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Abstract: We give a general method for deducing statistical limit laws in situ-
ations where rapid decay of correlations has been established. As an application
of this method, we obtain new results for time-one maps of hyperbolic flows.

In particular, using recent results of Dolgopyat, we prove that many classical
limit theorems of probability theory, such as the central limit theorem, the law
of the iterated logarithm, and approximation by Brownian motion (almost sure
invariance principle), are typically valid for such time-one maps.

The central limit theorem for hyperbolic flows goes back to Ratner 1973 and
is always valid, irrespective of mixing hypotheses.

1. Introduction

Let Λ ⊂ M be a topologically mixing hyperbolic basic set for a smooth flow
Tt on a compact manifold M . Let µ denote an equilibrium measure supported
on Λ, corresponding to a Hölder continuous potential [7]. In this paper, we are
interested in proving statistical limit laws such as the central limit theorem for
the time-one map T = T1 of such a flow.

We note that such limit laws are well-known for the hyperbolic flow itself. See
Ratner [22] for the central limit theorem, Wong [28] for the law of the iterated
logarithm, and Denker and Philipp [9] for the almost sure invariance principle.
See also [18].

The validity of such results for time-one maps is considerably more delicate
than that for flows. To see this, suppose that X is a mixing hyperbolic basic set
and r : X → R is a Hölder roof function. Let Xr denote the suspension of X and
consider the suspension flow Tt : Xr → Xr. Suppose that r is cohomologous to

? This differs from the published version: §4 was deleted, because the example given there,
of a mixing but not rapidly mixing suspension, was incorrect.
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a rational constant (for example, take r ≡ 1). Then the time-one map T = T1 is
far from ergodic and the above statistical limit laws fail abjectly. Nevertheless,
these results are valid for the flow [18].

Dolgopyat [10] gave necessary and sufficient conditions for hyperbolic flows
to exhibit rapid decay of correlations in the sense that for each n ≥ 1, and all
sufficiently regular observations φ, ψ : Λ→ R, there exists a constant C(φ, ψ, n)
such that ∣∣∫ φ(ψ ◦ Tt) dµ−

∫
φdµ

∫
ψ dµ

∣∣ ≤ C(φ, ψ, n)/|t|n, (1)

for all t ∈ R. Dolgopyat also proved that a sufficient condition for this result to
hold is that there are periodic points x1, x2 ∈ Λ with periods P1, P2 such that
P1/P2 is Diophantine. Thus most hyperbolic flows are rapidly mixing (whereas
previously Ruelle [24] and Pollicott [21] had proved the existence of mixing
hyperbolic flows whose rates of mixing are arbitrarily slow).

An important feature of this theorem is that, for fixed φ, condition (1)
holds for a large class of “test functions” ψ. Indeed, as a first step, Dolgopyat
proves this result for one-sided subshifts where ψ is required only to be L∞ and
C(φ, ψ, n) = D(φ, n)|ψ|∞.

In this paper, we prove that a simple consequence of such an “L∞” rapid decay
result is that any sufficiently regular mean zero observation φ is cohomologous
in Lp to a martingale for all p ∈ [2, n). Here, n > 4 is sufficiently rapid decay for
our purposes (and n > 2 suffices for the CLT).

As a consequence of the martingale reduction, we derive several classical limit
theorems, the most powerful being the almost sure invariance principle.

Theorem 1. Let Λ ⊂ M be a topologically mixing hyperbolic basic set for a
smooth flow Tt with equilibrium measure µ, corresponding to a Hölder continuous
potential. Suppose that there are periodic points x1, x2 ∈ Λ with periods P1, P2

such that P1/P2 is Diophantine. Let φ : M → R be sufficiently regular 1 with
mean zero (

∫
φdµ = 0) and

∫ t

0
φ ◦ Ts ds unbounded. Then there is a Brownian

motion W with variance

σ2 = lim
N→∞

1
N

∫
Λ

(N−1∑
j=0

φ ◦ Tj

)2

dµ > 0,

and a sequence of random variables {S(N) : N ≥ 1}, equal in distribution to the
sequence {

∑N−1
j=0 φ ◦ Tj : N ≥ 1}, such that for each δ > 0,

S([t]) = W (t) +O(t1/4+δ) as t→∞,

almost surely.

