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Abstract. We obtain sharp results for the genericity and stability of transitivity, ergodicity
and mixing for compact connected Lie group extensions over a hyperbolic basic set of a
C2 diffeomorphism. In contrast to previous work, our results hold for general hyperbolic
basic sets and are valid in the Cr -topology for all r > 0 (here r need not be an integer
and C1 is replaced by Lipschitz). Moreover, when r ≥ 2, we show that there is a C2-open
and Cr -dense subset of Cr -extensions that are ergodic. We obtain similar results on stable
transitivity for (non-compact) Rm-extensions, thereby generalizing a result of Niţică and
Pollicott, and on stable mixing for suspension flows.

1. Introduction

In this paper we consider the stable transitivity and ergodicity of Lie group extensions over
a hyperbolic basic set with a fixed base diffeomorphism. We also obtain stable transitivity
and ergodicity results for suspension flows (fixed base map and varying roof function).
Elsewhere [11], we show how our methods can be developed to prove, for example,
that mixing hyperbolic flows are open and dense within the class of smooth non-trivial
hyperbolic flows.

After a survey of some of the existing results on extensions by compact Lie groups,
we describe in §1.2 our new results on compact group and Rm-extensions over a hyperbolic
basic set. In §1.3, we describe our results on suspension flows. In §1.4, we describe related
results in [11].
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1.1. Compact group extensions of a fixed hyperbolic basic set. In this subsection,
we give a brief historical review of some of the previous work in this area that relates
to our work.

Let G be a compact connected Lie group. In 1975, Brin [9] proved the genericity
(in the C2-topology) of stable ergodicity for compact Lie group extensions of Anosov
diffeomorphisms. Specifically, Brin showed that there was a C1-open and C1-dense set of
transitive compact Lie group extensions of an Anosov diffeomorphism [9, Theorem 2.2]
and deduced (using [10, Theorem 5.3]) that every C2-transitive extension was Kolmogorov
and, a fortiori, ergodic. More recently, using somewhat different methods, Adler
et al [1] re-proved a variant of Brin’s result that applied to circle extensions of Anosov
diffeomorphisms of a torus. Specifically, they showed that there is a C0-open and
C∞-dense set of extensions of such diffeomorphisms that are ergodic. (The same result
holds for toral extensions of a hyperbolic attractor [14].) Following the result of Adler
et al [1], Parry and Pollicott [23] studied stability of mixing for toral extensions over
aperiodic subshifts of finite type and over connected hyperbolic basic sets subject to a
cohomological restriction.

Field and Parry [14] generalized these results to allow for extensions by compact
connected non-Abelian Lie groups G. In the case that G is semisimple, they proved that for
all α ∈ (0, 1) and ∞ ≥ r ≥ α, there is a Cα-open, Cr -dense set of ergodic extensions over
a general hyperbolic basic set. In the case that the basic set is an attractor, they obtained
the same stability result for general compact connected Lie groups G. Extensions and
variations of the results in [14, 23] may be found in [12, 13].

Unfortunately, the situation regarding toral extensions over general hyperbolic basic sets
as reported in these works is less than satisfactory. Thus, in [23], the stability and density
result for extensions of a subshift of finite type is proved in the Cα-topology, α ∈ (0, 1),
but the open and dense set of ergodic Cα-extensions contains no Cβ -extensions, β > α.
A second issue is that the methods of [14, 23] require for toral extensions either that
the base is a subshift of finite type or that the base is connected and a cohomological
condition holds (the only examples known satisfying the cohomological condition are
attractors/repellors).

In the present paper, we resolve these problems and give sharp results for compact Lie
group extensions of general hyperbolic basic sets. Although our emphasis here is on skew
(product) extensions, all of our results apply to principal G-extensions (see [14, §5.3]).
Our results also apply to classes of partially hyperbolic G-invariant basic sets. For these
applications, we refer to [12].

1.2. Results on group extensions. We suppose throughout that � is a fixed
C2-diffeomorphism of the compact manifold M , and that � is a hyperbolic basic set for �.

Definition 1.1. We say that � is a hyperbolic basic set for the diffeomorphism � if � is a
locally maximal hyperbolic set, and �|� is topologically transitive. In addition, we require
that the basic set � is non-trivial, meaning that it does not coincide with a periodic orbit.

Definition 1.2. For r > 0, we give the usual meaning to ‘Cr ’ and the ‘Cr -topology’ except
that C1-maps will be defined as Lipschitz.
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By Cr(M,G) we denote the space of Cr -cocycles on M with the Cr -topology.

THEOREM 1.3. For r > 0, there exists a Cr -open and -dense subset Wr of Cr(M,G)

such that for all f ∈ Wr , the skew extension �f : � × G→� × G is transitive. If r ≥ 2,
Wr is open in the C2-topology on Cr(M,G) and C∞-cocycles are C[r]-dense in Wr .
An analogous result holds for principal G-extensions over �.

Remark 1.4. Theorem 1.3 is of main interest when G is not semisimple or � is not an
attractor—Cα-stability, C∞-density holds if G is semisimple or � is an attractor [14] for
any α > 0. On the other hand, if G = Km, r < 1 and � is a subshift of finite type, then
Wr ∩ Wt = ∅, 0 < r < t , and we conjecture that this may occur for values of r ∈ [1, 2).

In our study of ergodic properties of extensions, we suppose that µ is the unique
equilibrium state associated to a Hölder continuous potential on � [6]. It follows that
� : �→� is µ-ergodic. We take Haar measure h on G and define the product measure
ν = µ × h on � × G. All skew extensions �f are ν-measure-preserving.

THEOREM 1.5. With the notation of Theorem 1.3, if f ∈ Wr , then �f is ν-ergodic.
An analogous result holds for principal G-extensions over �. If � : �→� is mixing
and f ∈ Wr , then �f is mixing.

Remark 1.6. The equivalence of ergodicity and transitivity for the situation described in
Theorems 1.3 and 1.5 is a direct consequence of Livšic regularity (see §6). The last
statement of Theorem 1.5 is a consequence of [14, Proposition 3.2.1]—if � is mixing,
then stable ergodicity of �f is equivalent to stable mixing of �f .

Before stating our next result, we recall some definitions from [19]. We continue to
assume that r > 0. Let f ∈ Cr(M, Rm) and define the corresponding skew extension
�f : � × Rm→� × Rm. Write fn = ∑n−1

j=0 f ◦ �j . Let Lf = {fn(x)|�nx = x}.
We say that f satisfies the separating condition if Lf is not contained on one side of a
hyperplane through 0 in Rm. Let Sr ⊂ Cr(M, Rm) denote the set of cocycles that satisfy
the separating condition. We remark that Sr is a non-empty open (but never dense) subset
of Cr(M, Rm). Niţică and Pollicott [19] studied the case when � = M is Anosov and
proved that �f is transitive for f ∈ Sr .

THEOREM 1.7. For r > 0, there exists a Cr -open and -dense subset Wr of Sr such that
for all f ∈ Wr , the skew extension �f : � × Rm→� × Rm is transitive. If r ≥ 2, Wr is
open in the C2-topology on Cr(M, Rm) and C∞-cocycles are C[r]-dense in Wr .

Remark 1.8. If � is a hyperbolic attractor, then we obtain the improved result that Wr is
C0-open in Sr . Again, Cα-openness, α ∈ [0, 1), fails for general hyperbolic basic sets.

1.3. Suspension flows. We now describe our main result on the stability of weak mixing
for suspensions flows over hyperbolic basic sets. Let Rr denote the space of strictly
positive functions (roof functions) in Cr(M, R). Each roof function f ∈ Rr defines a
suspension flow �

f
t : �f →�f on the suspension �f . When � = M is Anosov, it follows

from the Anosov alternative [2] that �f is mixing for all non-constant f ∈ Rr .
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THEOREM 1.9. For r > 0, there exists a Cr -open and -dense subset Wr of Rr such that
for all f ∈ Wr , the suspension flow �

f
t : �f →�f is weak mixing. If r ≥ 2, Wr is open

in the C2-topology on Cr(M, R) and C∞ roof functions are C[r]-dense in Wr .

Remark 1.10. If � is a hyperbolic attractor, then we obtain the improved result that Wr is
C0-open in Rr . Once again, Cα-openness, α ∈ [0, 1), fails for general hyperbolic basic
sets.

Remarks 1.11. (1) On a suspension �f ∼= � × R/ ∼ we consider the equilibrium state
µf = µ×�/

∫
�

f dµ where � is Lebesgue measure and µ is an equilibrium state associated

to a Hölder potential on �. However, weak mixing of �
f
t is independent of the choice of

µ and is equivalent to topological weak mixing (see for example [21, Proposition 6.2]).
Hence, we suppress any reference to the measure in the results concerning mixing of
hyperbolic (suspension) flows.

(2) Moreover, it follows from standard results (see, for example, [24, p. 418] and
[7, Remark 3.5] for statements and references) that weak-mixing suspension flows are
automatically strong-mixing, Kolmogorov and even Bernoulli (so for each t ∈ R \ {0}
the diffeomorphism �

f
t : �f →�f is isomorphic to a Bernoulli shift). Consequently,

it follows from Theorem 1.9 that an open and dense set of suspension flows over a
hyperbolic basic set are Bernoulli.

1.4. Varying the base diffeomorphism. Let n = dim M and restrict to Cs -diffeo-
morphisms, � ∈ Diffs(M), s ≥ 2n + 1. If we allow the base diffeomorphism � to vary in
the context of Theorems 1.3 and 1.5, then it can be shown using the methods of [11] that
compact group extensions �f : �� × G→�� × G are transitive/ergodic for (�, f ) lying
in a C2n+1 ×C2-open and Cs ×Cr -dense subset of Diffs(M)×Cr(M,G). Similar results
in the context of Theorems 1.7 and 1.9 hold for Rm-extensions and suspension flows.

1.5. Brief remarks on proofs and extensions. Brin’s original proof of stable transitivity
of compact Lie group extensions over an Anosov diffeomorphism uses transitivity
properties of the stable and unstable foliations, and the well-known ‘quadrilateral
construction’. In a related paper [8], Brin gives a direct construction of maximal transitivity
components which uses the structure of the strong stable and unstable foliations of the
extension. While the existence of maximal transitivity components holds under the
assumption that the base is a basic set (see [22, §5]), the quadrilateral argument appears
to require at least some local path connectivity in the invariant foliations of the basic
set. Thus, the quadrilateral argument works for general hyperbolic attractors (see [12]),
but fails for subshifts of finite type. A common theme of more recent work is the use
of a result of Keynes and Newton [16] together with the Livšic regularity theorem [17],
[20, Theorem 3.1]. This approach allows one to prove that the ergodic components
naturally define a partition by closed sets and leads to simple arguments for stable
ergodicity when G is semisimple (see [14]). Matters are not so simple when G is Abelian,
and the proof of Parry and Pollicott’s result on toral extensions over subshifts of finite type
makes use of the Ruelle transfer operator. Since we are interested in Cr results, r ≥ 1
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(and cannot assume that maps are expanding), we avoid this approach here. Our proof
of Theorem 1.3 for subshifts of finite type depends on obtaining good asymptotic bounds
on the average of R-valued cocycles along a sequence of periodic points asymptotic to
a homoclinic point. Using our methods, we give in §3 a simple proof of the original
abstract result of Parry and Pollicott, and in §5 a more geometric and very explicit
proof using results of Williams on geometric realization of subshifts of finite type [26].
For Cr -extensions, we consider subshifts of finite type in §4. We deduce the result for
general basic sets using the fact that basic sets contain (many) subshifts of finite type
together with a routine argument based on either Keynes and Newton and Livšic regularity
or the existence of maximal transitivity components.

Finally, we note that the results in this paper go far beyond the context of hyperbolic
dynamics. For example, the results on group extensions over a hyperbolic basic set �

generalize immediately to the case where � is a locally maximal topologically transitive
set such that: (i) � contains a transverse homoclinic point, and (ii) � supports results on
Livšic regularity whereby measurable solutions to certain cohomological equations have
continuous versions. See Remark 6.4.

Remark 1.12. The heart of this paper, §4, is concerned with proving Theorem 1.5 in the
special case when X is a subshift of finite type and G is the circle group. The remainder
of the results are then consequences of this special case. See §6 for the proof of
Theorem 1.5 for general � and G, §7 for the proof of Theorem 1.7, and §8 for the proof
of Theorem 1.9.

2. Preliminaries

Throughout this paper we assume that M is a compact smooth Riemannian manifold
without boundary.

2.1. Transverse homoclinic points and Smale’s theorem. Let � : M→M be a
diffeomorphism of M . Suppose that P ∈ M is a hyperbolic periodic point for � of
prime period q . Suppose that xH is a transverse homoclinic point for the periodic orbit
through P . Replacing � by �q , it will be no loss of generality (see below) to assume that
xH is a transverse homoclinic point for the hyperbolic fixed point P of �.

