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Abstract. If S is a semigroup in Rn that is not separated by a linear func-

tional, then it is known that the closure of S is a group. We investigate a
similar statement in an infinite dimensional topological vector space X. We

show that if X is an infinite dimensional Banach space, then there exists a
semigroup S ⊂ X, not separated by the continuous functionals supported by

the closed linear span of S, for which the closure of the semigroup is not a

group. If X is an infinite dimensional Fréchet space, then the closure of a
semigroup that is not separated is always a group if and only if X is Rω , the

countably infinite direct product of lines. Other infinite dimensional topolog-

ical vector spaces, such as R∞, the countably infinite direct sum of lines, are
discussed. The Semigroup Problem has applications to the study of certain dy-

namical systems, in particular for the construction of topologically transitive

extensions of hyperbolic systems. Some examples are shown in the paper.

1. Introduction

The topological vector spaces considered here are over the field R of real numbers.
The goal of this paper is to investigate the following basic problem:
Semigroup Problem. Let X be a Hausdorff topological vector space and let

S ⊂ X be a semigroup. Let X0 be the closure of the linear span of S. Assume that
S is not separated by any continuous linear functional in the dual of X0, that is,
for any φ ∈ (X0)∗ \ {0} there exists x1, x2 ∈ S such that φ(x1) > 0 and φ(x2) < 0.
Does it follow that the closure of S is a group?

The problem was studied so far in the finite dimensional setting. Take Rn en-
dowed with the Euclidean topology. If S is semigroup in Rn not separated by any
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linear functional then it is known that the closure of S is a group [16, 17]. A similar
problem, in which separation by linear functionals is replaced by separation by cer-
tain maximal semigroups, was investigated for several classes of finite dimensional
non-compact Lie groups such as Euclidean groups [16], nilpotent groups [20] and
solvable groups [14].

While the Semigroup Problem is of independent interest, it is also relevant for
the study of certain dynamical systems, in particular for construction of topologi-
cally transitive extensions of hyperbolic systems. A large collection of results about
transitivity of extensions of hyperbolic dynamical systems with fiber a finite di-
mensional Lie group were recently obtained. An extended up to date review of the
available material can be found in [19]. Much less is known if the fiber is an infinite
dimensional topological group. The present paper shows that certain results from
the finite dimensional setup are difficult to extend.

We describe now the structure of the paper. In Section 2 we show that if X is Rω,
the countably infinite direct product of lines, then the Semigroup Problem has a
positive answer. In Section 3 we show that if X is R∞, the countably infinite direct
sum of lines, then the Semigroup Problem has a negative answer. The example we
describe in Section 3 is crucial for the rest of the paper. In Section 4 we show that
if X is an infinite dimensional Banach space, then there are sets S ⊂ X for which
the Semigroup Problem has a negative answer. In Section 5 we show that if X is an
infinite dimensional Fréchet space different from Rω, then there are sets S ⊂ X for
which the Semigroup Problem has a negative answer. In Section 6 we investigate
topological transitivity of extensions with fiber Rω and R∞. In Section 7 we discuss
further results and additional directions of research.

2. The case X = Rω

We first recall the following result, proved in [16],[17].

Theorem 2.1. Assume that the semigroup S ⊂ Rn is not separated by any non-zero
linear functional. Then the closure of S is a group.

We review the structure of the space Rω =
∏∞
n=1 R. An element x ∈ Rω is an

infinite sequence of real numbers x = (xn)∞n=1. The topology is the usual Tychonoff
product topology. The space has a structure of Fréchet space with the countable
family of seminorms ‖x‖n = |xn|. As such, it is metrizable. An invariant metric
given by:

(1) dRω ((xn)∞n=1, (yn)∞n=1) =

∞∑
n=1

1

2n
· |xn − yn|

1 + |xn − yn|
.

A sequence (x(k))∞k=1 ⊂ Rω is convergent if and only it converges on components.
A continuous linear functional φ ∈ (Rω)∗ can be identified with a sequence of real
numbers with finite support φ = (φn)∞n=1, that is there exists an integer N(φ) such
that φn = 0 if n > N(φ). The action of a functional φ on a sequence x is given by
φ(x) =

∑∞
n=1 φnxn.

Theorem 2.2. Let S ⊂ Rω be a semigroup that is not separated by any non-zero
continuous linear functional. Then the closure of S is a group.