Remark 1. The ASIP for flows (with
∑N−1

j=0 φ◦Tj replaced by
∫ N

0
φ◦Tt dt) is an

immediate consequence of the ASIP for time-one maps, since
∫ 1

0
φ◦Tt dt satisfies

the hypotheses of Theorem 1. As mentioned earlier, the ASIP for hyperbolic flows
is valid even when mixing fails [9,18].

1 it suffices that φ is C∞ in the flow direction, and that φ together with its time derivatives
are Hölder continuous for some fixed Hölder exponent
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Consequences of the ASIP include the central limit theorem, the weak invari-
ance principle and the law of the iterated logarithm, see [20,12].

We note that Dolgopyat [11], using rather different methods, has proved a
version of the above result for time-one maps of Anosov flows with jointly non-
integrable stable and unstable foliations.

Remark 2. The error term O(t1/4+δ) for all δ > 0 improves the error term
O(t1/2−α) for some α < 0 which is more usual in the literature [9,11,20]. The
improved error term is obtained also in [12,18].

In Section 2, we prove a simple (but apparently novel) abstract result relating
rapid mixing and approximation by a martingale. The central limit theorem and
weak invariance principle for suspensions of one-sided subshifts of finite type
are then an immediate consequence of Dolgopyat’s rapid mixing theorem. In
Section 3, we prove Theorem 1 by passing in the standard way from one-sided
subshifts to two-sided subshifts [25,6] and then from suspensions of two-sided
subshifts to hyperbolic flows [5].

2. Decay of correlations and martingales

In this section we prove a simple result that derives statistical limit theorems
such as the central limit theorem as a consequence of rapid decay of correlations.

Proposition 1. Let (Y,m) be a probability space and T : Y → Y be a measure
preserving transformation. Let f ∈ L∞. Suppose that there exists a constant
C > 0 such that

|
∫

Y
f (g ◦ T ) dm| ≤ C|g|∞,

for all g ∈ L∞. Define Ug = g ◦ T , so U : Lp → Lp is an isometry for all
1 ≤ p ≤ ∞. Let U∗ : L2 → L2 be the L2-adjoint of U .

Then U∗f ∈ L∞ and |U∗f |p ≤ C1/p|f |(p−1)/p
∞ for all p ≥ 1 finite, |U∗f |∞ ≤

|f |∞.

Proof. By assumption, we have

|
∫

(U∗f) g| = |
∫
f Ug| ≤ C|g|∞.

By duality, |U∗f |1 ≤ C. (Take g = sgn(U∗f).)
Next we derive the L∞ estimate. Let ε > 0 and suppose that |U∗f | ≥ |f |∞+ε

on a set A. Take g = χA sgn(U∗f). Then

µ(A)[|f |∞+ε] ≤ |
∫

(U∗f) g| ≤
∫
|f Ug| =

∫
T−1(A)

|f | ≤ µ(T−1(A))|f |∞ = µ(A)|f |∞,

so that µ(A) = 0. Hence |U∗f |∞ ≤ |f |∞.
Finally, compute that∫

|U∗f |p =
∫
|U∗f |p−1|U∗f | ≤ |U∗f |p−1

∞ |U∗f |1 ≤ |f |p−1
∞ C.

ut
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Lemma 1. Let (Y,m) be a probability space and T : Y → Y be a measure
preserving transformation. Define U∗ : L2 → L2 as in Proposition 1. Let φ :
Y → R be in L∞ with

∫
Y
φdm = 0.

Fix n > 2, and suppose that there is a constant C (depending on φ and n)
such that ∣∣∫

Y
φ (ψ ◦ T j) dm

∣∣ ≤ C

jn
|ψ|∞, (2)

for all ψ ∈ L∞ and j ≥ 1.
Then φ = φ̂+χ ◦T −χ where φ̂ and χ lie in Lp, for all p < n, and U∗φ̂ = 0.

Proof. It follows from Proposition 1 that (U∗)jφ ∈ L∞, and that

|(U∗)jφ|p ≤
C1/p

jn/p
|φ|(p−1)/p

∞ , (3)

for all finite p ≥ 1. If p < n, then
∑∞

j=1(U
∗)jφ converges absolutely in Lp. Define

χ =
∑∞

j=1(U
∗)jφ and φ̂ = φ−Uχ+χ. Then χ and φ̂ lie in Lp. Moreover U∗φ̂ = 0

(cf. Gordin [13]). ut

Remark 3. Assume that φ and φ̂ are as in Lemma 1. Define φN =
∑N−1

j=0 U jφ and
define φ̂N similarly. Then φN = φ̂N +χ◦TN−χ. If χ ∈ L2, then χ2 ◦TN = o(N)
almost everywhere by Birkhoff’s ergodic theorem, hence φN = φ̂N + o(N1/2)
almost everywhere.

