respectively
Bo : My — GL(d, C), where M, is an open neighborhood a¥f in M. Each leaf
W 10c(x), x € M, has a uniform extension to a complex analytic sub-manifigig,.(x)
of Mo, T (W§66(x)) C W 10e(T2(x)), and T acts as a contraction on these complexified
leaves. ONV* := [,y W 0c(x) ONe can define a ‘cocycl@,. : Z, x M* — GL(d, C)
overT. The corresponding constants and/i. can be made as closea, respectively
fi+, as desired by shrinkingf, (note that the limits defining these numbers are actually
infima).

Then 7,,(t) = Br(n, 1)L - B4 (n, x) is defined onW; . (x) for x € M and is an
analytic extension of, ,. The computation of Claim 1 carries overjtp, and we obtain
the existence of a uniform limit as— oo, bounded oW ..(x) by some constant which
is independent of. We conclude thay, is analytic and depends continuouslyd# on
xeM.

Note that for the unstable foliation we have to use a different extension of the cocycle,
but the constants are still given By, . O

CLAIM 5. Given(t, u) € Wi(x) x GL(d, R), one has
(t,u) € Graphy,) = |Lmoo v_"[|B(n, x) — B(n, )u| =0

= lim [|BGe, x)7H - 1B (n, x) — Bn, ul =0
= (t,u) € Graphy,).

Since the first implication follows from the conclusion of Claim 2 and conditions (1) and
(2), this proves the characterization as uniformly Lipschitz functions as well.

Proof. Indeed, forn large enough so that”: € Wg,.(T"x), one obtains by (A.2),
condition (1), Claim 2 and (A.3) that

v "B, x) = B(n, Dy (D)l VI =y (T"0) B(n, )|l
L disty (T"t, T"x)v_"[|B(n, 0) |

C(h_ vt v,

IA

IA

which proves the first implication. The second follows by (A.3).
For the third, writeu = y,(t)v, v € GL(d, R). Then, using the first implication and
the inequality|| AB|| > ||A~Y||~||B|| for A, B € Mat(d, R), A invertible, one obtains

I1B(n, )7 - 1B(n, x) — B(n, )ull
1B, )7 - 1B, x)(I = v) 4+ (I — yrar (T"1)) B(n, X)|
17— vl —CO- vt v )"l

v

which yields the desired conclusion. O
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