Proof. It follows from above that all continuous linear functionals φ on Rω are of
the form φ = ψ ◦πn for some positive integer n with ψ : Rn → R a linear functional
and πn : Rω → Rn the canonical projection on the first n components.
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It follows that if S is not separated by continuous linear functionals, then neither
is πn(S) ⊂ Rn, n ∈ N. Hence Theorem 2.1 implies that the closure of πn(S) in Rn
is a group.

Take now a point x in the closure of S. Then πn(x) is a limit point of πn(S)
so −πn(x) is also a limit; therefore one can find for each positive integer n a point
x(n) ∈ S such that πn(x(n)) is within 1

n on each coordinate from −πn(x). This
means that the sequence (x(n))∞n=1 converges to −x.

Therefore the closure of S is a group. �

3. The case X = R∞

We start with general facts about R∞, the countably infinite direct sum of copies
of R. A good reference to use here is [7]. The elements in R∞ are infinite sequences
(hn)∞n=1 of real numbers such that hn = 0 for all but a finite number of entries. We
consider the finite dimensional groups Rn embedded in R∞ on the first n coordi-
nates. The topology we use on R∞ is the so-called box or rectangular topology and
it is finer than the Tychonoff product topology. It is the induced topology from the
topology defined on the infinite product Rω by the basis consisting of the collection
of all infinite products

∏
i Ui, where Ui is an open set in the i-th component of Rω.

Endowed with this topology R∞ becomes a topological group, as well as a separable
topological vector space [7, Proposition 2], and the induced topology on each Rn
is the usual product topology. Any linear map φ : R∞ → R is a continuous linear
functional [7, Proposition 2]. A continuous linear functional φ can be identified
with a sequence of real numbers φ = (φn)∞n=1. The action of a functional φ on
a sequence h is given by φ(x) =

∑∞
n=1 φnhn. The space R∞ has a structure of

countable strict inductive limit of Fréchet spaces, or LF -space [28, Chapter 13]. As
such, it is complete, but not metrizable. Hence it is not a Fréchet space.

We consider the semigroup S ⊂ R∞ generated by elements s(k) of type:

(2) s(k)n =


1, if n = k,

p ∈ Z, if 1 ≤ n ≤ k − 1,

0, if n > k.

So s(k) is zero beyond the k-th entry, the k-th entry is 1 and the first k− 1 entries
are arbitrary integers.

Proposition 3.1. The semigroup S ⊂ R∞ is not separated by any non-zero con-
tinuous linear functional.

Proof. Let φ = (φn)∞n=1 be a linear functional. We have the following cases, de-
pending on the initial non-zero entries in φ:

Case 1. φk 6= 0 and φn = 0 if n 6= k.
Consider any element x ∈ R∞ of type s(k) given by xk = 1 and the element

y ∈ R∞ of type s(k + 1) given by yk+1 = 1, yk = p, yn = 0, n 6∈ {k, k + 1}. Then
φ(x) = φk, φ(y) = φkp with p ∈ Z arbitrary, so φ does not separate S.

Case 2. φ has at least two non-zero entries, with the first two being, φk1 and
φk2 , k1 < k2.

Consider the element x ∈ R∞ of type s(k2) given by xk2 = 1, xn = 0, n 6= k2

and the element y ∈ R∞ of type s(k2) given by yk2 = 1, yk1 = p, yn = 0, n 6∈
{k1, k2}. Then φ(x) = φk2 , φ(y) = φk1p + φk2 with p ∈ Z arbitrary, so φ does not
separate S. �
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The next proposition shows that the answer to the Semigroup Problem for X =
R∞ is negative.

Proposition 3.2. The element 0 ∈ R∞ does not belong to the closure of S.

Proof. Any element in S is a finite linear combination with positive integer coeffi-
cients of elements of type s(k). As such, the leading non-zero coefficient is always
a positive integer. A neighborhood U of 0 that is a countable product of intervals
(−.5, .5) does not contain any element from S, so 0 is not in the closure of S. �

Under additional assumptions, the Semigroup Problem for R∞ has a positive
answer. If S ⊂ R∞ we denote by Sn the set of elements in S with the support
included in the first n components.

Theorem 3.1. Let S ⊂ R∞ be a semigroup. Assume that there exists an increasing
sequence (ni)

∞
i=1 of positive integers such that Sni is not separated by any non-zero

continuous linear functional for all i. Then the closure of S is a group.