Theorem 2 (Central limit theorem (CLT)). Let (Y,m) be a probability
space and suppose that T : Y → Y is ergodic. Let φ : Y → R be in L∞ with∫

Y
φdm = 0. Suppose that φ satisfies condition (2) for some n > 2 (and all

ψ ∈ L∞, j ≥ 1). Then 1√
N

∑N−1
j=0 φ ◦ T j converges in distribution as N →∞ to

a normal distribution with mean zero and variance σ2 for some σ ≥ 0.
Moreover, σ2 = limN→∞

1
N

∫
Y

(
∑N−1

j=0 φ ◦ T j)2dm, and σ2 = 0 if and only if
φ is an Lp-coboundary for all p < n.

Proof. Choose n > p ≥ 2 in Lemma 1 and Remark 3. Then φN = φ̂N + o(N1/2)
so it suffices to prove the CLT with φ replaced by φ̂. Passing to the natural
extension [23], we obtain a biinfinite stationary ergodic martingale {Xj : j ∈ Z}
where X−j = φ̂ ◦ T j for j ≥ 0 (cf. [12, Remark 3.12]). Hence it follows from
Billingsley [1] that 1√

N

∑N−1
j=0 Xj converges to a normal distribution with mean

zero and variance
∫
X2

1 as N → ±∞. In particular, 1√
N

∑N−1
j=0 φ̂ ◦ T j converges

to a normal distribution with mean zero and variance σ2 =
∫
φ̂2. Moreover, the

variance is zero if and only if φ̂ = 0 which means that φ = χ ◦ T − χ is an
Lp-coboundary.

Finally, we verify the formula for σ2 in the last statement of the theorem. First
note that σ2 =

∫
φ̂2 = 1

N

∫
φ̂2

N . That is, σ = 1√
N
|φ̂N |2. Writing φN = φ̂N + χ ◦

TN −χ, we compute that |φN |2 ≤ |φ̂N |2 +2|χ|2 so that lim supN→∞
1√
N
|φN |2 ≤

σ. Similarly, lim infN→∞
1√
N
|φN |2 ≥ σ. ut
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Remark 4. Suppose that Tt : Y → Y is a semiflow and that the time-one map
T = T1 is ergodic and satisfies the rapid decay condition (2) for some n > 2. Then
the conclusion of Theorem 2 is valid for the time-one map T . Moreover, replacing
φ by

∫ 1

0
φ ◦ Tt dt, we conclude that 1√

T

∫ T

0
φ ◦ Tt dt converges in distribution as

T →∞ to a normal distribution with mean zero and variance σ̃2 for some σ̃ ≥ 0,
and σ̃2 = 0 if and only if

∫ 1

0
φ ◦ Tt dt is an Lp-coboundary.

Remark 5. Under the hypotheses of Theorem 2 (or Remark 4), the weak invari-
ance principle (WIP) (otherwise known as the functional central limit theorem)
follows by [2]. The use of martingale approximations to prove the CLT and WIP
for dynamical systems is standard since Gordin [13]. In certain situations (see [8,
12] and Section 3 of the present paper) martingale approximation leads to the al-
most sure invariance principle and hence the law of the iterated logarithm. How-
ever, this step relies on the class of dynamical systems under consideration being
closed under time-reversal (see [8, Remarques 2.7(1)] and [12, Remark 6.5]).

Remark 6. The key hypothesis in Theorem 2 is that for the fixed mean zero
observation φ, the correlation function

∫
Y
φ(ψ ◦ T j)dm decays rapidly for all

ψ ∈ L∞. Such a hypothesis cannot hold for an invertible mapping T , since
the operator U∗ appearing in the proof of the theorem would be a unitary
operator and so could not be strictly contractive. However, this hypothesis is
often satisfied when T is noninvertible.

We note that Theorem 2 is both more restricted and more general than a
related result of Liverani [15]. Liverani requires only that

∫
Y
φ(φ◦T j)dm decays

rapidly (so ψ = φ), and n > 1 is sufficiently rapid decay. However, Liverani
requires an additional a priori estimate on the contractivity of the transfer op-
erator.