We say that a subset X of M is an H -set for � if:
(1) X is a compact locally maximal �-invariant subset of M;
(2) �|X is transitive;
(3) �|X is hyperbolic;
(4) X is conjugate to a subshift of finite type.

We recall Smale’s theorem (see [15, Theorem 6.5.5, Exercise 6.5.1]).

THEOREM 2.1. Let � : U → M be an embedding of the open set U ⊂ M , and
P, xH ∈ U . Assume that xH is a transverse homoclinic point for the hyperbolic fixed
point P of �. Then there is an H -set for � containing P and xH .
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2.2. Function spaces. Suppose that X is an H -set for �. We choose a (closed) cover of
X by mutually disjoint contractible neighborhoods, with smooth boundaries. Let U denote
the closed neighborhood of X with smooth boundary that is defined by the cover. Without
loss of generality, we may and shall regard U as a subset of Rn, n = dim(M).

For r > 0, let C = Cr(U, R) denote the space of Cr R-valued cocycles on U . If r is an
integer, Cr has the usual meaning except if r = 1 when we regard C1(U, R) as the space
of Lipschitz continuous functions on U . With this proviso, we take the usual Cr topology
on C. We let ‖ ‖r denote a choice of Cr -norm on C. With respect to this norm, C is a
Banach space.

Definition 2.2. An element g ∈ C is called an X-coboundary if we can choose a
continuous function h : X→R such that

g = h ◦ � − h.

We denote the subspace of C consisting of X-coboundaries by Br = Br(U, R) or just B

if the meaning is clear from the context.

Remarks 2.3. (1) We do not ask that an X-coboundary be a coboundary on U . Nor do we
require that the function h occurring in the definition is more than continuous on X. In fact,
it follows from Livšic regularity that it suffices to assume h|X is measurable relative to an
equilibrium state on X, as it then follows we can choose h|X to be Cα (Hölder) continuous
if g is Cα , α ∈ (0, 1].

(2) In the sequel, we drop the prefix ‘X’ and just refer to coboundaries.

PROPOSITION 2.4. For r > 0, the space Br(U, R) is a C0-closed subspace of Cr(U, R).

Proof. It follows from the Livšic theorems that an element f ∈ Cr(U, R) is a coboundary
if and only if the average of f over each periodic orbit of � in X is zero. �

Definition 2.5. We let L(U, R) denote the subspace of C consisting of functions which are
locally constant on X. Let V = V r(U, R) denote the Cr -closure of L(U, R).

Henceforth, if r > 0 is given, we always take the corresponding Cr -topologies on the
subspaces B and V .

Remarks 2.6. (1) Let r > 0 and Cr(X) denote the space of R-valued functions f : X→R

which admit a Cr -extension E(f ) ∈ Cr(U, R). We similarly let V r(X) denote the
subspace of Cr(X) consisting of functions which admit a Cr -extension E(f ) ∈ V r(U, R).
If r ∈ (0, 1) and ∞ ≥ s > r , then V r(X) ⊃ Cs(X). That is, in the Cr -topology on
Cr(X), every Cs-function, s > r , can be Cr -approximated by a locally constant function.
This result is (obviously) not true if r ≥ 1.

(2) Every locally constant function f on X has an extension E(f ) ∈ V ∞(U, R).

(3) If r is not an integer, then Cs , ∞ ≥ s > r functions are not dense in Cr(U, R)

(or Cr(X)). Density follows, by the Stone–Weierstrass approximation theorem, if r is an
integer.
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2.3. Criteria for the transitivity and ergodicity of toral extensions. Let Km denote the
m-dimensional torus, regarded as a compact Abelian group. We start by recalling a special
case of a general result of Keynes and Newton giving necessary and sufficient conditions
for the ergodicity of a compact group extension.

THEOREM 2.7. [16, §2] Let � : X→X be an ergodic transformation of the probability
space (X,µ). Let f : X→Km be µ-measurable. Then �f : X × Km→X × Km is
µ × h-ergodic if and only if for all � = (�1, . . . , �m) ∈ Zm, � 
= 0, the equation

w ◦ �(x) = w(x)

m∏
i=1

f
�i

i (x), almost every x, (2.1)

has no measurable solutions w : X→K.

Let f : M→Km be a Cr -cocycle and �f : M×Km→M×Km denote the corresponding
Km-extension defined by �f (x, g) = (�(x), gf (x)). Restricting to the H -set X ⊂ M ,
we obtain a Km-extension �f : X × Km→X × Km.

For the remainder of the section, and following Parry and Pollicott [23], we give
criteria for the ergodicity and transitivity of the extension �f . We do this in terms of a
fixed equilibrium state µ on X. However, the resulting conditions are independent of the
equilibrium state and depend only on the cocycle f . We refer the reader to [23] for details
we omit.

Let f ∈ Cr(U, Km), f = (f1, . . . , fm). Using our cover of U by contractible sets,
we may choose Fi ∈ Cr(U, R), 1 ≤ i ≤ m, such that fi = exp(2πıFi) (on U ). Note that
we may suppose that the Fi depend continuously on f in the Cr -topology. Let S(F ) denote
the R-vector subspace of Cr(U, R) spanned by F1, . . . , Fm.

LEMMA 2.8. (cf. [14]) The extension �f is ergodic if S(F ) ∩ (B + L) = {0}. If m = 1,
then �f is stably ergodic if and only if F /∈ B + L (closure in Cr ).

Proof. It follows from Theorem 2.7 and Livšic regularity that if �f is not ergodic then
there exists (�1, . . . , �m) 
= (0, . . . , 0), such that

g ◦ � = f
�1
1 · · · f �m

m g (2.2)

has a non-trivial solution g ∈ C0(X, K). Noting that g◦�/g ∈ Cr(U, R) and our definition
of Br(U, R), it follows easily that we may choose M,H ∈ Cr(U, R) such that

M + H =
m∑

i=1

�iFi, (2.3)

where
(1) M is a locally constant integer-valued function on X;
(2) H ∈ Br(U, R).
If equation (2.3) has solutions, then S(F )∩(B+L) 
= {0}. That is, if S(F )∩(B+L) = {0}
then �f is ergodic.

Suppose m = 1. If F ∈ B + L, then we can find F ′ arbitrarily Cr -close to F such that
F ′ = b + v where b is a coboundary and v is locally constant on X and takes only rational
values on X. It follows that for some integer �, �F ′ = b̃ + m, where m is locally constant
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and integer-valued on X and b̃ is a coboundary. Setting f ′ = exp(2πıF ′), it follows that
�f ′ is not ergodic. Hence, �f cannot be stably ergodic. �

Remarks 2.9. It follows from Lemma 2.8 that in order to prove the Cr -genericity of
stable ergodicity (or transitivity) for Km-extensions, it suffices to prove that B + L is of
codimension at least m. In the case of Cα-extensions, r = α ∈ (0, 1), Parry and Pollicott
prove that B + L is of infinite codimension. They prove further that (a) B + V is closed
(recall that V = L), (b) C/(B + V ) is not separable. We are interested in the case r > 1,
especially the case when r is an integer. When r is integral, C/B + L is separable. We do
not know, at this time, whether B + V is closed.

(2) We concentrate throughout on proving stable ergodicity. In the case that �

is topologically mixing, then stable ergodicity is enough to guarantee stable mixing
[14, §3.2].

2.4. Reduction to the case of a fixed point and K-extensions. Continuing with our
previous notations, suppose that X is an H -set for the diffeomorphism �. As usual,
we set � = �|X and let r ≥ 2. In order to prove the Cr -genericity of stably ergodic
Cr K-extensions, it suffices, by Lemma 2.8, to find (a single) F ∈ Cr(U, R) such that
F /∈ B + L. In fact, we shall prove rather more.

THEOREM 2.10. Let r > 0. Suppose that � has a fixed point p and xH is a transverse
homoclinic point for p. Let D� ⊂ U be a neighborhood of the closure of the �-orbit
of xH and D ⊂ D� be a neighborhood of p. We can choose F ∈ Cr(U, R) and a
Cr -neighborhood W of F in Cr(U, R) such that:

(1) supp(F ) ⊂ D;
(2) if F ′ ∈ W , then F ′ /∈ B + L;
(3) if H ∈ Cr(U, R) is such that supp(H)∩D� = ∅, then F ′+H /∈ B + L, all F ′ ∈ W;
(4) if r ≥ 2, then we may take W to be open in the C2-topology on Cr(U, R);
(5) if r ≥ 2 is an integer, then C∞ cocycles are dense in W .

Next, we make a simple extension of Theorem 2.10 to allow for periodic points.

LEMMA 2.11. Let r > 0. Suppose that � has a periodic point p ∈ X of prime period
q and xH is a transverse homoclinic point for p. Let D� ⊂ U be a neighborhood of
the closure of the �-orbit of xH and D ⊂ D� be a neighborhood of p. We can choose
F ∈ Cr(U, R), and a Cr -neighborhood W of F in Cr(U, R) such that the conclusions of
Theorem 2.10 are valid.

Proof. Shrink D so that the subsets �−i (D) are disjoint for i = 0, 1, . . . , q − 1.
Since �q(p) = p, it is immediate from Theorem 2.10 that we can choose F ∈ Cr(U, R)

supported in D with the required properties with � replaced by �q . In particular,
F 
∈ Bq + L where Bq is the space of Cr -coboundaries for �q . This proves stable
ergodicity of (�q)f where f = e2πıF .

Define F̃ = ∑q−1
i=0 F ◦ �i . Then F̃ coincides with F on D� and so by Theorem 2.10(3)

F̃ 
∈ Bq + L. Again, (�q)f̃ is stably ergodic, where f̃ = e2πıF̃ . But (�q)f̃ = (�f )q ,
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so we have shown stable ergodicity of (�f )q and hence �f . In particular, it follows from
Lemma 2.8 that F 
∈ B + L. �

There remains the case of Km-extensions, m > 1. Choose a set of m disjoint periodic
orbits. By the preceding arguments, we may choose F1, . . . , Fm /∈ B + L such that the
supports of the Fi are mutually disjoint. Obviously, F1, . . . , Fm are linearly independent
mod B + L. In particular, codimC(B + L) = ∞.

3. Outline of the proof and the theorem of Parry and Pollicott
We continue to assume that � : X→X is an H -set for �. Let r > 0. Suppose that p ∈ X

is a hyperbolic fixed point for �.

3.1. Outline of proof. Suppose F ∈ Cr(U, R). Let x ∈ X. If x is periodic of prime
period n, we define the average of F along the �-orbit of x by

Av(F, x) =
n−1∑
i=0

F(�i(x)).

If x is a homoclinic point to a periodic point p and Av(F, p) = 0, then we define

Av(F, x) =
∞∑

i=−∞
F(�i(x)).

Using our assumption that F is Cr , and certainly Hölder, it is easy to show that this sum
converges.

Suppose that xH ∈ X is a transverse homoclinic point for p. Let (pN) ⊂ X be a
sequence of periodic points such that pN→xH . It follows from the continuity of � that for
all i ∈ Z, �i(pN)→�i(xH ), as N→∞.

Suppose that F is Cr -close to B + L, so that F = b + � + g, b ∈ B, � ∈ L, ‖g‖r small.
Without loss of generality, we may suppose that Av(F, p) = Av(�, p) = 0. In particular,

AN(F) = Av(F, xH ) − Av(F, pN )

is well defined for all N ≥ 1.
It is well known, and simple to verify, that Av(b, pN) = Av(b, xH ) = 0 for all N ≥ 1

and that Av(�, pN) = Av(�, xH ) for N sufficiently large. Hence, for N large, we have

AN(F) = AN(g). (3.4)

It is now an easy matter to construct explicit cocycles F 
∈ B + L—we require only that
AN(F) be not eventually zero. It is also possible to construct cocycles F 
∈ B + L by
comparing the asymptotics on each side of (3.4). Specifically, we obtain (i) upper bounds
for the right-hand side of (3.4) for all small g, and (ii) lower bounds for the left-hand side
of (3.4) for an explicitly constructed cocycle F . In this way, we show that F − g /∈ B + L

provided that ‖g‖r is sufficiently small. In fact, since our construction only depends on
averages near the �-orbit of xH , it will follow that g can take arbitrary values outside of
some arbitrarily small neighborhood of the closure of the �-orbit of xH .
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In order to obtain our estimates, we will need to estimate the location of the periodic
points in the sequence (pN) rather precisely. We remark that the details of our proof are
much easier if we make the assumption that � is smoothly linearizable at p. However, this
assumption is not necessary for the proofs of Theorems 1.3, 1.5, 1.7 and 1.9 which do not
require any non-resonance conditions on the linearization of � at the fixed point.