Proof. Let g be a limit point of the semigroup S. Note that g has all but a finite
number of entries zero, so there exists n0 such that gi = 0 for i ≥ n0. Due to
our assumption there exists m0 ≥ n0 such that Sm0

is not separated. Then the
set Sm0

∪ {g} is not separated either, and it follows from Proposition 2.1 that the
closure of the semigroup generated by it is a subgroup in the closure of S. We
conclude that g−1 belongs to the closure of S. �

4. The case where X is a Banach space

Let (X, ‖ · ‖) be an infinite dimensional Banach space with a complete norm. We
recall several basic facts that are needed for our result. They can be found in the
classical Banach spaces monograph of Lindestrauss and Tzafriri [13].

A sequence (xn)∞n=1 ⊂ X is called a Schauder basis of X if for every x ∈ X there
exists a unique sequence of scalars (an)∞n=1 such that x =

∑∞
n=1 anxn. A sequence

(xn)∞n=1 ⊂ X which is a Schauder basis of its closed linear span is called a basic
sequence. It is a standard result attributed to Mazur that any Banach space has
a basic sequence for a closed subspace. We can assume that the basic sequence
(xn)∞n=1 is normalized, that is ‖xn‖ = 1.

A Banach space X with a Schauder basis (xn)∞n=1 ⊂ X can be considered a
sequence space by identifying x =

∑∞
n=1 anxn with the sequence (a1, a2, a3, . . . ).

The sequence space contains all sequences with finite support.
If (xn)∞n=1 ⊂ X is a Schauder basis of X, then the linear operators Pn : X → X

given by Pn(
∑∞
n=1 anxn) =

∑n
k=1 akxk are uniformly bounded. One can always

pass to a different norm on X for which the uniformity constant is 1.
If X is a Banach space, denote by X∗ its dual. Let X be a Banach space with a

Schauder basis (xn)∞n=1 ⊂ X. For every integer n the linear functional x∗n : X → R
defined by x∗n(

∑∞
k=1 akxk) = an is a continuous linear functional. For any functional

x∗ ∈ X∗ and x =
∑∞
k=1 akxk ∈ X one has x∗(x) =

∑∞
k=1 akx

∗(xk), that is, we can
associate to x∗ the sequence of scalars

(3) (x∗(x1), x∗(x2), x∗(x3), . . . ).

The next theorem shows that the answer to the Semigroup Problem for any
Banach space is negative.
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Theorem 4.1. Let X be an infinite dimensional Banach space. Then X contains
a semigroup S that is not separated by any non-zero continuous linear functional
(supported on the closure of the linear span of S) and which does not contain 0 in
its closure.

Proof. Let (xn)∞n=1 be a basic sequence in X and let X0 be the closed linear subspace
spanned by the basic sequence in X. Using the identification of X0 with a sequence
space, we construct the semigroup S using the same construction as in Section 3.
Using the sequences of scalars associated to the functionals in X∗0 (3), one can carry
over the proof of Proposition 3.1 and show that S is not separated by any functional
in X∗0 .

It remains to show that 0 is not in the closure of S. Any element in S is a
finite linear combination with positive integer coefficients of elements of type s(k).
As such, the leading non-zero coefficient of each element in S is always a positive
integer. We proceed by contradiction. Let (x(n))∞n=1 ⊂ X0 be a sequence of ele-
ments in S that converges to 0. Using the identification with a sequence space, let
x(n) = (x(n)k)k. Using that the projections Pn are uniformly bounded by 1 and
that the Schauder basis is normalized, one has:

(4) |x(n)k| = ‖Pk(x(n))− Pk−1(x(n))‖ ≤ 2‖x(n)‖ for all k, n.

Now (‖x(n)‖)∞n=1 converges to 0 gives a contradiction with |x(n)k| ≥ 1 for k the
index of the leading non-zero coefficient of x(n). �

5. The case where X is a Fréchet space

Let X be an infinite dimensional Fréchet space. We recall some standard facts
that can be found in [22] and [24]. A Fréchet space is a locally convex space that
is complete with respect to a translation invariant metric. The topology can be
defined using a countable increasing sequence of seminorms (pn)∞n=1. If a Fréchet
space admits a continuous norm, we can take all the seminorms to be norms ‖ · ‖n
by adding the continuous norm to each of them.

A sequence (xn)∞n=1 is a Schauder basis in X if every x ∈ X has a unique series
expansion x =

∑∞
n=1 anxn, where an are scalars. If X has a basis (xk)∞k=1 and a

norm ‖ · ‖0, we can assume that ‖xk‖0 = 1 for all k. In conjunction with the above,
we can assume ‖xk‖n ≥ 1 for all n and k. If for every n ∈ N, there is some C > 0
and q ∈ N such that |ak|‖xk‖n = ‖akxk‖n ≤ C‖x‖q, for all x ∈ X and k ∈ N, then
the basis is equicontinuous [22, 10.1.2]. According to [22, Theorem 10.1.2], every
Schauder basis in a Fréchet space is equicontinuous. As in the case for Banach
spaces, the existence of a basis allows to identify X with a sequence space that
contains all sequences with finite support.