Application to suspensions of one-sided subshifts of finite type. We recall the
notion of a symbolic (semi)-flow [5,19]. Suppose that σ : X+ → X+ is an
aperiodic one-sided subshift of finite type. Fix θ ∈ (0, 1). Define the metric
dθ(x, y) = θN where N is the largest positive integer such that xi = yj for
all i < N . Define the Hölder space Fθ(X+) consisting of continuous functions
v : X+ → R that are Lipschitz with respect to this metric, with Lipschitz
constant |v|θ. Let µ be an equilibrium measure on X+ corresponding to a Hölder
potential in Fθ(X+).

Let r ∈ Fθ(X+) be a strictly positive roof function, and define the suspension
X+

r = {(x, s) ∈ X+ × R : 0 ≤ s ≤ r(x)}/ ∼ where (x, r(x)) ∼ (σx, 0). The
suspension (semi)-flow is given by Tt(x, s) = (x, s+ t) and the invariant measure
µr = µ × `/

∫
r dµ is an equilibrium measure for the flow, where ` is Lebesgue

measure on R.
Define the space Fθ(X+

r ) consisting of continuous functions φ : X+
r → R that

are Lipschitz with respect to the metric dθ(x, x′) + |s− s′| on X+×R restricted
to {(x, s) ∈ X+ × R : 0 ≤ s ≤ r(x)}. Note that the functions in Fθ(X+

r ) are
continuous along the flow direction. Let Fk,θ(X+

r ) consist of functions φ that
are Ck in the flow direction such that ∂j

tφ ∈ Fθ(X+
r ) for j = 0, 1, . . . , k, and let

|φ|k,θ denote the maximum of the Lipschitz constants corresponding to ∂j
tφ.
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Theorem 3. Let X+
r be a Hölder suspension of an aperiodic one-sided subshift

of finite type, with Hölder equilibrium measure µ. Suppose that there are periodic
points y1, y2 ∈ X+

r with periods P1, P2 such that P1/P2 is Diophantine. Then
there is an integer k ≥ 1 such that the CLT and WIP (for the time-one map as
well as the flow) hold for all observations φ ∈ Fk,θ(X+

r ) with
∫

Xr
φdµr = 0.

Proof. Under the Diophantine hypothesis, Dolgopyat [10] proved that for any
n ≥ 1, there exists an integer k(n) ≥ 1 and a constant C(n) > 0 such that if
φ ∈ Fk(n),θ(X+

r ) and ψ ∈ L∞(X+
r ), then∣∣∫ φ(ψ ◦ Tt)dµr −

∫
φdµr

∫
ψdµr

∣∣ ≤ C(n)|φ|k(n),θ|ψ|∞/tn, (4)

for all t > 0.
Take n > 2 in (4), and apply Theorem 2 and Remark 5. ut

If the variance σ2 vanishes (in Theorem 2), then the CLT and WIP (for
1√
N

∑N−1
j=0 φ ◦ T j) are said to be degenerate. We want conditions that exclude

this possibility. Similarly, in the CLT and WIP for 1√
T

∫ T

0
φ ◦ Tt dt, (Remark 4)

we wish to rule out the possibility that σ̃2 = 0. The next result shows that these
situations are highly unlikely in the hyperbolic case.

Proposition 2. Assume the set up of Theorem 3. The following are equivalent.

(a) σ̃2 = 0,
(b)

∫ T

0
φ(Tsy)ds = 0 whenever y is a periodic point of period T ,

(c) There is a Hölder g : X+
r → R such that

∫ t

0
φ ◦ Ts ds = g − g ◦ Tt for all t,

and
(d)

∫ T

0
φ(Tsy)ds is uniformly bounded (in T > 0 and y ∈ X+

r ).

If σ2 = 0, then conditions (a)–(d) hold.

Proof. The equivalence of (b) and (c) is the Livšic periodic point theorem [16], [14,
Theorem 19.2.4]. It is clear that (c) implies (d). If (d) is valid, then the CLT is
degenerate, so (d) implies (a).

If (a) is valid, then by Theorem 2, ψ = χ− χ ◦ T1 almost everywhere, where
χ ∈ Lp (2 ≤ p < n) and ψ =

∫ 1

0
φ ◦ Tu du. Define Ft =

∫ t

0
ψ ◦ Ts ds and

h =
∫ 1

0
χ◦Ts ds. Then Ft : X+

r → R is a continuous (even Lipschitz) cocycle and
h ∈ Lp(X+

r ). Moreover, Ft = h ◦ Tt − h so F is an Lp coboundary. The Livšic
regularity theorem for hyperbolic flows [17,27] guarantees that h has a Hölder
continuous version.