We note that the construction involving xH and pN described above has been used
independently by Bonatti et al [3].

3.2. The theorem of Parry and Pollicott. We conclude this section with an illustration
of how our methods give a proof of the stability result of Parry and Pollicott for (abstract)
subshifts of finite type that avoids any consideration of the Ruelle transfer operator and, as
we shall see, generalizes to smooth cocycles.

Let X be a subshift of finite type. Given θ ∈ (0, 1) we define the metric d(x, y) = θn

where n is the largest non-negative integer such that xi = yi for |i| < n. Let Fθ(X) be the
space consisting of all functions f : X→R that are Lipschitz with respect to this metric.
Let |f |∞ denote the sup-norm and |f |θ the least Lipschitz constant. Then, Fθ (X) is a
Banach space under the norm ‖f ‖θ = max{|f |∞, |f |θ }.

Let B = Bθ(X) ⊂ Fθ (X) denote the subspace of coboundaries and L ⊂ Fθ(X) be the
subspace of locally constant functions. If U is an open subset of X, we let Lθ(U) denote
the subspace of Fθ (X) consisting of functions which are locally constant on U .

Remark 3.1. If b = c ◦ σ − c ∈ Bθ then by Livšic regularity the cobounding function
c : X→R can be chosen to lie in Fθ . In particular, c is continuous.

We give an elementary proof of the following result of Parry and Pollicott.

THEOREM 3.2. [23] The subspace Bθ + L has infinite codimension in Fθ .

We start by proving a special case of part of Theorem 3.2.

PROPOSITION 3.3. Suppose that the shift map σ : X→X has a fixed point p and that xH

is a homoclinic point for p. If D� is any open neighborhood of the closure of the σ -orbit
of xH , then we can choose f̃ ∈ Fθ (X), such that:

(1) f̃ /∈ Bθ + L;
(2) supp(f̃ ) ⊂ D�;
(3) if g ∈ Fθ(X) has supp(g) ∩ D� = ∅, then f̃ + g /∈ Bθ + L;
(4) for some c > 0, ‖f̃ − (b + �)‖θ ≥ c, all b ∈ Bθ and � ∈ Lθ(D

�).

In particular, Bθ + L 
= Fθ (X).

We present the proof of Proposition 3.3 in the special case where X is the full shift
{0, 1}Z on two symbols and leave the details of the general case to the reader (note that the
general case can be reduced to this case by recoding).

We denote points x ∈ {0, 1}Z by · · · x−1 · x0x1 · · · . Let p = 0∞ · 0∞ and suppose for
simplicity that the homoclinic point is xH = 0∞ · 10∞. We let (pN) be the sequence of
periodic points of period 2N +1 defined by pN = [0N ·10N ]. Note that pN→xH , N→∞.
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Given F ∈ Fθ (X) satisfying F(p) = 0, define AN(F) = Av(F, xH ) − Av(F, pN ).
We have

AN(F) =
∞∑

j=−∞
F(σ jxH ) −

N∑
j=−N

F(σ jpN)

=
N∑

j=−N

[F(σ jxH ) − F(σ jpN)] +
∑

|j |>N

F(σ j xH ).

LEMMA 3.4.
(a) If b ∈ Bθ , then b(p) = 0 and AN(b) = 0 for all N .
(b) If � is locally constant and �(p) = 0, then there exists N0 such that AN(�) = 0 for

all N ≥ N0.
(c) If g ∈ Fθ and g(p) = 0, then |AN(g)| ≤ 4|g|θ θN/(1 − θ) for all N .

Proof. Parts (a) and (b) are well known and elementary. We prove part (c). Since pN and
xH first differ in the ±(2N + 1)th position, |g(σ jpN) − g(σ j xH )| ≤ |g|θ θ2N+1−|j | for
|j | ≤ 2N + 1. Hence,∣∣∣∣

N∑
j=−N

[g(σ jpN) − g(σ j xH )]
∣∣∣∣ ≤ |g|θ θN+1(θN + 2θN−1 + · · · + 2) ≤ 2|g|θ θN+1

1 − θ
.

Similarly, since g(p) = 0, we can write∑
|j |>N

g(σ j xH) =
∑

|j |>N

[g(σ j xH ) − g(p)],

which is dominated by 2|g|θ (θN + θN+1 + · · · ) ≤ 2|g|θ θN/(1 − θ). �

LEMMA 3.5. Let Cq be the cylinder of length 2q + 1 given by Cq = {x ∈ X | x =
· · · 0q · 00q · · · }. Define

f =
∑
q≥1

θq(1 − ICq ).

Then f ∈ Fθ , f (p) = 0 and AN(f ) = 2‖f ‖θ θ
N/(1 − θ).

Proof. It is immediate from the definitions that |f |∞ ≤ θ/(1 − θ) and |f |θ ≤ θ/(1 − θ).
Also, xH 
∈ Cq for all q so that f (xH ) = θ/(1−θ). Hence, f ∈ Fθ with ‖f ‖θ = θ/(1−θ).
Since p ∈ Cq for all q , f (p) = 0.

Next, we note that σjxH ∈ C|j |−1 − C|j | for each j . Hence f (σ jxH ) = θ |j |/(1 − θ).
The same calculation for pN shows that σjpN ∈ C|j |−1 − C|j | and hence f (σ jpN) =

θ |j |/(1 − θ) for |j | ≤ N . We conclude that

AN(f ) =
∑

|j |>N

f (σ jxH ) = 2θN+1

(1 − θ2)
. �

Proof of Proposition 3.3. Let f be the function defined in Lemma 3.5. Suppose for
contradiction that f ∈ Bθ + L. Then, for any ε > 0, there exists b ∈ Bθ , � ∈ L and
g ∈ Fθ with ‖g‖θ < ε, such that f = b+�+g. Replacing � by �+g(p) and g by g−g(p)



528 M. Field et al

we can assume without loss of generality that �(p) = g(p) = 0 while maintaining
|g|θ < ε. Since AN is additive, we have AN(f ) = AN(b) + AN(�) + AN(g).
By Lemma 3.4, there exists N0 such that AN(f ) = AN(g) for all N ≥ N0. For such N ,
we have

2‖f ‖θ θ
N/(1 − θ) ≤ 4εθN/(1 − θ),

and hence ‖f ‖θ ≤ 2ε. Since ε > 0 is arbitrary, we obtain the desired contradiction,
proving the first statement of Proposition 3.3. Since the argument only depended on
averages of functions along the orbits of xH and pN , for arbitrarily large N , it is clear
that if g ∈ Fθ is supported outside of some open neighborhood D� of the closure of the
orbit of xH , then f + g /∈ Bθ + L.

If b ∈ Bθ , and � ∈ Lθ(D
�), then AN(f − (b + �)) = AN(f ) − AN(�) = AN(f ), for

sufficiently large N . By Lemma 3.4, |AN(f − (b + �))| ≤ 4|f − (b + �)|θ θN/(1 − θ) for
all N . Hence,

|f − (b + �)|θ ≥ 1
4θ−N(1 − θ)AN(f ) (3.5)

for sufficiently large values of N . But, by Lemma 3.5, AN(f ) = 2‖f ‖θ θ
N/(1 − θ).

Hence it follows that ‖f − (b + �)‖θ ≥ |f − (b + �)|θ ≥ ‖f ‖θ /2, for all b, �.
Finally, to complete the proof, note that it is no loss of generality to assume that D�

is open and closed. It follows that if we define f̃ = f χD� , then f̃ ∈ Fθ (X) and
‖f̃ ‖θ ≥ ‖f ‖θ . Equation (3.5) continues to hold, with f̃ replacing f . Since AN(f̃ ) =
AN(f ) for sufficiently large N , we deduce that ‖f̃ − (b + �)‖θ ≥ ‖f ‖θ /2 = θ/(2(1 − θ))

for all b, �. �

Following the argument in the general case (Lemma 2.11), we can allow for periodic
points.

LEMMA 3.6. Suppose that p ∈ X is a periodic orbit and that xH is a homoclinic point
for the orbit of p. If D� is any open neighborhood of the closure of the σ -orbit of xH , then
we can choose f̃ ∈ Fθ , such that:
(1) f̃ /∈ Bθ + L;
(2) supp(f̃ ) ⊂ D�;
(3) if g ∈ Fθ has supp(g) ∩ D� = ∅, then f̃ + g /∈ Bθ + L;
(4) for some c > 0, ‖f̃ − (b + �)‖θ ≥ c, all b ∈ Bθ and � ∈ Lθ(D

�).

The theorem of Parry and Pollicott is an immediate consequence of the following result.

THEOREM 3.7. There is a sequence of disjoint open and closed sets Uj and functions
fj ∈ Fθ(X) with the following properties:
(i) supp(fj ) ⊂ Uj ;
(ii) ‖fj − (b + �)‖θ ≥ 1 for all b ∈ Bθ (X) and � ∈ Lθ(Uj ).

Proof. Let xj be a sequence of periodic points lying on distinct periodic orbits O(xj).
Choose x

j
H homoclinic to xj and let O(x

j
H ) denote the homoclinic orbit through x

j
H .

The points xj and x
j
H can be chosen so that there are disjoint open and closed sets Uj

such that O(xj) ∪ O(x
j

H) ⊂ Uj .
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It follows from Lemma 3.6 that for each j , we can find a cocycle fj , and constant
cj > 0, such that supp(fj ) ⊂ Uj and ‖fj − (b + �)‖θ ≥ cj , for all b ∈ B, � ∈ Lθ (Uj ).
Replacing fj by fj /cj , it follows that we can require ‖fj − (b + �)‖θ ≥ 1, for all b ∈ B,
� ∈ Lθ(Uj ). �

4. Proof of Theorem 2.10
As outlined in §3.1, we will construct a sequence of periodic points (pN) approaching
the homoclinic point xH . In Proposition 4.8 we give general estimates for the position
of pN under the assumption that � is linear on the stable and unstable manifolds of the
fixed point p. We can and do improve these estimates on pN if we assume that � is
C2-linearizable at p (Remark 4.10(3)).

In the remainder of the section, we consider the problems of obtaining upper bound
estimates on AN(F) and finding functions F for which the growth of AN(F) matches the
upper bound. So as to simplify the exposition, we make some linearizability assumptions
that we remove in §4.9. Specifically, in §§4.2 and 4.4–4.8 we assume that � is linear on the
stable and unstable manifolds of the fixed point p. We also assume in our verification of
the upper bounds for AN(F), F at least C2, that � is C2-linearizable at p (Lemma 4.13).
Indeed, if � is not C2-linearizable at p, then we have to allow for slower decay of AN(F)

(see §4.9). Finally, we remark that results and methods are a little different when F is Cr ,
r ∈ (0, 2).

4.1. The local model. We always assume that � is C2. It follows that there will be
C2-local stable and unstable manifolds through the fixed point p. We use these invariant
manifolds as the basis for a local C2-coordinate system at p. Thus, we regard p as the
origin of the vector space Rm = Es ⊕ Eu with the local stable (respectively, unstable)
manifold through p contained in Es (respectively, Eu). We choose coordinates on Es , Eu

so that D�(0) = G is in real Jordan normal form, with Jordan blocks J1, . . . , Jk .
We denote the set of generalized eigenspaces of G by E . Abusing notation, we will

typically label elements of E by the associated eigenvalue. Thus, we label eigenvalues
µi, λj ∈ E so that

|µ1| ≤ |µ2| ≤ · · · ≤ |µS | < 1 < |λT | ≤ · · · ≤ |λ1|.
In particular, S + T = k and each ρ ∈ E will be associated to the Jordan block Jρ . We let
pρ denote the algebraic multiplicity of ρ (thus, for real ρ, Jρ will be a pρ × pρ square
matrix, whereas for ρ complex, Jρ , Jρ̄ act on the same generalized eigenspace of real
dimension 2pρ). We have the decompositions

Es =
S⊕

i=1

Eµi , Eu =
T⊕

j=1

Eλj ,

where Eρ is the generalized eigenspace associated to ρ ∈ E . We define Gs = G|Es ,
Gu = G|Eu.

We denote coordinates on Es by x = (x1, . . . , xS), where each xi = (xi1, . . . , xipµi
) ∈

Eµi
∼= Kpµi , where K = R, µi real, and K = R2 ∼= C, µi complex. We similarly

denote coordinates on Eu by y = (y1, . . . , yT ) and follow the same labeling conventions
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XH = (A,0)
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WK = K 

Identified

p
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K

FIGURE 1. Basic local setup near the �-orbit of xH .

as for the stable subspaces. For our proofs, we usually assume eigenvalues are real—the
assumption of complex eigenvalues presents no new difficulties but does complicate the
notation a little.