Let X∗ be the dual of X and (xn)∞n=1 ⊂ X be a Schauder basis for X. For any
continuous functional x∗ ∈ X∗ and x =

∑∞
k=1 akxk one has x∗(x) =

∑∞
k=1 akx

∗(xk),
that is, we can associate to x∗ the sequence of scalars

(5) (x∗(x1), x∗(x2), x∗(x3), . . . ).

The next theorem answers the Semigroup Problem for a Fréchet space.

Theorem 5.1. Let X be an infinite dimensional Fréchet space. Then either X
is isomorphic to Rω or there exists a semigroup S ⊂ X, not separated by any
non-zero continuous linear functional, such that S does not have 0 in its closure.
In particular, the Semigroup Problem has a positive answer if and only if X is
isomorphic to Rω.
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Proof. A structure theorem of Bessaga, Peczyński and Rolewicz [4] shows that any
Fréchet space is either isomorphic to a product of a Banach space and Rω or con-
tains a closed subspace which is topologically isomorphic to an infinite dimensional
nuclear Fréchet space with Schauder basis and a continuous norm.

If X is isomorphic to a product of a Banach space and Rω, and the Banach space
is infinite dimensional, then Theorem 4.1 implies that the Semigroup Problem has
a negative answer.

Assume now that X contains a closed subspace X0 which is topologically isomor-
phic to an infinite dimensional nuclear Fréchet space with Schauder basis (xn)∞n=1

and a continuous norm. Using the identification of X0 with a sequence space, we
construct the semigroup S using the same construction as in Section 3. Using the
sequences of scalars associated to the functionals in X∗0 , one can carry over the
proof of Proposition 3.1 and show that S is not separated by any functional in X∗0 .

It remains to show that 0 is not in the closure of S. Any element in S is a finite
linear combination with positive integer coefficients of elements of type s(k). The
leading non-zero coefficient of each element in S is always a positive integer. We
proceed by contradiction. Let (x(n))∞n=1 ⊂ X0 be a sequence of elements in S that
converges to 0. Using the identification with a sequence space, let x(n) = (x(n)k)k.
Using that the Schauder basis is equicontinuous, there exist C > 0 and q such that:

(6) |x(n)k| ≤ |x(n)k|‖xk‖n ≤ C‖x(n)‖q,
for all n, k.

Now as (‖x(n)‖q)∞n=1 converges to 0, this gives a contradiction with |x(n)k| ≥ 1
for k the index of the leading non-zero coefficient of x(n). �

6. Applications

As mentioned in the introduction, the Semigroup Problem is of interest due to
applications to the construction and classification of topologically transitive exten-
sions of hyperbolic systems.

We introduce some necessary terminology.
Let (X, dX) be a compact metric topological space, f : X → X a continuous

map and (G,+, dG) an Abelian topological group. A function β : X → G will be
referred to as a cocycle. Given f, β,G we consider the skew product (or extension)
fβ : X ×G→ X ×G given by

fβ(x, g) = (f(x), g + β(x)), x ∈ X, g ∈ G.
We will refer to X as the base of the skew product and to G as the fiber of the skew
product. One has:

(7) fnβ (x, g) = (fnx, g + β(x) + β(f2x) + · · ·+ β(fn−1x)), x ∈ X, g ∈ G.
The extension fβ is called topologically transitive if for every pair of non-empty

open sets U and V in X, there is a non-negative integer n such that fn(U)∩V 6= ∅.
The extension fβ is called weak topologically mixing if fβ × fβ is topologically
transitive. We observe that if the groupG is not metrizable, the notion of topological
transitivity we use is weaker than having a dense positive semi-orbit {fnβ (x0, g0), n ∈
N}.

Let C(X,G) be the space of continuous functions from X to G endowed with
the compact-open topology, or, if (G, dG) is a metric space, endowed with the
metric dC0(β1, β2) = supx∈X dG(β1(x), β2(x)). An extension fβ is called C0-stably
transitive (C0-stably topologically mixing) if the cocycle β has an open neighborhood
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V ⊂ C(X,G) such that for any β′ ∈ V the extension fβ′ is transitive (topologically
mixing).