Now suppose that y is a periodic point of period T and compute that∫ T

0
φ(Tsy)ds =

∫ 1

0
(
∫ T

0
φ(Ts+uy)ds)du = FT (y) = 0,

proving (b).
Finally, it is immediate from Theorem 2 and Remark 4 that σ2 = 0 implies

that σ̃2 = 0. ut

Remark 7. Ratner [22] proved the CLT for hyperbolic flows and showed that
σ̃2 = 0 if and only if φ is an L2-coboundary (in some sense). However, verifiable
criteria for nondegeneracy were first given by [18] who proved the equivalence of
(a) and (d) (without requiring rapid mixing).
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3. Almost sure invariance principle for hyperbolic flows

In this section, we prove Theorem 1. The proof consists of three ingredients:

(a) Reduction to a suspended flow over a two-sided subshift of finite type, using
the symbolic dynamics of Bowen [4,5].

(b) Reduction to the situation where the roof function defining the suspension
and the observation φ depend only on future coordinates (following [25,6]).

(c) Application of the martingale approximation of Section 2 and standard tech-
niques from probability theory (cf. Conze and le Borgne [8] and Field et
al. [12]).

3.1. Reduction to a suspended subshift. This step is by now completely stan-
dard [4,5,7] and we omit the details. After the reduction, we have a flow on the
suspension Xr of an aperiodic two-sided subshift of finite type σ : X → X. Here,
the roof function r ∈ Fθ(X) is strictly positive and the suspension is defined to
be Xr = {(x, s) ∈ X × R : 0 ≤ s ≤ r(x)}/ ∼ where (x, r(x)) ∼ (σx, 0). The
suspension flow Tt(x, s) = (x, s + t) is weak mixing with respect to an equi-
librium measure µr = µ × `/

∫
r dµ where µ is an equilibrium measure on X

corresponding to a Hölder potential. The reduced observation φ lies in Fk,θ(Xr)
and has mean zero. (The spaces Fθ(X) and Fk,θ(Xr) for the two-sided shift are
defined analogously to the one-sided case.)

3.2. Reduction to future coordinates. By [25,6], r is cohomologous to a roof func-
tion r′ ∈ Fθ1/2(X) that depends only on future coordinates, and the suspen-
sion flows on Xr and Xr′ are topologically conjugate. Unfortunately, r′ is not
strictly positive which introduces a number of technical difficulties. (In particu-
lar, it is not clear how to define Fθ(Xr′).) To circumvent these difficulties, define
rn =

∑n−1
j=0 r ◦ σj . There exists an integer m ≥ 1 such that r′m is strictly posi-

tive, and it is possible to pass from observations in Fk,θ(Xr) to observations in
Fk,θ(Xrm

) and then to Fk,θ1/2(Xr′m) (cf. [10,21]). We omit the tedious details.
The upshot of the discussion above is that without loss of generality we may

suppose from the outset that r ∈ Fθ(X) depends only on future coordinates.
Suppose that φ ∈ Fk+1,θ(Xr). A generalization of the argument of [25,6] shows
that there is a constant q (depending only on Xr and θ) such that φ is cohomol-
ogous in Fk,θ1/q (Xr) to an element ψ ∈ Fk,θ1/q (Xr) depending only on future
coordinates. Since we could not find this fact mentioned even implicitly in the
literature, we give the proof in detail in the appendix (Theorem 4).

This completes Step (b), and we may suppose without loss that r and φ
depend only on future coordinates.

3.3. Martingale approximation. This step is almost identical to that in [12] and
we only sketch the details. Since the class of hyperbolic sets for smooth flows
is closed under time-reversal, it is sufficient to prove the ASIP in reverse time.
Hence we consider reverse partial sums φ−N =

∑N−1
j=0 φ ◦ T−j .

By Lemma 1 (with n > 4) and Dolgopyat’s results (4), φ = ψ + χ − χ ◦ T1

where ψ, χ ∈ L4, ψ depends only on future coordinates, and U∗ψ = 0. Here, U∗
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is the adjoint of the (noninvertible) isometry U : L2(X+
r ) → L2(X+

r ) induced by
T1. As in Remark 3, φ−N = ψ−N + o(N1/4), hence it suffices to prove the ASIP
for ψ.