Let xH ∈ Es be a transverse homoclinic point for p. Let x̃H ∈ Eu be the point
corresponding to xH , now regarded as lying on the unstable manifold of p—see Figure 1.
Let O(xH ) denote the �-orbit of xH . Note that the forward orbit of xH is contained in Es ,
while the backward orbit of xH = x̃H is contained in Eu and that we regard xH and x̃H

as identified. Let O(xH)� = O(xH ) \ {xH } ⊂ Es ∪ Eu (no identification). Let W , W̃

be neighborhoods of xH , x̃H chosen so that (W ∪ W̃) ∩ O(xH) = {xH }. We regard
W, W̃ as identified (that is, in the ambient manifold.) Let K be an open neighborhood of
O(xH) which is the union of W ∪ W̃ together with an open neighborhood K̂ of O(xH )�

disjoint from W ∪ W̃ . We may suppose that K,W, W̃ are chosen so that �(W) ⊂ K̂ ,
�−1(W̃) ⊂ K̂ .

From now on, we regard � as defined on K with the understanding that if z ∈ K

then �n(z) is defined provided that the iterates of z up to and including �n(z) all lie
in K . Henceforth, all our computations, perturbations and estimates will be done inside K .
Of course, everything translates back to the ambient manifold M .

4.2. Basic expansion and contraction rates. For the present we assume that � is
linear when restricted to neighborhoods of p in Es and Eu. This is a mild restriction—
if � is sufficiently smooth only finitely many non-resonance conditions are required on
eigenvalues of D�(0)|Es ,D�(0)|Eu for linearizability. In particular, we do not make the
stronger requirement that � is C2-linearizable at p. We indicate later (in §4.9) how we can
remove the assumption of linearizability on the invariant manifolds at the cost of incurring
some minor extra technical detail. However, including the detail at this point would only
serve to needlessly complicate our exposition.



Stable ergodicity 531

Write

xH = A = (A1, . . . , AS) ∈
S⊕

i=1

Eµi , x̃H = B = (B1, . . . , BT ) ∈
T⊕

j=1

Eλj .

LEMMA 4.1. Let J be a p × p Jordan block over C with eigenvalue ρ 
= 0. Let [an
ij ]

denote the matrix of J n, n ∈ Z. Then,

an
ij = 0, i > j,

=
(

n

j − i

)
ρn+i−j , i ≤ j.

In particular, given p, there exist C, c > 0, independent of n, i, j , such that for |n| ≥ j − i,

c|n|j−i |ρ|n+i−j ≤ |an
ij | ≤ C|n|j−i |ρ|n+i−j , n ∈ Z, 1 ≤ i ≤ j ≤ p.

Proof. The proof is elementary and omitted. �

For m ≥ 0, we define

Am = Gm
s (A),

Bm = G−m
u (B).

We have limm→∞ Am, Bm = 0.
Fix i ∈ {1, . . . , S}. If Ai = 0, then Am

i = 0, for all m ≥ 0. If Ai 
= 0, write
Am

i = (Am
i1, . . . , A

m
ip) 
= 0, m ≥ 0. We may find pi ∈ {2, . . . , p}, such that Am

ipi−1 
= 0,
m ≥ 0, Am

ij = 0, j ≥ pi , all m ≥ 0. We similarly define positive integers qj for the Bm
j

components.

LEMMA 4.2. Let Ai 
= 0 and define pi ∈ {2, . . . , p} as above. There exist m = m(i) ≥ 0,
C, c > 0, such that for all n ≥ m:
(1) An

i1 
= 0;
(2) C|An

ij | ≥ (
n

pi−1−j

)|A0
ipi−1||µi|n ≥ c|An

ij |, j ∈ {1, . . . , pi − 1}.
We have a similar result for the non-zero Bj terms.

Proof. A straightforward application of Lemma 4.1. �

Remark 4.3. A consequence of Lemma 4.2 is that for large values of n, An
i1 is the dominant

term in An
i . Indeed, it follows from Lemma 4.2 that we can choose c > 0 so that for n ≥ m,

|An
ij |/|An

i1| ≤ cn1−j .

Let Es
� denote the set of eigenvalues µi for which Ai 
= 0. We similarly define Eu

� .
Let µ̃ be the largest value of |µi |, µi ∈ Es

� and λ̃−1 be the largest value of |λ−1
j |,

λj ∈ Eu
� . We define

� = max(µ̃, λ̃−1).

We say there is a �-resonance if we can find i, j such that µ̃ = |µi |, λ̃−1 = |λ−1
j | and

µiλj = 1.
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Let Cs ⊂ {1, . . . , S} consist of those i for which µi ∈ Es
� and |µi | = µ̃. Let p denote

the maximum of pi , i ∈ Cs . Let ı̄ denote a value of i for which pi = p and set ā = p − 1.
Thus, Am

ı̄ā 
= 0, m ≥ m(ı̄), and, if |µi | = µ̃, then Am
ia = 0, a > ā.

Let Cu ⊂ {1, . . . , T } consist of those j for which µj ∈ Eu
� and |λj | = λ̃. Let q denote

the maximum of qj over j ∈ Cu. Just as above, we let ̄ , b̄ denote the corresponding values
of j and q − 1. In particular, Bn

̄ b̄

= 0, n ≥ n(̄ ).

Let α = min{−ln|λ̃|, ln |µ̃|}/ ln � . If � = |µ̃|, define m(p, q) = ((p − 1)α + q − 1)/

(1 + α), otherwise set m(p, q) = (p − 1 + (q − 1)α)/(1 + α). For N ∈ N and 0 < r < 2,
define

βN =




Np−1�N if � = µ̃ > λ̃−1,

Nq−1�N if � = λ̃−1 > µ̃,

Nmax(p,q)−1�N if � = µ̃ = λ̃−1,

β̄N = Nm(p,q)(�N)α/(1+α),

β̄N(r) =




(β̄N )r, if α(r − 1) < 1,

N(β̄N )r = Nm(p,q)(1+α)/α+1�N if α(r − 1) = 1,

βN if α(r − 1) > 1,

γN =
{

βN if not �-resonant,

Np+q−1�N if �-resonant.

Remark 4.4. In the simplest case, where G is semisimple and there is no �-resonance,
we have γN = βN = �N . If G is semisimple and there is a �-resonance, we have
βN = �N and γN = N�N . We only need the terms β̄N and β̄N(r) when considering
cocycles of class Cr , r < 2. Note that γN = β̄N (2).

4.3. Technical lemmas. In this section we state, usually without proof, some useful
elementary lemmas.

LEMMA 4.5. Given p ≥ 0, there exists C > 0, independent of n, such that

npβ2
n ≤ C�n/2βn.

LEMMA 4.6. Let p, q, m̄, m̄�,N ∈ N. For x 
= 0, define

χN(x) = max((N − m̄ − m�)p|x|N−m�

, (N − m̄ − m�)q |x|m̄), x 
= 1,

= (N − m̄ − m�)p+q+1, x = 1.

There exist constants c = c(x, p, q), C = C(x, p, q) > 0, independent of N, m̄,m�, such
that given m̄, m̄�, we can choose N� ∈ N such that for N ≥ N�,

CχN(x) ≥
∣∣∣∣
N−m�∑
n=m̄

(
n − m̄

p

)(−N + n + m�

q

)
xn

∣∣∣∣ ≥ cχN(x),

with the proviso that if x = −1, p = q = 0, then N − m� − m̄ is even.
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Proof. Suppose that x 
= 1. It is straightforward to verify that

N−m�∑
n=m̄

(
n − m̄

p

)(−N + n + m�

q

)
xn

= xm̄+p

p!q!
(

d

dx

)p
[
xN−m̄−m�+q

(
d

dx

)q
[

x−N+m̄+m� − x

1 − x

]]
.

The result in the case x 
= ±1 or x = −1, p + q 
= 0 follows easily from this identity.
If p = q = 0, x = −1, and N − m� − m̄ is even, the result is easily verified by direct
computation. If x = 1, all terms have the same sign. Set m = m̄ + m�. For sufficiently
large N , the absolute value of each of the approximately (N − m)/2 terms in the range
[(N − m)/4] ≤ n ≤ 3[(N − m)/4] is bounded below by ((N − m)/4)p+q . The result
follows. �

As an immediate corollary of Lemma 4.6, or directly, we have the following.

LEMMA 4.7. Let µ ∈ (0, 1), p ∈ N. There exists C = C(µ,p) > 0, independent of N ,
such that

N∑
n=0

(
n

p

)
µnβN ≤ CβN.

4.4. Construction of a sequence of periodic points converging to xH . For N sufficiently
large, we will construct a sequence (pN) ⊂ K of periodic points converging to xH .
The point pN will be of prime period N . Our construction depends on the construction
of a pseudo-orbit followed by an application of the Anosov closing lemma. We present the
proof first on the basis of our assumption that � is linear when restricted to the stable and
unstable manifolds of p. This assumption of linearizability is removed in §4.9.

Since � is C2, our assumption on the linearity of � restricted to the stable and unstable
manifolds of p allows for nonlinearities of the form aij (x, y)xiyj , where aij is continuous.

Set � = (�s,�u). Since we are assuming �|Es = Gs , �|Eu = Gu, it follows that on
K we may write

�s(x, y) = Gs(x) +
∑
i,j

xiyj aij (x, y), (4.6)

�u(x, y) = Gu(y) +
∑
i,j

xiyjbij (x, y), (4.7)

where aij , bik are continuous.

PROPOSITION 4.8. There exist N̄ ∈ N, C > 0, such that for N ≥ N̄ , there exists a point
pN ∈ W of prime period N , such that if we set �n(pN) = pn

N = (xn, yn), then
(1) xn

i = J n
i (Ai ) + Cn

i βN ;
(2) yn

j = J n−N
j (Bj ) + Cn

j βN ;
(3) (pn

N) ⊂ K;
where ‖Cn

i ‖, ‖Cn
j ‖ ≤ C, for all n ∈ {0, . . . , N}.
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Proof. Given N > 0, define for n ∈ {0, . . . , N}, z̃n = (x̃n, ỹn), where x̃n
i = J n

i (Ai ),
ỹn
j = J n−N

j (Bj ). Certainly there exists N̄ > 0 such that for N ≥ N̄ , (z̃n) is well defined
as a subset of K . A routine computation, using Lemmas 4.7 and 4.1 and equations (4.6)
and (4.7), shows that there exists C̄ > 0, independent of N , such that for all N ≥ N̄

we have ‖�(z̃n) − z̃n+1‖ ≤ C̄βN . We give the computation in the case when the matrix
G = D�(0) is semisimple. Under this assumption, we have x̃� = µn

�A�, ỹk = λn−N
k Bk

and so, using (4.6), we have

�(z̃n)i = µn+1
i Ai +

∑
�,k

x̃�ỹka�k(z̃n),

�(z̃n)j = λn+1−N
j Bj +

∑
�,k

x̃�ỹkb�k(z̃n).

Shrinking K if necessary, let C′ = max�,k(‖a�k‖0, ‖b�k‖0), where the C0 norms are
computed on K . We have∣∣∣∣ ∑

�,k

x̃�ỹka�k(z̃n)

∣∣∣∣ ≤ C′ ∑
�,k

|A�||Bk||µ�|n|λk|n−N ,

≤ C′D
∑
�,k

�n�N−n where D = max
�,k

|A�||Bk|,

≤ C′D�N
∑
�,k

1,

≤ Ci�
N ≤ CiβN,

where Ci is independent of N . We have a similar estimate on
∑

�,k x̃�ỹkb�k(z̃n). In the

case n = N , we use the (smooth) identification between W̃ and W and our estimates on
‖z̃N − x̃H‖, ‖z̃0 − xH‖, to deduce that ‖z̃N − z̃0‖ ≤ C̄βN .

Since X is hyperbolic, we may now apply the Anosov closing lemma [15, §6.4]
to deduce that for a possibly larger value of N̄ , there exists Ĉ > 0, such that for
N ≥ N̄ , there exists a point pN ∈ W of prime period N such that for n ∈ {0, . . . , N},
‖pn

N − z̃n‖ ≤ ĈC̄βN . �

COROLLARY 4.9. Given m ∈ N, there exists C1 > 0 such that for all N ≥ N̄ ,
n ∈ {0, . . . ,m} we have

‖pn
N − An‖, ‖pN−n

N − Bn‖ ≤ C1βN .

Proof. When m = 0, the estimate follows with C1 = 2C by Proposition 4.8. For m > 0,
we obtain the result by applying the mean value theorem to �n,�n−N . �

Remarks 4.10. (1) The extension of Proposition 4.8 to allow for the case where G has
complex eigenvalues is immediate—indeed, the formalism already allows for complex
eigenvalues.