Assume in addition that (G, dG) is a metric space. Let Cα(X,G) be the space
of Hölder functions from X to G with the metric

dCα(β1, β2) = dC0(β1, β2) + sup
x,y∈X,x 6=y

dG(β1(x), β2(x))

dX(x, y)α
.

An extension fβ is called Cα-stably transitive (Cα-stably topologically mixing) if the
cocycle β has an open neighborhood V ⊂ Cα(X,G) such that for any β′ ∈ V the
extension fβ′ is transitive (topologically mixing).

Two cocycles β1, β2 are said to be cohomologous over f if there exists a function
P : X → G, called the transfer map, such that β1 = P + β2 − P ◦ f. If x ∈ X and
x, fx, . . . , fnx = x, is a periodic orbit for f we call the sum β(n, x) :=

∑n−1
i=0 β(f ix)

the weight of β over the periodic orbit. If f and β are given, we denote by Lf,β the
set of weights of β over all periodic orbits of f and refer to this set as the periodic
data. If G has a structure of real topological vector space, then the set Lf,β is
said to satisfy the inseparability hypothesis if it is not separated by any continuous
functional φ : G → R. That is, for any continuous functional φ 6= 0 there exists
g1, g2 ∈ Lf,β such that φ(g1) > 0 and φ(g2) < 0.

Definition 6.1. Let X be a smooth compact manifold and f : X → X be a C1

diffeomorphism. The diffeomorphism f is called Anosov if there exists a continuous
Df -invariant splitting of the tangent bundle TX = Es⊕Eu and constants 0 < λ < 1
and C > 0 such that:

(8)
‖Dfn(v)‖ ≤ Cλn‖v‖, v ∈ Es,
‖Df−n(v)‖ ≤ Cλn‖v‖, v ∈ Eu,

for all n ≥ 0.

If f : X → X is a diffeomorphism of a smooth compact manifold, we denote by
f∗ : H1(X,R)→ H1(X,R) the induced (matrix) action on real homology.

The following theorem is proved in [21].

Theorem 6.2. Let X be a smooth compact manifold and f : X → X be a transitive
Anosov diffeomorphism for which f∗ does not have 1 as an eigenvalue. Let β : X →
Rn be a Hölder cocycle. Then the following are equivalent:

(1) The extension fβ is topologically transitive.
(2) The extension fβ is C0-stably topologically transitive.
(3) The periodic data Lf,β is not separated by any hyperplane.
(4) There exist orbits which are unbounded in both the positive and negative

sense, that is, there exist x, y ∈ X, such that for all N > 0, there exist
n,m ≥ 0 such that β(n, x) ≥ N and β(m, y) ≤ −N .

(5) The extension fβ is weak topologically mixing.
(6) The extension fβ is C0-stably weak topologically mixing.
(7) The cocycle β is not cohomologous to one taking values in a half space of a

hyperplane passing through the origin.

It is desirable to extend Theorem 6.2 to infinite dimensional topological groups.
Two attempts are made by Rosengarten, Reich [23] and Silverman, Miller [27]. In
[23] the fiber is Rω and it is shown that topological transitivity of the extension and
inseparability of Lf,β are still equivalent, but stable topological transitivity is not
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valid for any Hölder extension. In [27] it is shown that if the fiber is L2([0, 1]), then
there are inseparable Hölder extensions that are not topologically transitive.

Theorem 2.2 can also be used to extend Theorem 6.2 if the fiber is Rω. This is an
alternative proof of [23]. The advantage of the new proof is that it follows, almost
verbatim, the proof in [21], and it is independent of the Baire category argument
used in [23].

Theorem 6.3. Let X be a smooth compact manifold and f : X → X be a transitive
Anosov diffeomorphism for which f∗ does not have 1 as an eigenvalue. Let β : X →
Rω be a Hölder cocycle. Then the following are equivalent:

(1) The extension fβ is topologically transitive.
(2) The periodic data Lf,β is not separated by any continuous functional φ :

Rω → R.
(3) For any continuous functional φ : Rω → R and for any M > 0 there exist

g, g′ elements in the periodic data such that φ(g) > M,φ(g′) < −M.
(4) The extension fβ is weak topologically mixing.
(5) The cocycle β is not cohomologous to one having the range separated by a

continuous functional.

Proof. We recall [18] that every closed subgroup of Rω has the form Rn⊕Zm, where
m,n are non-negative integers or ω.