Since ψ and T1 depend only on future coordinates, the condition U∗ψ = 0
guarantees that the sequence {ψ−N , N ∈ Z} is a martingale (with respect to the
sequence of σ-algebras TN (M+) where M+ is the σ-algebra on X+

r lifted up to
Xr). We now apply the method of Strassen [26]. The version stated in [12, The-
orem B.3] is sufficient for our purposes. (Hypothesis (a) in [12] is automatically
valid since ψ lies in L4 and the sequence ψ ◦ T−j is stationary. Hypothesis (b)
follows as in [12] from the strong law of large numbers for martingales since the
partial sums of squares also admit a martingale approximation.)

Appendix A. Reduction to future coordinates

Suppose that σ : X → X is a two-sided subshift of finite type. Let θ ∈ (0, 1), r ∈
Fθ(X), and define the suspension Xr corresponding to the roof function r with
suspension flow Tt. As described earlier, we define the ‘metric’ dθ((x, s), (y, t)) =
dθ(x, y)+ |s− t|. Let Fθ(Xr) denote the space of continuous function v : Xr → R
that are Lipschitz with respect to the metric dθ and let |v|θ denote the Lipschitz
constant.

Remark 8. We have used dθ to denote the metrics on X and Xr but the context
should avoid any ambiguity. Also, it should be noted that dθ is not really a
metric on Xr due to the identifications, but this turns out only to be a minor
inconvenience. In this regard, we caution that the continuity assumption for
elements of Fθ(Xr) is not implied by the Lipschitz assumption.

Let (x, s) ∈ Xr. Then Tt(x, s) = (σjx, s+t−rj(x)), where s+t ∈ [rj(x), rj+1(x)).
The lap number j is a function of x, s, t. Note that j ∈ (t/max r, t/min r].

Proposition 3. Suppose x, x′ ∈ X and xi = x′i for all i ≥ 0. Then the limit

∆(x, x′) =
∞∑

j=0

(
r(σjx)− r(σjx′)

)
= lim

j→∞

(
rj(x)− rj(x′)

)
exists. Moreover, there exists a t0 ≥ 1 such that if xi = x′i for all i ≥ 0 and if
j and k are the lap numbers corresponding to Tt(x, s) and Tt(x′, s − ∆(x, x′)),
then |j − k| ≤ 1 for all t ≥ t0.

Proof. Note that |r(σjx) − r(σjx′)| ≤ |r|θdθ(σjx, σjx′) ≤ θj |r|θ so that ∆ is
well-defined.

Let j and k be the lap numbers for Tt(x, s) and Tt(x′, s−∆(x, x′)) respectively.
Thus s+ t ∈ [rj(x), rj+1(x)) and s+ t ∈ [rk(x′)−∆(x, x′), rk+1(x′)−∆(x, x′)).

As k →∞, the interval [rk(x′)−∆(x, x′), rk+1(x′)−∆(x, x′)) converges to the
interval [rk(x), rk+1(x)). Hence, within an arbitrarily small error, the intervals
[rj(x), rj+1(x)) and [rk(x), rk+1(x)) must eventually overlap. But if |j − k| ≥ 2,
then these intervals are separated by at least distance min r. It follows that
eventually |j − k| ≤ 1. ut
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Corollary 1. There exists N ≥ 1 such that

|v ◦ Tn(x, s)− v ◦ Tn(x′, s−∆(x, x′))| ≤ |v|θ
[
1 + |r|θ/(1− θ)

]
θn/|r|∞ ,

for all v ∈ Fθ(Xr) and n ≥ N .

Proof. Denote the lap numbers of Tn(x, s) and Tn(x′, s −∆(x, x′)) by j and k
respectively. It follows from Proposition 3 that for each n ≥ N large enough,
|j − k| ≤ 1. In the case k = j,

|v ◦ Tn(x, s)− v ◦ Tn(x′, s−∆(x, x′))| ≤ |v|θ
[
dθ(σjx, σjx′) + |∆(x, x′)− rj(x) + rj(x′)|

]
≤ |v|θθj [1 + |r|θ/(1− θ)] ≤ |v|θθn/|r|∞ [1 + |r|θ/(1− θ)].