(2) Since the original H -set X is locally maximal, the periodic points given by
Proposition 4.8 lie in X.
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(3) If we assume that � is C1-linearizable at p, we can give somewhat sharper estimates
on pn

N . Specifically, in the linearizing coordinates, the relations �(pn
N) = pn+1

N , 0 ≤ n ≤
N −1, imply that xn

i = J n
i (Ai +CiβN), yn

j = J n−N
j (Bj +CjβN), where the constants Ci ,

Cj are independent of n. It follows that if we define � = max(|µS |, |λT |−1) + ε, where
ε > 0 is chosen sufficiently small so that � < 1, then we can write

xn
i = J n

i (Ai ) + Cn
i �

nβN, yn
j = J n−N

j (Bj ) + Cn
j�

N−nβN.

If � is C2-linearizable at p, then these estimates yield simpler proofs of some of our
lemmas (notably Lemmas 4.13 and 4.14). However, the results of these lemmas may fail
if � is not C2-linearizable at p, and the full proof of Theorem 2.10 requires some special
arguments to take account of this. For ease of exposition, we assume C2-linearizability
wherever it is helpful to do so, and sketch the general case at the end of this section—
see §4.9.

Remark 4.11. From now on we identify a neighborhood U of the closure of the homoclinic
orbit of xH in M with K̂ ∪ W in Rn.

Therefore, functions F defined on Rn induce functions on U ⊂ M through their
restriction F |(K̂ ∪ W). When we compute the average of F , we use the representatives of
pN and xH situated in W , that is, near (A, 0).

4.5. Upper bounds. We continue to assume that � is linear when restricted to the local
stable and unstable manifolds at p—this assumption is relaxed in §4.9. Throughout this
and the following subsection ‘c’, ‘C’ will always denote constants independent of N ≥ N̄

and cocycles F .

Let (pN)N≥N̄ be the sequence of periodic points given by Proposition 4.8. Recall that
we defined AN(F) = Av(F, xH ) − Av(F, pN) in §3.

LEMMA 4.12. Let r ≥ 2. There exists C > 0 such that if F ∈ Cr(Rm, R) with F(0) = 0
and DF(0) = 0, then

|AN(F)| ≤ CγN‖F‖2 for all N ≥ N̄ .

Proof. We assume that G = D�(0) is semisimple with real eigenvalues. In particular,
βN = �N and either γN = �N or γN = N�N (�-resonance). The proof in the case
when G has complex eigenvalues or is non-semisimple is essentially the same, just longer
(note that when we consider the more difficult problem of finding lower bounds we do
allow for the non-semisimple case).

It follows from Taylor’s theorem that we may write

F(x, y) =
∑

i

xiLi(x) +
∑
i,�

xiy�Mi�(x, y) +
∑

�

y�N�(y),

where Li,N� are C1 and vanish at the origin, and Mi� is continuous.
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We start by estimating the second term in this sum. We have Av(xiy�Mi�, xH ) = 0 and
so it suffices to estimate Av(xiy�Mi�, pN). We have

|Av(xiy�Mi�, pN)| =
∣∣∣∣
N−1∑
n=0

xn
i yn

� Mi�(pn
N)

∣∣∣∣,
≤ ‖Mi�‖0

∣∣∣∣
N−1∑
n=0

(µn
i Ai + cn

i βN)(λn−N
� B� + cn

�βN)

∣∣∣∣,
≤ ‖Mi�‖0

∣∣∣∣
N−1∑
n=0

µn
i λ

n
�λ

−N
� AiB� + c1βN(|µi |n + |λ�|n−N) + c2β

2
N

∣∣∣∣,
≤ ‖Mi�‖0

(∣∣∣∣
N−1∑
n=0

µn
i λ

n
�λ

−N
� AiB�

∣∣∣∣ + |c|βN

)
.

If µiλ� 
= 1 and we ignore trivial cases where AiB� = 0, then∣∣∣∣
N−1∑
n=0

µn
i λ

n
�λ

−N
�

∣∣∣∣ =
∣∣∣∣λ

−N
� − µN

i

1 − µiλ�

∣∣∣∣ ≤ c�N = cβN = cγN.

If µiλ� = 1, then
∑N−1

n=0 µn
i λ

n
�λ

−N
� = Nλ−N

� . In the case |λ�|−1 = � we have the

estimate | ∑N−1
n=0 µn

i λ
n
�λ

−N
� | ≤ cN�N , otherwise we bound by c�N . Using our estimates,

it follows that |Av(xiy�Mi�, pN)| ≤ c‖Mi�‖0γN , and hence

|Av(xiy�Mi�, pN)| ≤ cγN‖F‖2.

Summing over i, �, we obtain the required estimate.
We conclude by estimating the first sum. We have

AN(xiLi) ≤
∣∣∣∣
N−1∑
n=0

(µn
i Ai + cn

i βN)Li(µ
n
i Ai + cn

i βN) − µn
i AiLi(µ

n
i Ai)

∣∣∣∣
+

∞∑
n=N

∣∣∣∣µn
i AiLi(µ

n
i Ai)

∣∣∣∣,
≤

∣∣∣∣
N−1∑
n=0

(µn
i Ai + cn

i βN)(Li(µ
n
i Ai) + c‖Li‖1βN) − µn

i AiLi(µ
n
i Ai)

∣∣∣∣
+ c|Ai |�N‖Li‖0,

≤ c‖Li‖1βN ≤ c‖F‖2γN,

where we have used |Li(µ
n
i Ai)| ≤ ‖Li‖1|µn

i Ai |. �

LEMMA 4.13. Fix r > 0. Assume that � is C2-linearizable at p if r ≥ 2. There exists
C > 0, such that for all F ∈ Cr(Rm, R) with F(0) = 0 we have
(1) if 0 < r < 2,

|AN(F)| ≤ Cβ̄N(r)‖F‖r for all N ≥ N̄;
(2) if r ≥ 2,

|AN(F)| ≤ CγN‖F‖2 for all N ≥ N̄ .
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Proof. First of all we take r ≥ 2. Again, we give the details only for the case when
G is semisimple and eigenvalues are real. Without loss of generality, we may make
a preliminary C2-linearizing change of coordinates. Since F is C2, we may find ai ∈
C1(Es, R), bj ∈ C1(Eu, R) and Hij ∈ C0(Rm, R) such that

F(x, y) =
S∑

i=1

xiai(x) +
T∑

j=1

yjbj (y) +
S∑

i=1

T∑
j=1

xiyjHij (x, y).

It follows from Lemma 4.12 that we can reduce to the case where

F(x, y) =
S∑

i=1

xiai +
T∑

j=1

yjbj , (4.8)

and ai, bj ∈ R. It follows from Proposition 4.8 and Remark 4.10(3) that xn
i = Aiµ

n
i +

cn
i �n�N , 1 ≤ i ≤ S, where the (cn

i ) are uniformly bounded and 0 < � < 1. Fixing i,
we have |AN(xiai)| ≤ E1 + E2, where

E1 =
∣∣∣∣
N−1∑
n=0

(µn
i Ai + cn

i �n�N)ai − µn
i Aiai

∣∣∣∣, E2 =
∣∣∣∣

∞∑
n=N

µn
i Aiai

∣∣∣∣.
Estimates on E1, E2 are trivial if Ai = 0. Therefore, we suppose in what follows that

Ai 
= 0 and so |µi | ≤ � . Then,

E1 = |ai |
∣∣∣∣
N−1∑
n=0

cn
i �n�N

∣∣∣∣ ≤ c‖F‖2�
N ≤ cγN‖F‖2,

E2 =
∣∣∣∣

∞∑
n=N

µn
i Aiai

∣∣∣∣ ≤ c|ai||µi |N ≤ cγN‖F‖2.

Summing over i, we have shown |AN(xiai)| ≤ cγN‖F‖2. A completely analogous
argument handles the term

∑T
j=1 yjbj .

It remains to consider what happens if 0 < r < 2 (still assuming that � is linear
restricted to the stable and unstable manifolds of p). We allow for µ̃ and λ̃ to be non-
simple eigenvalues.

On K̂ ∪ W we may write F(x, y) = L(x) + M(y) + H(x, y), where L(x) = F(x, 0),
M(y) = F(0, y) and H(x, y) = F(x, y) − L(x) − M(y). Necessarily, H vanishes on
Es , Eu in K̂ ∪ W . If 0 < r ≤ 1, then, we may use the obvious Hölder estimates on L and
the estimates of Proposition 4.8 to show that |AN(L)| ≤ cβ̄N(r)‖L‖r . Similarly for M .
This leaves the term H(x, y). Since Av(H, xH ) = 0, we must estimate |Av(H, pN)|.
For 0 ≤ n ≤ N , we may write H(pn

N) = H(pn
N) − H(xn

N) = H(pn
N) − H(yn

N). We have
the estimates

|H(pn
N) − H(xn

N)| ≤ ‖H‖r‖yn
N‖r , |H(pn

N) − H(yn
N)| ≤ ‖H‖r‖xn

N‖r .

In order to get the optimal estimate, we switch from x- to y-coordinates at the value Nc of
n for which ‖xn

N‖ ≈ ‖yn
N‖. A straightforward computation shows that if � = µ̃ then

Nc = αN

1 + α
− p − q

1 + α

ln N

ln �
+ O(1), (4.9)
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where α = min{− ln |λ̃|, ln |µ̃|}/ ln � . It follows easily that we can choose � ∈ (�, 1) and
a constant C > 0 such that ‖xn

N‖ ≤ C�nβ̄N , n ≥ Nc. We have a similar estimate on ‖yn
N‖,

n < Nc. This suffices to obtain the estimate |Av(H, pN)| ≤ cβ̄N(r)‖H‖r . The analysis in
the case � = λ̃−1 is similar.

Finally, suppose r ∈ (1, 2). We write F = L + M + H as before, and assume � = µ̃.
The estimates on L and M are straightforward and we omit details. It remains to consider
the term H(x, y). Noting that H vanishes on the x- and y-axes, and applying Taylor’s
theorem with integral remainder, we have

H(x, y) =



DyH(x, 0)(y)+

∫ 1

0
[DyH(x, ty)−Dy(x, 0)](y) dt = A(x)(y)+I1(x, y)

DxH(0, y)(x)+
∫ 1

0
[DyH(tx, y)−Dy(0, y)](x) dt = B(y)(x)+I2(x, y),

where A(x), B(y) are linear maps depending Cr−1 on x and y, respectively, The integral
terms are estimated by |I1(x, y)| ≤ ‖H‖r‖y‖r and |I2(x, y)| ≤ ‖H‖r‖x‖r . Since A

and B vanish at the origin, we also have the estimates |A(x)(y)| ≤ ‖H‖r‖x‖r−1‖y‖
and |B(y)(x)| ≤ ‖H‖r‖y‖r−1‖x‖. Just as in the first part of the proof, we switch
from one expansion to the other at n = Nc, and bound using the above estimates on
|I1(x, y)|, |I2(x, y)|, |A(x)(y)| and |B(y)(x)|. The sum of the ‖x‖‖y‖r−1 terms involves
the exponent n(1 − α(r − 1)), its sign determining the three possible outcomes in the
definition of β̄N(r). We omit the straightforward details. �

4.6. Lower bounds for functions in the class Cr, r ≥ 2. We continue to assume that �

is linear when restricted to the local stable and unstable manifolds at p. In this subsection
we construct an explicit C∞-cocycle F for which |AN(F)| decays at the slowest possible
rate for C2-functions. (The lower bound obtained in this subsection is not optimal when
r < 2.)

LEMMA 4.14. Let D ⊂ K be an open neighborhood of p. There exists F ∈ C∞(Rm, R)

with supp(F ) ⊂ D and C > 0 such that for infinitely many values of N we have

|AN(F)| ≥ CγN.

Proof. For the proof we assume the notation of §4.2. Let m̄,m� ∈ N, and define
O�(xH ) = {�n(xH )|n ∈ (−m�, m̄)} and Om(xH ) = O(xH ) \ O�(xH ). For m̄,m�

sufficiently large, we may choose disjoint compact neighborhoods Um,Vm of Om(xH ),
O�(xH ) respectively so that Um ⊂ D, Vm ⊂ K̂ \D. We remark that having chosen m̄,m�,
we can find N� = N(m̄,m�) ≥ N̄ such that for all N ≥ N�, pn

N ∈ Um, n /∈ (−m�, m̄) and
pn

N ∈ Vm, n ∈ (−m�, m̄). In the sequel we shall assume this without further comment.
Define F = Fm̄,m� ∈ C∞(Rm, R) by

F(x, y) =
{

0, (x, y) /∈ D,

xı̄1y̄1, (x, y) ∈ Um.