The rest of the proof is similar to [21] and consists of the following main steps:

(1) Show that the group generated by Lf,β is dense in Rω.
The fact that the value 1 is not in the spectrum of f∗ : H1(X,R) →

H1(X,R) is equivalent to the following property: if for a real valued cocycle
β : R→ R the associated periodic data Lf,β belongs to a lattice aZ, then f
is cohomologous to a constant. See [6, see page 27] and also [21, Appendix].
If the group generated by Lf,β is non-trivial and not dense, then there exists
a projection on a line that gives a non-trivial cocycle with discrete periodic
data, which leads to a contradiction.

(2) Show that the density of the group generated by Lf,β and inseparability of
Lf,β implies that the semigroup generated by Lf,β is dense in Rω.

This is provided by the solution of the Semigroup Problem for Rω, The-
orem 2.2.

(3) Use that the semigroup generated by Lf,β is dense in Rω to prove topological
transitivity for fβ .

This construction is standard and follows using shadowing of periodic
orbits as in [21].

The rest of the implications above follow as in [21]. �

It is shown in [23] that for fiber Rω, contrary to what happens for finite dimen-
sional fiber, transitivity of an extension does not imply stably transitivity in either
C0 or Cα topology. This seems to be a general phenomenon for extensions of maps
f of compact spaces if the fiber G is an infinite dimensional Abelian topological
vector space. If X is a smooth manifold, we can consider also Ck, k ≥ 1, topolo-
gies. More examples pointing in this direction appear in [23]. We leave as an open
question the statement and the proof of a general result.

Example 6.1. We briefly describe how to construct Lipshitz extensions fβ of
Anosov diffeomorphisms, β : X → Rω, for which the periodic data Lf,β is not
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separated. The construction is borrowed from [23], to which we refer for the miss-
ing details. One can apply Theorem 6.3 to these examples and conclude that they
are topologically transitive.

A (strict) orthant of Rn is the set of all vectors for which each component has a
specified sign. For example, the set of vectors with all of the first (n − 1) compo-
nents strictly positive and the n-th component strictly negative is an orthant. One
observes that any set S in Rn that contains a point in each one of the 2n orthants
cannot be separated by functionals. Indeed, for any vector v ∈ Rn, v 6= 0, one can
find an element p1 in S with the signs of all components equal to the signs of the
respective components in v and one can find an element p2 in S with the signs of all
components opposite to the signs of the respective components in v. The elements
p1, p2 are in different half-spaces relative to the the hyperplane orthogonal to v.

It is easy to show, using Anosov closing lemma, that for any transitive extension
fβ , where β : X → Rn is a Hölder map, the periodic data Lf,β is dense in Rn. See
for example [12, Corollary 6.4.17] and [21, Lemma 8].

The cocycle β : X → Rω is constructed inductively. Assume that βn : X → Rn,
the projection of β on the first n-components, is already known and the periodic
data of fβn cannot be separated in Rn. In particular, due to Theorem 6.2, fβn is
transitive, and due to the observation above, it has the periodic data dense in Rn.
We also assume that

n∑
k=1

1

2k
· |β(x)k − β(y)k|

1 + |β(x)k − β(y)k|
≤

(
n∑
k=1

1

2k

)
dX(x, y), x, y ∈ X.

The induction step does not change βn. Define the n + 1 component of β such
that for βn+1 : X → Rn+1, the projection of β on the first n + 1-components, the
periodic data of fβn+1

has points in all 2n+1 orthants in Rn+1. This can be done
because the projection of the periodic data on Rn is dense. Moreover, we can require
that:

n+1∑
k=1

1

2k
· |β(x)k − β(y)k|

1 + |β(x)k − β(y)k|
≤

(
n+1∑
k=1

1

2k

)
dX(x, y), x, y ∈ X.

At the end of the induction process, β is Lipshitz and the periodic data for all fβn
is not separated. As the linear functionals in (Rω)∗ have finite support, it follows
that the periodic data for fβ is not separated. �

Even under stronger separation assumptions, the results in Theorem 6.3 can-
not be obtained for fiber R∞. This follows from the following proposition that
characterizes compact sets in R∞. We supply a proof for reader convenience.

Proposition 6.1. Any compact set K ⊂ R∞ is supported on a finite number of co-
ordinates, that is, there exists a positive integer n and a subspace Rn in the sequence
of subspaces that defines R∞ such that K ⊂ Rn.