In the case k = j + 1, we have the estimate∣∣v(σjx, s+ n− rj(x))− v(σjx, r(σjx))
∣∣ +

∣∣v(σj+1x, 0)− v(σj+1x′, s−∆(x, x′) + n− rj+1(x′))
∣∣

≤ |v|θ
[
(r(σj(x))− (s+ n− rj(x)) + dθ(σj+1x, σj+1x′) + (s−∆(x, x′) + n− rj+1(x′)|

]
= |v|θ

[
dθ(σj+1x, σj+1x′) + (rj+1(x)− rj+1(x′)−∆(x, x′))|

]
≤ |v|θθj+1[1 + |r|θ/(1− θ)] ≤ |v|θθn/|r|∞ [1 + |r|θ/(1− θ)].

The case k = j − 1 is similar. ut

Proposition 4. Suppose that x, x′, y, y′ ∈ X and xi = x′i for i ≥ 0 and yi =
y′i for i ≥ 0. If dθ(x, y) < θ2N , dθ(x′, y′) < θ2N then |∆(x, x′) − ∆(y, y′)| <
4|r|θθN/(1− θ).

Proof. Write

∆(x, x′)−∆(y, y′) = (rN (x)− rN (y))− (rN (x′)− rN (y′)) +∆(σNx, σNx′)−∆(σNy, σNy′).

Now,

|rN (x)− rN (y)| ≤
N−1∑
j=0

|r(σjx)− r(σjy)| ≤
N−1∑
j=0

|r|θdθ(σjx, σjy)

≤
N−1∑
j=0

|r|θθ−jdθ(x, y) ≤ |r|θθ−Ndθ(x, y)/(1− θ) ≤ |r|θθN/(1− θ),

and similarly for rN (x′)− rN (y′). Next, compute that

|∆(σNx, σNx′)| ≤
∞∑

j=N

|r(σjx)− r(σjx′)| ≤ |r|θ
∞∑

j=N

θj = |r|θθN/(1− θ),

and similarly for ∆(σNy, σNy′). ut

Let ∂tv = (∂/∂t)(v ◦ Tt)|t=0 denote the derivative of v : Xr → R in the flow
direction. Let Fk,θ(Xr) denote the space of functions v : Xr → R such that
∂j

t v ∈ Fθ(Xr) for j = 0, . . . , k and define |v|k,θ = maxj=0,...,k |∂j
t v|θ.
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Theorem 4. Let σ : X → X be a two-sided subshift and let r ∈ Fθ(X) be a
roof function, r > 0. Suppose further that r depends only on future coordinates.
Define q = (4 + 2|1/r|∞)|r|∞.

Let v ∈ Fk+1,θ(Xr). Then there exists w,χ ∈ Fk,θ1/q (Xr) such that w depends
only on future coordinates, and v = w + χ− χ ◦ T1.

Proof. For each letter a, choose an element xa ∈ X such that (xa)0 = a. Given
x ∈ X define ϕ(x) ∈ X as follows: (ϕ(x))i = xi for i ≥ 0 and (ϕ(x))i = (xx0)i

for i ≤ 0. So the future coordinates of ϕ(x) agree with x whereas the past
coordinates of ϕ(x) depend only on x0. In particular, the map ϕ : X → X
depends only on future coordinates.

By Proposition 3, we can define ϕ̃(x, s) = (ϕx, s−∆(x, ϕx)). Define (formally
for the moment)

χ =
∞∑

n=0

(v ◦ Tn − v ◦ Tn ◦ ϕ̃).

Compute that v = w+ χ− χ ◦ T1 where w =
∑∞

n=0(v ◦ Tn ◦ ϕ̃− v ◦ Tn ◦ ϕ̃ ◦ T1),
which clearly depends only on future coordinates (since ϕ and r (hence Tt, t > 0)
depend only on future coordinates). It remains to show that χ (and hence w)
lies in Fk,θ1/q (Xr).

First, we show that χ is Ck+1 in the flow direction. Differentiating χ formally
term by term yields the series ∂j

tχ =
∑∞

n=0((∂
j
t v)◦Tn− (∂j

t v)◦Tn ◦ ϕ̃). For fixed
0 ≤ j ≤ k + 1, since ∂j

t v ∈ Fθ(Xr), we deduce from Proposition 3 that the n’th
term of ∂tχ is bounded in absolute value by |∂j

t v|θθn/|r|∞ [1 + |r|θ/(1 − θ)] and
so the series converges uniformly to a continuous function ∂j

tχ. In particular, χ
is Ck+1 in the flow direction.