We show that we can choose m̄,m� so that F satisfies the conditions of the lemma.
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Although in the proof we allow G to have non-trivial Jordan blocks, we simplify a
little by assuming that the dominant eigenvalues µ = µı̄ , λ = λ̄ are real. (If dominant
eigenvalues are complex, we work with a C-valued cocycle F and obtain the required
estimates by taking the real part of F .)

Since F vanishes identically on Es , Eu, it follows that it suffices to find C > 0, N̂ ≥ N̄ ,
m ∈ N such that for N ≥ N̂ ,

|Av(F, pN)| ≥ CγN.

As usual, we write pn
N = (xn, yn) and set xn = (xn

1, . . . , xn
s ), yn = (yn

1, . . . , yn
t ). We

need to compute the (ı̄, 1)-component of Gn
s (x

0) and the (̄ , 1)-component of Gn
u(y

0),
0 ≤ n ≤ N .

Set µ = µı̄ , λ = λ̄ and m̄ = m(ı̄) > 0. We have

xm̄
ı̄ = Am̄

ı̄ + Cm̄
ı̄ βN ,

where ‖Cm̄
ı̄ ‖ ≤ C, independent of m,n,N , and An

ı̄1 
= 0, for all n ≥ m̄. (In future we
drop the sub- and superscripts from the constants Cm̄

ı̄ .) It follows from Lemma 4.1 and the
definition of p that for N ≥ n ≥ m̄, we have

xn
ı̄1 =

p∑
i=1

(
n − m̄

i − 1

)
µn+1−i−m̄Am̄

ı̄i + CβN,

= E′
1 + E′

2,

where (Lemma 4.2)

|Am̄
ı̄p| ≥ C|µ|m̄, (4.10)

and C is independent of m̄. It follows from our choice of m̄ = m(ı̄), that Am̄
ı̄1 
= 0 and

hence the dominant term in the sum for E′
1 is Am̄

ı̄p

(
n

p−1

)
µ

n+1−p
ı̄ . Increasing m̄ if necessary,

it follows from the estimates of Lemma 4.1 that for m̄ ≤ n ≤ N ,

E′
1 = Am̄

ı̄p

(
n − m̄

p − 1

)
µ

n−m̄+1−p
ı̄ (1 + kn),

where |kn| ≤ 0.1. Notice that we only improve this estimate if we further increase m̄—
working always within the requirement that m̄ ≤ n ≤ N .

On the other hand, for all m̄ ≤ n ≤ N , |E′
2| is bounded above by CβN . Combining our

estimates for E′
1, E

′
2, it follows that for m̄ ≤ n ≤ N we have

xn
ı̄1 = Am̄

ı̄p

(
n − m̄

p − 1

)
µ

n−m̄+1−p

ı̄ (1 + kn) + CβN.

We may similarly choose m� ∈ N such that for 0 ≤ n ≤ N − m�,

yn
̄1 = Bm�

̄q

(−N + n + m�

q − 1

)
λ−N+n+m�−q+1(1 + k�

n) + C�βN,

where |k�
n| ≤ 0.1. Again, we only improve estimates by increasing m�. We also have the

estimate

|Bm�

ı̄q | ≥ C�|λ|−m�

. (4.11)
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Increasing m̄,m� will not change any of the previous estimates as all constants C,C�

are independent of m̄,m�.
Set K� = Am̄

ı̄pBm�

̄q 
= 0. Noting our definition of Fm̄,m� , and relabeling the error terms
k, k�, we see that

Av(Fm̄,m�, pN) =
N−m�∑
n=m̄

xn
ı̄1yn

̄1,

= E1 + E2 + E3 + E4,

where

E1 = K�
N−m�∑
n=m̄

(
n − m̄

p − 1

)(−N + m� + n

q − 1

)
µn+1−m̄−pλ−N+m�+n−q+1(1 + kn)(1 + k�

n),

|E2| ≤ |C||Bm�

̄q |βN

N−m�∑
n=m̄

(
n − m̄

p − 1

)
|µ|n+1−m̄−p(1 + kn),

|E3| ≤ |C�||Am̄
ı̄p|βN

N−m�∑
n=m̄

(−N + m� + n

q − 1

)
|λ|−N+m�+n−q+1(1 + k�

n),

|E4| ≤ |C||C�|Nβ2
N .

Suppose, first, that we are in the non-resonant case and G = D�(0) is semisimple.
Without loss of generality, we take � = |λ|−1 ≥ |µ| and so |λµ| ≤ 1 (if λµ = −1,
we take N−m̄−m� to be even). It follows from (4.10) and (4.11) that |K�| ≥ C|λ|−m� |µ|m̄.
Substituting in our expression for E1, it follows (since |λµ| ≤ 1) that

|E1| ≥ c�N |λµ|m̄,

where c > 0 is independent of m,N . On the other hand, for large enough N , we find that

|E2| ≤ C2|λ|−m�

�N,

|E3| ≤ C3|µ|m̄�N,

where C1, C2 are independent of m̄,m�, for large enough N . Since |λµ| > |µ|, it is
obvious that |E1| � |E3| for sufficiently large m̄. Fix such an m̄. Now choose m� large
enough so that C3|λ|−m� � c|λµ|m̄. Hence |E1| dominates |E2| and |E3|.

Since |E1| obviously dominates |E4| (Lemma 4.5), it follows that we can choose m̄,m�,
C > 0, so that for all sufficiently large N we have |Av(Fm̄,m�, pN)| ≥ C�N (note that if
λµ = 1, we choose the parity of N so that the E1 sum is non-vanishing!).

The proof in the resonant case is similar, the main difference being the appearance of
the factor N − m̄ − m� in the sum for E1.

There remains the case when G is not semisimple. There are three cases to consider:
(1) � = |µ|, µλ 
= 1, (2) � = |λ|−1, µλ 
= 1, and (3) µλ = 1. We consider
case (1). (Details for the other cases are similar—simpler for the �-resonant case—and
make essential use of Lemma 4.6.) Suppose, then, that � = |µ| and |λµ| > 1. We have
γN = βN = Np−1�N , where p ≥ 2. Estimating E1, E2, E3, using Lemma 4.6, we find
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constants c, c′, C2, C3 > 0, independent of m̄,m� and sufficiently large N , such that

|E1| ≥ c(N − m̄ − m�)p−1�N |λµ|−m� ≥ c′βN |λµ|−m�

,

|E2| ≤ C2|λ|−m�

βN,

|E3| ≤ C3βN |µ|m̄.

First, we choose m� sufficiently large so that |E2| � |E1| for large N . Then fix m� and
choose m̄ sufficiently large so that |E3| � |E1| for large N . Since |E1| dominates |E4| for
large N (Lemma 4.5), the result follows. �

4.7. Lower bounds for functions in the class Cr, r < 2. In this subsection, for each
r ∈ (0, 2) we construct an explicit Cr -cocycle Pr for which |AN(Pr)| decays at the slowest
possible rate for Cr -functions. We continue to assume that � is linear on the stable and
unstable manifolds through p.

LEMMA 4.15. Let r ∈ (0, 2). Let D ⊂ K be an open neighborhood of p. There exists
Pr ∈ Cr(Rm, R) \ ⋃

s>r Cs(Rm, R) and C = Cr > 0 such that supp(Pr) ⊂ D and for
infinitely many values of N we have

|AN(Pr)| ≥ Cβ̄N(r).

Proof. We shall also take D = K—the construction for general D is analogous to that of
Lemma 4.14.

Let r ∈ (0, 2). Define Pr : Rm→R by

Pr(x, y) = 0, (x, y) /∈ K, or xS = yT = 0,

= xSyT /(x2
S + y2

T )1−r/2, (x, y) ∈ K.

It is easy to verify that Pr is of class Cr , r ∈ (0, 2). We claim that |AN(Pr)| ≥ Cβ̄N(r).
Since Pr vanishes on the orbit of xH , it suffices to estimate |Av(Pr , pN)|.

Without loss of generality, suppose that � = |µS | ≥ |λ−1
T |. Let α = ln |λT |−1/ ln � .

For simplicity we assume that both µS and λT are real, positive and have algebraic
multiplicity 1. Details are similar in the general case. Estimating the sum, we find that

|Av(Pr , pN)| = (C + o(1))

N−1∑
n=0

�n�α(N−n)

(a�2n + b�2α(N−n))1−r/2
,

where C, a, b > 0. Estimating the term with n = Nc (see equation (4.9) in the proof of
Lemma 4.13) shows that |Av(Pr , pN)| is at least of order (�N)rα/1+α = (β̄N )r , which
proves the claim for 1 − α(r − 1) > 0. To deal with the general case, break up the sum
at Nc, factor out the leading term in the denominators, and compute the two sums. �

4.8. Proof of Theorem 2.10. For r ≥ 2 and C2-linearizable �, Theorem 2.10 follows
immediately from the next result.

LEMMA 4.16. Suppose that � is C2-linearizable at p. Let r ≥ 2 and let B = Br(U, R),
L = Lr(U, R). Let D� ⊂ U be a neighborhood of the closure of the �-orbit of xH and
D ⊂ D� be a neighborhood of p. Let F be the cocycle supported in D that was constructed
in Lemma 4.14. Then:
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(1) F /∈ B + L;
(2) there is a C2-neighborhood W of F in Cr(U, R) such that F ′ /∈ B + L, F ′ ∈ W;
(3) if H ∈ Cr(U, R) has supp(H) ∩ D� = ∅, then F ′ + H /∈ B + L, F ′ ∈ W .

Proof. Choose F as in Lemma 4.14. Then there exists a constant C1 > 0 such that
|AN(F)| ≥ C1γN for all sufficiently large N (in the case λµ = −1, p = q = 1, N

will either be odd or even). In particular, AN(F) is not eventually zero, so, by (3.4),
F 
∈ B + L.

Now, let g ∈ Cr(U, R) and choose g so that ‖g‖2 < C1/2C2 where C2 is the constant
in Lemma 4.13. It follows that

|AN(F + g)| ≥ C1

2
γN. (4.12)

Again, F + g /∈ B + L, proving statements (1) and (2) of the lemma. The final statement
follows since Av(H, xH ) = 0 and Av(H, pN) = 0 for sufficiently large N . This concludes
the proof of Lemma 4.16. �

Remark 4.17. If r ∈ (0, 2) and � is linear on the stable and unstable manifolds through p,
then Lemma 4.16 remains true with the proviso that the neighborhood W is now Cr -open
and we no longer require the C2-linearizability of � at p. The proof follows that of
Lemma 4.16 except that we use Lemma 4.15 instead of Lemma 4.14, and Pr instead of F .

4.9. The non-linearizable case. We conclude this section by sketching the approach we
follow in the case when � is not C2-linearizable. We begin by supposing that � is linear at
least on the local stable and unstable manifolds of p. Hence, we may assume the notation
and results of §4.2. We may suppose that r ≥ 2, since the case r < 2 did not require
C2-linearizability.

We start by noting that Lemmas 4.12 and 4.14 hold without the assumption of
C2-linearizability. We now distinguish two cases: (a) γN = �N , and (b) γN = Nv�N ,
v ≥ 1.

Suppose that case (a) holds. First, we establish upper bounds. By Lemma 4.12, we
can reduce to the case when F has only linear constant coefficient terms. Without loss of
generality, suppose that F(x, y) = xi , i ≤ S.

We have

|AN(xi)| =
∣∣∣∣
N−1∑
n=0

(µn
i Ai + Cn

i �N − µn
i Ai) +

∞∑
n=N

µn
i Ai

∣∣∣∣,
=

∣∣∣∣
N−1∑
n=0

Cn
i �N +

∞∑
n=N

µn
i Ai

∣∣∣∣ = τ s
i,N�N,

where

τ s
i,N =

∣∣∣∣
N−1∑
n=0

Cn
i + �−N

∞∑
n=N

µn
i Ai

∣∣∣∣ =
∣∣∣∣
N−1∑
n=0

Cn
i

∣∣∣∣ + O(1). (4.13)

Similarly,

|AN(yj )| = τu
j,N�N, 1 ≤ j ≤ T .

Since the constants Cn
i are uniformly bounded, the τ

s/u

�,N grow at most linearly in N .
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If the sequences (τ
s/u

�,N) are all bounded, then the estimates of Lemma 4.13 apply and we
proceed as before. Otherwise, choose an unbounded sequence, say (τ s

i,N ), which dominates
the other (τN) values (that is, τ s

i,N = max{τw
�,N | w ∈ {u, s}, �}) for infinitely many values

of N , and along this subsequence τ s
i,N → ∞. In order to prove Lemma 4.16, we start with

a cocycle F based on the function xi (instead of the one provided by Lemma 4.14), and
conclude that the inequality (4.12) again holds for infinitely many values of N .