Proof. We proceed by contradiction and assume that K is supported on an infinite
number of coordinates. Then we can extract from K a sequence S = (xn)∞n=1 such
that the sequence of highest non-zero coordinates mn satisfies m1 < m2 < m3 <
· · · < mn < . . . . We will show that S has no accumulation point, a contradiction.

Indeed, if z ∈ R∞ is the accumulation point of S, then z has finite support, say of
length N . We can choose a neighborhood U =

∏∞
i=1 Ui, Ui ∈ R, of z that contains

only a finite number of elements in S by choosing the size of the open intervals Umn
smaller then the size of |xn(mn)|. �
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Proposition 6.1 has the following consequence for extensions with fiber R∞.

Corollary 6.1. Assume that X is a compact space and f : X → X is a topologically
transitive homeomorphism. Then no continuous cocycle β : X → R∞ can give a
topologically transitive extension fβ.

7. Further results and additional directions of study

The proofs of Theorems 4.1 and 5.1 require the existence of an equicontinu-
ous Schauder basis. Equicontinuity means that the expansion operators Pk(x) =∑k
i=1 akxk are equicontinuous. A general result in this direction is the Weak Ba-

sis Theorem [8, Section 14.3]: Let X be a locally convex space that is complete,
bornological, and strictly webbed. Then every basis is an equicontinuous (Schauder)
basis. Beside the Banach and Fréchet spaces, the class of LF -spaces (countable
strict inductive limit of Frechet spaces) satisfies the assumptions of the Weak Ba-
sis Theorem. Nevertheless, as exemplified by the case of Rω, even if the space is
Fréchet, equicontinuity of the basis does not imply equicontinuity of the coefficient
functionals, that is, of fk(x) = ak. Equicontinuity of the coefficient functionals
follows if the basis is a regular sequence, as introduced in [9].

We leave the discussion of the Semigroup Problem in the general case of the
LF -space as an open problem for the reader and focus our attention on a particular
class of LF -spaces frequently appearing in analysis.

Important examples of LF -spaces can be introduced as follows [28, page 131].
Denote by F (R) one of the following spaces:

Ck(R), 0 ≤ k <∞; C∞(R); Lp(R), 1 ≤ p ≤ ∞.

Let K ⊂ R be a compact set and denote by Fc(K) the set of functions f with
support in K. This is always a Fréchet space. For a given sequence of compact sets
K1 ⊂ K2 ⊂ · · · ⊂ Kn ⊂ . . . with ∪∞n=1Kn = R, let Fc(R) be the union of all Fc(Kn)
endowed with the inductive limit of the topologies of Fréchet spaces Fc(Kn).

It is known that spaces Fc(R) contain as a closed subspace the Schwartz space
S(R) of smooth functions that have fast decay at infinity. All these spaces can be
identified with sequence spaces, in a way consistent with their inclusions, see e.g.
[3].

As S(R) is a Fréchet nuclear space with continuous norm and Schauder basis,
given by the Hermitian functions [8, page 319], one can apply the argument in the
proof of Theorem 5.1 to find a semigroup S ⊂ S(R) ⊂ Fc(R) that is not separated
by any non-zero functional with support in S(R) and for which the closure is not a
group. This shows that the Semigroup Problem has a negative answer for all spaces
Fc(R).

For the following class of spaces we can generalize the result in Proposition
6.1. A Fréchet-Montel space is a barrelled topological vector space where every
closed and bounded set is compact. The Schwartz space S(R) is a Fréchet-Montel
complete spaces. For complete LF -spaces that are inductive limits of Fréchet-
Montel spaces one can also show that there are no topologically transitive extensions
of topologically transitive homeomorphisms of compact spaces. This follows from
the fact that such spaces E = indnEn are compactly regular, that is, any compact
set in E is embedded in one of the subspaces En. See Theorems 2.7 and 3.3 in [29].

For F -spaces, that is, complete metrizable topological vector space, the weak
basis theorem is not always true [25]. Also, there exist F -spaces without a basic
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sequence [11]. Our method for solving the Semigroup Problem does not work for
this class of spaces, so the problem is open.

Another feature that may prevent a positive answer for the Semigroup Problem
for certain F -spaces is the lack of enough continuous functionals, e.g., in the spaces
Lp([0, 1]), 0 < p < 1, the only continuous functional is the trivial one [24, page 37].
In this case the Semigroup Problem simply says that the closure of any semigroup
is a group. For the particular example of Lp([0, 1]), 0 < p < 1, choosing a semigroup
with a single non-zero generator, one can easily construct a counterexample. Other
way to settle the problem in this case is to use the fact that Lp([0, 1]), 0 < p < 1,
contains a subspace isomorphic to `2 [10, Theorem 6] and use the fact that the
Semigroup Problem has a negative answer for Hilbert spaces.