It remains to show that ∂j
tχ is Lipschitz with respect to the dθ1/q metric for

all 0 ≤ j ≤ k. It suffices to show that χ is Lipschitz with respect to the dθ1/q

metric under the assumption that v ∈ F1,θ (the general case follows replacing v
by ∂j

t v). Moreover, since χ is C1 and hence Lipschitz in the flow direction (which
we can identify with the s variable), we may keep the s variable fixed.

ChooseN large as in Proposition 3. In analogy with the proof of Proposition 4,
we have the decomposition |χ(x, s)−χ(y, s)| ≤ A1(x, y)+A2(x, y)+B(x)+B(y),
where

A1(x, y) =
N∑

n=0

|v ◦ Tn(x, s)− v ◦ Tn(y, s)|,

A2(x, y) =
N∑

n=0

|v ◦ Tn(ϕ̃(x, s))− v ◦ Tn(ϕ̃(y, s))|,

B(x) =
∞∑

n=N+1

|v ◦ Tn(x, s)− v ◦ Tn(ϕ̃(x, s))|.

Let q1 = |r|∞ and q2 = 2+ |1/r|∞. We claim that provided N is large enough
(independent of v), there exists a constant K > 0 such that (i) B(x) ≤ KθN/q1

for all x ∈ X, and (ii) A1(x, y), A2(x, y) ≤ KθN/2 for all x, y ∈ X with dθ(x, y) <
θNq2 . Let q = 2q1q2. It then follows that |χ(x, s) − χ(y, s)| ≤ 4Kdθ1/q (x, y)
proving the result.
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As before, the n’th term of B(x) is dominated by Cθn/|r|∞ = Cθn/q1 , verifying
(i). It remains to verify (ii). We give the details for the more difficult term
A2(x, y).

Choose N so large that 4|r|θθN/(1− θ) < min r/2 and NθN/2 < 1.
Suppose that dθ(x, y) < θNq2 . By Proposition 4, |∆(x, ϕx) − ∆(y, ϕy)| <

min r/2. Also,

|rj(ϕx)− rj(ϕy)| ≤ |r|θθ−j+1θNq2/(1− θ) ≤ |r|θθN(q2−|1/r|∞)/(1− θ)

= |r|θθ2N/(1− θ) < min r/2,

for all 1 ≤ j ≤ [N |1/r|∞] + 1. Hence for this range of j, the intervals [rj(ϕx) +
∆(x, ϕx), rj+1(ϕx)+∆(x, ϕx)) and [rj(ϕy)+∆(y, ϕy), rj+1(ϕy)+∆(y, ϕy)) al-
most coincide (the initial points are within distance min r, as are the final points).
It follows as in the proof of Proposition 3 that the lap numbers j and k of
Tn(ϕ̃(x, s)) and Tn(ϕ̃(y, s)) satisfy |j− k| ≤ 1 for all 0 ≤ n ≤ N . The estimation
of the terms in A2(x, y) now splits into three cases as in the proof of Corollary 1.
When j = k, we obtain the term

v
(
σjϕx, s−∆(x, ϕx) + n− rj(ϕx)

)
− v

(
σjϕy, s−∆(y, ϕy) + n− rj(ϕy)

)
,

which is dominated by

|v|θ
{
dθ(σjϕx, σjϕy) + |rj(ϕx)− rj(ϕy)|+ |∆(x, ϕx)−∆(y, ϕy)|

}
≤ |v|θ

{
[1 + |r|θ/(1− θ)]θ−jdθ(ϕx, ϕy) + 4|r|θθN/(1− θ)

}
≤ |v|θ

{
[1 + |r|θ/(1− θ)]θNq2−n|1/r|∞ + 4|r|θθN/(1− θ)

}
.

The computations for j = k± 1 lead to the same estimates (just as in the proof
of Corollary 1) and summing the terms we obtain

A2(x, y) ≤ |v|θ
{

[1 + |r|θ/(1− θ)]θN(q2−|1/r|∞)/(1− θ) + 4|r|θNθN/(1− θ)
}

≤ |v|θ
{

[1 + |r|θ/(1− θ)]θ2N/(1− θ) + 4|r|θθN/2/(1− θ)
}
,

(since NθN/2 < 1) completing the proof. ut

Acknowledgement. This research was supported in part by NSF Grant DMS-0071735 and by
the ESF “Probabilistic methods in non-hyperbolic dynamics” (PRODYN) programme. IM is
grateful to Francois Ledrappier and Matthew Nicol for helpful discussions and suggestions.

References
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