Next, we consider case (b), again under the assumption that � is linear on the invariant
manifolds through p. If we have a �-resonance, then Lemma 4.13 holds without the
assumption of C2-linearizability (the extra factor N that suffices to bound the contribution
of the linear part of F is still superseded by γN ). Hence, Lemma 4.14 gives us an optimal
lower bound and all goes through as before. If there is no �-resonance, then we must
introduce the sequences (τ

s/u
�,N) as in case (a). In this case, we will have |AN(xi)| = τ s

i,NβN ,
i ≤ S, |AN(yj )| = τu

j,NβN , j ≤ T . If all the (τ
s/u
�,N ) sequences are bounded, the estimates

of Lemma 4.13 apply. Otherwise, we modify the proof of Lemma 4.16 as discussed for
case (a).

Finally, we consider the extension of Proposition 4.8 to the case when � is not linear
on the local stable and unstable manifolds of p. The arguments we present also apply to
the proofs of Lemmas 4.12–4.15.

We continue to assume � is C2. The first problem is to identify the dominant
eigenvalues for the homoclinic orbit—that is, to define the sets Es/u

� . For m ∈ N, define
Am = �m(A), Bm = �−m(B). Noting that a weakest contracting eigenvalue is µS ,
we may write

�s(x)S = JSxS + gS(x), (4.14)

where JS is a Jordan block with eigenvalue µS and gS is C2. Since |µS | is maximal
among the contracting eigenvalues there are no resonances of the form µS = �µ

ni

i .
It follows from a parametrized version of a theorem of Sternberg [25, §5] that there is
a C2-change of coordinates on Es which linearizes (4.14) (for the convenience of the
reader, we give details in an appendix at the end of the paper). In the new coordinates we
have �s(x)S = JSxS . We may repeat this linearization for all contracting eigenvalues µi

with |µi | = |µS |. Either it is the case that for all of these weakest eigenvalues, say µi ,
S ≥ i ≥ �, Ai = 0, or not. In the first case, we observe that xS = 0, . . . , x� = 0
defines a �s-invariant linear subspace V of Es . We now restrict attention to �s |V and
repeat the linearization process. Observe that there are no resonance problems. In this
way, we identify a weakest contraction µ̃ associated to the homoclinic orbit. Associated
to µ̃ will be a �s-invariant subspace Vs of Es . Components of �s |Vs associated to µi

with |µi | = |µ| will be linearizable. The same process works for �u|Eu. This gives
us sufficient information to define the rates βN, γN . The proof of Proposition 4.8 now
goes through much as before—the fact that components of �s |Vs , �u|Vu associated to
the dominant eigenvalues are linear allows us to push through all of the estimates without
difficulty. Although we do not spell out all the details, this representation of � suffices to
establish the upper and lower bounds proved previously. The basic idea is that components
associated to eigenvalues stronger than the dominant eigenvalues can be dominated by
linear maps (weaken eigenvalues slightly).
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5. A third proof of the Parry and Pollicott theorem
In §3, we gave a new proof of the theorem of Parry and Pollicott [23] on the genericity of
Cα-stability of Hölder cocycles. This proof did not require transfer operator techniques.
We now briefly sketch a further proof that avoids any direct consideration of symbolic
dynamics.

We continue with the notational conventions of §3.2. Suppose that X ⊂ {1, . . . , n}Z
is an (abstract) transitive subshift of finite type. Given θ ∈ (0, 1), let d(x, y) denote
the associated metric on X and Fθ (X) be the Banach space consisting of all Lipschitz
functions f : X→R for this metric. It follows from a theorem of Williams [26], that X can
be represented as a hyperbolic basic set X̃ in the spectral decomposition of a structurally
stable diffeomorphism F of S3. Indeed, we can require that the �-set of F will consist of
two hyperbolic fixed points, one attracting and one repelling, X̃, and a further hyperbolic
basic set Ỹ , where Ỹ is conjugate to the subshift of finite type ‘dual’ to X. Williams’s
construction is quite elementary and all but the final step (adding a repelling hyperbolic
fixed point at ∞), is carried out in R3. In particular, we may construct F so that there is
a cover of X̃ ⊂ S3 by n open neighborhoods Ui such that the restriction of F |Ui is affine
linear, say F |Ui = Aix + bi . Further, if we choose µ ∈ (0, 1) sufficiently small, we may
require that each linear map Ai is semisimple with a double contracting eigenvalue µ and a
single expanding eigenvalue µ−1. We choose a Riemannian metric on S3 which coincides
with the usual Euclidean metric on R3 on a neighborhood of X̃. In this situation, the natural
conjugacy between X̃ and X is a local isometry if we choose θ = µ. Moreover, Hölder
cocycles of class Cα on X̃ (Cα with respect to the Riemannian metric on S3), correspond
exactly to cocycles in Fθα (X). Hence, we can apply Theorem 2.10 in the case α ∈ (0, 1],
to deduce the Fθα genericity of stable cocycles for all α ∈ (0, 1]. Since this result holds
for all sufficiently small α, we obtain the genericity of stability for all θ ∈ (0, 1).

6. Transitivity and ergodicity of compact group extensions
In this section, we prove Theorems 1.3 and 1.5.

Suppose that X ⊂ M is a hyperbolic basic set for the C1-diffeomorphism � : M→M .
Let µ be an equilibrium state on X. Let G be a compact connected Lie group with Haar
measure h and define the product measure µ × h on X × G. Let f ∈ Cr(M,G), r > 0.
By Keynes and Newton [16] and Livšic regularity, a necessary and sufficient condition for
the non-ergodicity of the skew extension �f : X × G→X × G is that there exists a non-
trivial irreducible unitary representation R of G on Cd for some d ≥ 1 and a continuous
function w : X→S2d−1 such that

R(f )−1w = w ◦ �. (6.15)

Here, S2d−1 denotes the unit sphere in Cd .

PROPOSITION 6.1. Let X ⊂ M be a hyperbolic basic set and µ be an equilibrium state
on X. If f ∈ Cr(M,G), r > 0, then:
(1) �f : X × G→X × G is ergodic if and only if �f is transitive;
(2) if Z ⊂ X is a locally maximal subshift of finite type and �f |Z ×G is transitive, then

�f : X × G→X × G is ergodic.
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Proof. (1) If �f is not ergodic, then (6.15) has a continuous solution, w : X→S2d−1.
The map W : X × G→S2d−1 defined by W(x, g) = R(g)w(x) is then a non-constant
�f -invariant continuous function on X×G. Hence, �f cannot be transitive. The converse
is trivial.

(2) Assume by contradiction that �f : X×G→X×G is not ergodic. Then (6.15) has a
continuous solution w : X→S2d−1. Restricting this solution to Z, we conclude, as in (1),
that �f |Z × G is not transitive, a contradiction. �

PROPOSITION 6.2. Let X ⊂ M be a locally maximal subshift of finite type for the
C2-diffeomorphism �. Let µ be an equilibrium state on X.

Let r > 0. Then there exists a Cr -open and -dense subset Wr of the set of Cr -cocycles
Cr(X,G) such that �f : X × G→X × G is ergodic for all f ∈ Wr . Moreover, if r ≥ 2,
then Wr is C2-open in Cr(X,G).

Proof. By Field and Parry [14] it suffices to consider the case of toral extensions G = Km.
The result follows from Theorem 2.10, Lemmas 2.8 and 2.11, and the discussion of §2.3. �

THEOREM 6.3. Let X ⊂ M be a hyperbolic basic set for the C2-diffeomorphism �.
Suppose that µ is an equilibrium state on X.

Let r > 0. Then there exists a Cr -open and -dense subset Wr of Cr(X,G) such that
�f : X × G→X × G is ergodic for all f ∈ Wr . Moreover, if r ≥ 2, then Wr is C2-open
in Cr(X,G).

Proof. Transverse homoclinic points are dense in X, so by Smale’s Theorem 2.1, we can
find an H -set Z ⊂ X. It follows from Proposition 6.2 that there exists a Cr -open and -dense
subset Wr of Cr(X,G) such that �f |Z×G is ergodic for all f ∈ Wr . By Proposition 6.1,
�f : X×G→X×G is ergodic for all f ∈ Wr . The fact that Wr is C2-open in Cr(X,G),
r ≥ 2, follows from Proposition 6.2. �

Remark 6.4. The proof of Theorem 6.3 does not rely heavily on the fact that X is a
hyperbolic basic set. In fact, the only properties of X that we require are:
(a) X is a locally maximal invariant set with ergodic measure µ;
(b) X contains a transverse homoclinic orbit for a hyperbolic periodic point; and
(c) Livšic regularity theorems hold on X. Specifically, given a compact connected Lie

group G, we require that for each irreducible unitary representation R of G, every
measurable solution w to the equation R(f )−1w = w ◦ � has a continuous version.

In our proof of Theorem 6.3, we made use of the theorem of Keynes and Newton.
In some situations, we have to use a different version of this theorem—for example,
in the analysis of partially hyperbolic basic sets [12] where we cannot use the strategy
of [14] to reduce to the case where G is either Abelian or semisimple. It is then
sometimes worthwhile using a slightly different argument based on maximal transitivity
components [8]. We conclude the section by briefly summarizing the main ideas (for more
details, presented in the context of partially hyperbolic dynamics, see [12]).

We continue to assume that X is a hyperbolic basic set with equilibrium state µ.
Let f ∈ Cr(X,G). It follows from Keynes and Newton [16] that the skew extension
�f : X×G→X×G is µ×h ergodic if and only if for every non-trivial irreducible unitary
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representation ρ : G→U(d) of G, every µ×h-measurable �f -invariant and G-equivariant
map w : X × G→Cd is zero (almost everywhere). It follows by Livšic regularity [12, §7],
that every measurable �f -invariant G-equivariant map w : X × G→Cd has a continuous
realization. It follows in the usual way that �f is ergodic if and only if �f is transitive.

Let x ∈ X have dense �-orbit in X. For any g ∈ G, the closure T (x, g) of the �f -orbit
through (x, g) projects onto all of X. We say T (x, g) is a maximal transitivity component
for �f if whenever T (x ′, g′) ∩ T (x, g) 
= ∅, then T (x ′, g′) ⊂ T (x, g). If T (x, g) is
a maximal transitivity component, it is easy to see that P = {T (x, g)|g ∈ G} defines
a partition of X × G and that G acts on P (hT (x, g) = T (x, hg), h ∈ G). The general
question of when maximal transitivity components exist is difficult. (Zorn’s lemma implies
that every transitive set is contained in a maximal transitive set. However, maximal
transitive sets may not be disjoint.) However, transitivity components do exist for skew
and principal extensions over hyperbolic basic sets (Brin [8]) and also for certain classes
of partially hyperbolic basic sets [12, §7].

We have the following useful sufficient condition for transitivity.

LEMMA 6.5. Suppose that P = {T (x, g)|g ∈ G} is a partition of X × G into maximal
transitivity components. Then �f will be transitive if we can find a �-invariant closed
subset Z of X such that �f |Z × G is transitive.

Proof. Suppose �f |Z × G is transitive. It follows that there exists (z, γ ) ∈ Z × G such
that the �f -orbit of (z, γ ) is dense in Z × G. For some h ∈ G, (z, h) ∈ T (x, g). Hence,
T (x, g) ⊃ O(z, h) = Z × G. Therefore, γ T (x, g) ∩ T (x, g) 
= ∅, all γ ∈ G and so
T (x, g) = X × G. �

We may now use Lemma 6.5 and Proposition 6.2 to prove genericity of stable ergodicity.

7. Transitivity of Rm-extensions
In this section, we prove Theorem 1.7.

Suppose that � : X→X is a transitive Anosov diffeomorphism. Niţică and
Pollicott [19] showed that under a cohomological condition (valid for all known cases)
there exist C∞-cocycles f : X→Rm such that �f : X × Rm→X × Rm is C0-stably
transitive (that is, �f ′ is transitive for all f ′ sufficiently C0 close to f ). Previously, in [18],
it was proved that Euclidean group extensions X × SE(m) are transitive for a Cr -open and
-dense set of Cr -cocycles f : X→SE(m) provided m ≥ 4 is even. The result of [18]
holds for any hyperbolic basic set X. Density of transitive extensions clearly fails for the
group Rm.

In this section, we show how to extend the result of Niţică and Pollicott [19] to
Rm-extensions of arbitrary hyperbolic basic sets. We recover the full strength of their
result for hyperbolic attractors. In general, we obtain C2-stable transitivity.