The negative answers for the general Semigroup Problem that we discuss in this
paper suggests the addition of more assumptions about the set S, besides non-
separability, that may lead to positive answers. For Banach spaces some results in
this direction can be found in [5].

Finally, we would like to mention that Sidorov [26] proved that for any topologi-
cally transitive homeomorphism of a complete metric separable space, in particular
of a compact metric space, and for any separable Banach space in the fiber, there
exists topologically transitive continuous extensions. The results in this paper show
the existence of topologically transitive continuous extensions for fiber Rω (Theo-
rem 6.3) and non-existence of topologically transitive continuous extensions if the
fiber is R∞ (Corollary 6.1) or one of the compactly regular spaces mentioned above.
An obvious obstruction for the existence of topologically transitive extensions (over
a compact space) is that the fiber has to be a separable (Hausdorff) topological
vector space. Examples of fibers that can be eliminated due to this obstruction are
`∞(Z+) and the space of functions of bounded variation BV ([0, 1]). For the last
example see e.g. [1].

All of these leave open the question of characterizing the family of separable
infinite dimensional topological vector spaces that can be fibers for topologically
transitive continuous extensions with the action in the base a topologically transitive
homeomorphism of a compact space. In this generality the problem is open even if
the action in the base is a basic hyperbolic set.

If we extend the class of maps we study from the class of (linear) extensions
to the class of fibered maps of type fΦ : X × G → X × G given by fΦ(x, g) =
(f(x),Φ(x, g)), where Φ : X × G → G, then more can be said. Indeed, it is
known from a result of Anderson [2] that any infinite dimensional separable Fréchet
space F is homeomorphic via a homeomorphism φF to Rω. This allow us to carry
over, via a conjugacy by the map IdX × φF , the result from Theorem 6.3 and
construct (continuous) topologically transitive fibered maps with fiber any separable
Fréchet space. It is also known [15] that infinite dimensional separable LF -spaces
are homeomorphic to l2,R∞ or l2 × R∞. This allows to construct (continuous)
topologically transitive fibered maps with fiber any infinite-dimensional separable
LF -space homeomorphic to l2. We note that the result in Proposition 6.1 does
not preclude the existence of topologically transitive fibered maps with fiber R∞.
Nevertheless, even if such a result is possible, this still leave open the problem if
the fiber is l2 × R∞.

In more generality, for any topologically transitive action in the base, we do not
know if the class of fibers for which there exist topologically transitive extensions
(or fibered maps) is closed under direct product.
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[4] C. Bessaga, A. Pe lczyński and S. Rolewicz, On diametral approximative dimension and linear

homogeneity of F -spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961),

677–683.
[5] P. A. Borodin, Density of a semigroup in a Banach space, Izvestiya: Mathematics, 78 (2014),

1079–1104.

[6] R. Bowen, On Axiom A Diffeomorphisms, Regional Conference Series in Mathematics, No.
35. American Mathematical Society Providence, R.I. 1978.

[7] R. Brown, P. J. Higgins and S. A. Morris, Countable products and sums of lines and circles:

their closed subgroups, quotients and duality properties, Math. Proc. Camb. Phil. Soc. 78
(1975), 19–32.

[8] H. Jarchow, Locally Convex Spaces, Springer, 1981.

[9] N. Kalton, Normalization properties of Schauder bases, Proc. London Math.. Soc. 22 (1971),
91–105.

[10] N. Kalton, The metric linear spaces Lp for 0 < p < 1, Contemporary Mathematics 52 (1986),
55–69.

[11] N. Kalton, The basic sequence problem, Studia Mathematica, 116 (1995) 168–187.

[12] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,
Cambridge University Press, 1995.

[13] J. Lindestrauss and L. Tzafriri, Classic Banach Spaces I,II, Springer-Verlag, 1977.

[14] K. Lui, V. Nitica and S. Venkatesh, The semigroup problem for central semidirect product of
Rn with Rm, Topology Proceedings 45 (2015), 9–29.

[15] P. Mankiewicz, On topological, Lipschitz, and uniform classification of LF-spaces, Studia

Math. 52 (1974), 109–142.
[16] I. Melbourne, V. Nitica and A. Török, Stable transitivity of certain noncompact extensions

of hyperbolic systems, Annales Henri Poincaré 6 (2005), 725–746.
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