First, we recall some definitions from [19]. Let � : X→X be a hyperbolic basic set
and f : X→Rm a Hölder cocycle. Define the skew extension �f : X × Rm→X × Rm.
Write fn = ∑n−1

j=0 f ◦ �j and define the periodic data Lf ⊂ Rm to be Lf = {fn(x)|
�nx = x}. Let Gf be the subgroup of Rm generated by Lf . The cocycle f satisfies the
separating condition if Lf is not contained on one side of a hyperplane through 0 in Rn.
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The separating condition guarantees that the closure of Gf coincides with the closure of the
subsemigroup generated by Lf . Let Sr denote the set of Cr -cocycles f ∈ Cr(X, Rm) that
satisfy the separating condition. Note that Sr is an open and non-empty (but not dense)
subset of Cr(X, Rm). Moreover, it follows from Bousch [4] that �f is not transitive unless
f ∈ Sr .

We can now state the main result of this section.

THEOREM 7.1. Let X ⊂ M be a hyperbolic basic set for the C2-diffeomorphism �.
Let r > 0. Then there exists a Cr -open and -dense subset W ⊂ Sr such that
�f : X × Rm→X × Rm is transitive for all f ∈ W . Moreover, if r ≥ 2, then W is
C2-open in Sr . If X is an attractor, then W is C0-open in Sr .

We require the following lemma.

LEMMA 7.2. [19] Let X be a hyperbolic basic set and f ∈ Sr for some r > 0. Suppose
that Gf is dense in Rm. Then �f : X × Rm→X × Rm is transitive.

Given f = (f 1, . . . , f m) : X→Rm, we define F = (F 1, . . . , Fm) : X→Km by setting
Fj = exp(2πıf j ).

THEOREM 7.3. Let X be a hyperbolic basic set for the C1-diffeomorphism �. Let r > 0
and suppose that f ∈ Sr . Then �f : X ×Rm→X ×Rm is Cr -stably transitive if and only
if �F : X × Km→X × Km is Cr -stably transitive.

Proof. It is immediate that transitivity of �f implies transitivity of �F . If �F is not
stably transitive, then there is an F̃ , Cr -close to F , such that �F̃ is not transitive.
Since sufficiently small perturbations are Cr -homotopic to the identity, F̃ : X→Km lifts
to f̃ : X→Rm Cr -close to f and �f is not transitive so that �f is not stably transitive.
Hence, stable transitivity of �f implies stable transitivity of �F .

Next, we prove the converse direction. Suppose that �F is stably transitive. It suffices
to show that �f is transitive. By Lemma 7.2, it suffices to show that Gf is dense in Rm.
If not, then Lf lies in a subgroup isomorphic to Rm−1 × Z. Hence, there exists a non-
zero k ∈ Rm such that exp(2πık · �) = 1 for all � ∈ Lf . Choose A ∈ GL(m) near the

identity so that k′ = A
T
k ∈ Qm. Then, f̃ = Af is Cr -close to f and has the property that

exp(2πık′ · �) = 1 for all � ∈ Lf̃ . Define k′′ ∈ Zm by clearing denominators in k′. Then

exp(2πık′′ · fn(x)) = 1 whenever �nx = x. (7.16)

Let F̃ be the Km-cocycle corresponding to f̃ and define g = (F̃ 1)k
′′
1 · · · (F̃m)k

′′
m :

X→K. Since k′′ ∈ Zm, the map g is well defined. Moreover, (7.16) becomes the statement
that if �nx = x, then g(x)g(�x) · · ·g(�n−1x) = 1. By the Livšic periodic point theorem,
g = G ◦ � G−1 for some G : X→K measurable (even Hölder). That is,

(F̃ 1)k
′′
1 · · · (F̃m)k

′′
mG = G ◦ �.

It is immediate from Keynes and Newton [16] that �F̃ is not ergodic, and hence (by Livšic
regularity) not transitive. Thus �F̃ is a non-transitive Km-extension Cr -close to �F , which
is the desired contradiction. �
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Remark 7.4. We have proved the equivalence of stable transitivity for Rm- and
Km-extensions. The corresponding equivalence for transitivity is false.

Proof of Theorem 7.1. It follows from Theorem 7.3 that an Rm-extension satisfying the
separating condition is stably transitive precisely when the corresponding Km-extension is
stably transitive. Now apply Theorem 6.3. �

8. Mixing for suspension flows
In this section, we prove Theorem 1.9.

Let � : X→X be a hyperbolic basic set. A Cr -function f : X→R is called a roof
function if f is strictly positive. We let Rr denote the space of Cr -roof functions.

Given a roof function f , we define the suspension Xf = {(x, u) ∈ X × [0,∞)}/ ∼
where (x, f (x)) ∼ (�x, 0) and define the suspension flow �

f
t : Xf →Xf by �

f
t (x, u) =

(x, u + t) computed subject to identifications.
We fix an equilibrium state on Xf . However, since mixing is independent of the

equilibrium state chosen and is equivalent to both weak mixing and topological weak
mixing (see Remarks 1.11), we shall suppress the measure in what follows and usually
just refer to ‘mixing’.

We now state the main result of this section.

THEOREM 8.1. Let X ⊂ M be a hyperbolic basic set for the C2-diffeomorphism �.
Let r > 0. Then there exists a Cr -open and -dense subset W ⊂ Rr of roof functions
such that the suspension flow �

f
t : Xf →Xf is mixing for all f ∈ W . Moreover, if r ≥ 2,

then W is C2-open in Rr . If X is an attractor, then W is C0-open in Rr .

Given the roof function f : X→R, we define the K-cocycle F : X→K by setting
F = exp(2πıf ).

THEOREM 8.2. Let X be a hyperbolic basic set for the C1-diffeomorphism �. Let r > 0
and suppose that f ∈ Rr . Then �

f
t : Xf →Xf is Cr -stably mixing if and only if the circle

extension �F : X × K→X × K is Cr -stably transitive.

Proof. Recall from §2.3 that �F : X × K→X × K fails to be transitive if and only if there
exists an integer � 
= 0 and a continuous function w : X→K such that

w ◦ � = w exp(2πı�f ).

On the other hand, the suspension flow �
f
t : Xf →Xf fails to be weak mixing if and only

if there exists a real number a 
= 0 and a continuous function w : X→K such that

w ◦ � = w exp(2πıaf ),

see [21, Proposition 6.2].
It is immediate that weak mixing for �

f
t implies transitivity for �F . If �F is not

stably transitive, then there is an F̃ , Cr -close to F , such that �F̃ is not transitive.
Since sufficiently small perturbations are Cr -homotopic to the identity, F̃ : X→Km lifts to
f̃ : X→Rm Cr close to f and �

f̃
t is not weak mixing, so that �

f
t is not stably weak

mixing. Hence, stable weak mixing for �
f
t implies stable transitivity for �F .
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Next, we prove the converse direction. Suppose that �F is stably transitive. It suffices
to show that �

f
t is weak mixing. If not, then there exists a > 0 and w continuous such

that w ◦ � = w exp(2πıaf ). In particular, exp(2πıafn(x)) = 1 whenever �n(x) = x.
Choose a rational number ã close to a and define f̃ = (a/ã)f . Then, f̃ is Cr -close to f

and has the property that exp(2πıãf̃n(x)) = 1 whenever �n(x) = x. Define b ∈ Z to be
the numerator of ã. Then,

exp(2πıbf̃n(x)) = 1 whenever �nx = x. (8.17)

Let F̃ be the K-cocycle corresponding to f̃ and define g = F̃ b : X→K. Since b ∈ Z,
the map g is well defined. Moreover, (8.17) becomes the statement that if �nx = x, then
g(x)g(�x) · · ·g(�n−1x) = 1. By the Livšic periodic point theorem, g = G ◦ � G−1

for some G : X→K measurable and hence continuous. We have constructed G : X→K

continuous and b 
= 0 such that
F̃ bG = G ◦ �.

It follows that �F̃ is a non-transitive K-extension Cr -close to �F , which is the desired
contradiction. �

Proof of Theorem 8.1. It follows from Theorem 8.2 that a roof function defines a stably
mixing suspension flow precisely when the corresponding K-extension is stably transitive.
Now apply Theorem 6.3. �
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A. Appendix. Linearization along part of an invariant manifold
In this appendix we provide a proof of the partial linearization statements made in §4.9.
Our method is elementary and based on that used by Sternberg in his proof of Poincaré’s
theorem [25].

Let U be an n-dimensional real vector space. Let k ≥ 2, and suppose that F : U→U is
a Ck-diffeomorphism such that DF(0) has all eigenvalues of modulus strictly less than 1.
Denote the set of eigenvalues of DF(0) by E and set S = max{|µ||µ ∈ E}. We have
a DF(0)-invariant splitting U = V ⊕ W , where DF(0)|V = L has all eigenvalues of
modulus equal to S and all eigenvalues of DF(0)|W = M have modulus strictly less
than S. Denote coordinates on V ⊕ W by (x, p).

PROPOSITION A.1. There exists a local Ck-diffeomorphism H : V ⊕ W→V ⊕ W ;
(x, p) �→ (h(x, p), p) which linearizes F along V :

h(F (x, p)) = Lh(x, p), (x, p) ∈ V ⊕ W.

That is, H ◦ F ◦ H−1 = (L,G), where G : V ⊕ W→W is Ck and DG(0) = M .

We provide a proof of Proposition A.1 in the simplest case when V is one-dimensional
(and so we can write Lx = Sx, x ∈ R) and k is an integer. The method we present works,
with trivial modifications, when there are multiple eigenvalues of modulus equal to S, L is
not semisimple and when we allow k to be non-integral.
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Henceforth, we write U = R ⊕ W . Choose a Euclidean norm ‖ ‖ on U such that
R ⊥ W , ‖DF(0)‖ = S and ‖DF(0)|W‖ = s < S. Let BR denote the closed R-ball,
center the origin, in U .

For R > 0, we let Fk
R denote the space of R-valued Ck-functions defined on BR such

that ∂αf (0) = 0 for all f ∈ Fk
R , |α| ≤ k. Define a norm ‖ ‖R,k on Fk

R by

‖f ‖R,k = sup
(x,p)∈BR

‖Dkf (x, p)‖,

where we regard Dkf (x, p) as a symmetric k-linear map and take the corresponding
operator norm.

LEMMA A.2. (cf. [25, Lemma 2]) There exists C = Ck > 0 such that for 0 ≤ j ≤ k − 1
and all f ∈ Fk

R we have
‖f ‖R,j ≤ CRk−j‖f ‖R,k.

Proof. A simple consequence of Taylor’s theorem with integral remainder together with
the fact that elements of Fk

R are k-flat at the origin. �

It follows from the lemma that (Fk
R, ‖ ‖R,k) is a Banach space.

Following Sternberg [25], we define the operator DF : Fk
R→Fk

R by

DF (h)(x, p) = L−1h(F (x, p)), h ∈ Fk
R.

Since DF(0) is a contraction, it follows that, provided R is sufficiently small, F(BR) ⊂
BR and so DF is well defined.

LEMMA A.3. (cf. [25, Lemma 3]) We can choose R > 0 and K ∈ (0, 1) such that

‖DF (h)‖R,k ≤ K‖h‖R,k, h ∈ Fk
R.

Proof. This estimate is a parametrized version of part of [25, Lemma 3]. Since k ≥ 2,
we may choose δ > 0 so that (S + δ)k/S < 1. Now, fix ε > 0 so that K =
[(S + δ)k + ε]/S < 1. Let h ∈ Fk

R . We have

Dk(h ◦ F) = (Dkh)F (DF)k + Pα,

where Pα involves derivatives of order less than k of h. Since S is the weakest contracting
eigenvalue, we can choose R > 0 sufficiently small so that ‖DF‖ is bounded by S + δ

on BR . Hence, ‖(Dkh)F (DF)k‖ ≤ (S + δ)k‖(Dkh)F‖ on BR . It follows from
Lemma A.2 that we can make ‖Pα‖R,0 an arbitrarily small multiple of ‖h‖R,k by taking R

small enough. Hence, just as in [25, Lemma 3], we may choose R > 0 so that

‖DF (h)‖R,k ≤ S−1[(S + δ)k + ε]‖h‖R,k, h ∈ Fk
R,

where ε, δ > 0 were chosen above. �

Since there can be no resonances relating a weakest eigenvalue of DF(0) to products of
other contracting eigenvalues—in our case, S 
= �µ

mi

i —we can make a local Ck-change
of coordinates H0(x, p) = (h0(x, p), p) on U such that h0 ◦ F − Lh0 ∈ Fk

R . Composing
on the left by L−1, we have

h0 − L−1h0 ◦ F ∈ Fk
R.
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Applying Lemma A.3, we see that the sequence

hn = L−nh0F
n =

n−1∑
j=0

Dj

F (L−1h0 ◦ F − h0) + h0,

is uniformly convergent to a Ck-function h : BR→R. Obviously, h satisfies the conditions
of Proposition A.1.
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