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We study a scenario under which variable step random walks give anomalous
statistics. We begin by analyzing the Martingale Central Limit Theorem to find
a sufficient condition for the limit distribution to be non-Gaussian. We study
the case when the scaling index ζ is 1

2 . For corresponding continuous time
processes, it is shown that the probability density function W(x; t) satisfies the
Fokker–Planck equation. Possible forms for the diffusion coefficient are given,
and related to W(x, t). Finally, we show how a time-series can be used to dis-
tinguish between these variable diffusion processes and Lévy dynamics.

KEY WORDS: Martingale process; central limit theorem; non-Gaussian distri-
butions; Fokker-Planck equation.

1. INTRODUCTION

Under which conditions can statistics of stochastic processes be
anomalous? Such statistics have been observed in temperature and
longitudinal velocity fluctuations in highly turbulent fluid flows,(1–5) instan-
taneous velocities of gusting winds(6) and price variations in financial mar-
kets.(7–12) Furthermore, in the case of financial markets, it has been noted
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that the probability density functions exhibit self-similarity.(7,8) In prior
work, Lévy statistics(13–15) and hierarchical processes(16) have been sug-
gested as possible causes of anomalous behavior. In this paper we sug-
gest an alternative scenario where, in contrast to Lévi processes, stochastic
increments have uniformly bounded variance and are not independent.

General conditions for the validity of the Central Limit Theorem
(CLT) have been given for martingales, which are defined in Section 2.
We discuss how the limit distribution can fail to be Gaussian, and pro-
vide a set of conditions that give non-Gaussian statistics. In Section 3, we
argue that the corresponding probability density W(x; t) for continuous
time processes satisfies the Fokker–Planck equation(17,18) and scales with
index ζ(= 1

2 ); i.e., W(x; t)= 1√
t
F (u), where u= x√

t
. By using the Fokker–

Planck equation, we show that the diffusion coefficient D(x; t) for the pro-
cess takes a specific form. We show that a reduction of D(x; t) to a form
D(u) preserves all statistical features of the stochastic process. Given D(u),
we then provide an explicit expression for F(u). As examples, we provide
forms for D(u) that give exponential and power-law distributions for F(u).
In Section 4, we provide a criterion that can be used to distinguish these
newly introduced variable diffusion processes from Lévy statistics. Previous
analysis of fluctuations in financial markets appear to contradict the Lévy
mechanism.

Throughout the paper, we will relate our results to turbulent flows
and financial markets to illustrate implications of our assertions. However,
it should be emphasized that our work is a theory of neither of these
systems.

2. MARTINGALE CENTRAL LIMIT THEOREM

The classical CLT in the context of identical independently distributed
events {εk} with zero mean and variance σ 2, states that

1√
n

n∑

k=1

εk →N (0, σ 2) (1)

as n→∞, where N (0, σ 2) denotes a zero-mean normal distribution with
variance σ 2. Here the convergence is in distribution; i.e., for each a,

lim
n→∞P

(
1√
n

n∑

k=1

εk �a

)
= 1√

2πσ

∫ a

−∞
e−x2/2σ 2

dx. (2)
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The CLT can be generalized for a class of processes, referred to as
martingales. We describe the setup only for the case of interest to us.

We consider a random walk (on the real line) starting at x0 =0, with
steps denoted by ε = (ε1, ε2, . . . ). The step εk can depend on its history
(i.e., the previous (k − 1) steps). The position after n steps is denoted by
xn =∑n

k=1 εk. A probability measure p is given on the space of the infinite
sequences; p induces a measure pn(ε

(n)) on the space of first n steps ε(n).
When the context is clear, we denote pn by p. If the random variables εk

are discrete, then pn includes δ-functions.
The conditional probability of the kth step given the history ε(k−1) is

(abusing notation for continuous distributions) defined by

p
(
εk|ε(k−1)

)
= p

(
ε(k)

)

p
(
ε(k−1)

) . (3)

The random variables {xn}n�0 form a martingale if each increment (or
martingale difference) εk has zero conditional mean: i.e., if for each k �1

E
[
εk|ε(k−1)

]
=0, (4)

for all histories ε(k−1). (Note that, although this mean value is indepen-
dent of the history of the walk, the conditional probability density given
in Eq. (3) can depend on ε(k−1).) Finally define the expected value of the
location over all n-step random walks by

E [xn]=
∫

xn dp
(
ε(n)

)
=
∫

dε(n) xnp
(
ε(n)

)
, (5)

where the second formula is written just to emphasize the variables over
which the integration takes place. Denote the corresponding variance by
V ar [xn]. We have the following lemma for martingale processes.

Lemma. If {xn} is a martingale process with x0 ≡0, then

(I) E [xn]=0.

(II) V ar [xn]=∑n
k=1 V ar [εk].

These results can be proved inductively using(19)

∫
dεn+1p

(
εn+1|ε(n)

)
=1 (6)
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and

∫
dεn+1εn+1p

(
εn+1|ε(n)

)
=E

[
εn+1|ε(n)

]
=0. (7)

For martingales, Theorem 3.2 of ref. 20 gives a more general form of
the CLT. Recall that a sequence yn of random variables is said to converge
in probability to a random variable y if for any δ > 0, the probability of
|yn −y|>δ goes to zero as n→∞.

Theorem (Martingale central limit theorem) . Suppose that ε1, ε2, . . .

are square-integrable martingale differences such that

(1) max1�k�n

(|εk|/
√

n
)→0 in probability,

(2)
∑n

k=1 ε2
k/n→η2 in probability,

(3) E
[
max1�k�n

(
ε2
k/n

)]
is bounded in n,

where the random variable η is finite with probability 1. Then

1√
n

n∑

k=1

εk →Z, (8)

where the convergence is in distribution (see Eq. (2)), and the random var-
iable Z has characteristic function (i.e., E [exp(itZ)]) given by

E [exp(itZ)]=E

[
exp(−1

2
η2t2)

]
for all t. (9)

Observe that the martingale differences εk are not required to be inde-
pendent or to be distributed identically. However, when the conditions of
the theorem are satisfied, the distribution of the random variable un = xn√

n

converges to F(u), the distribution of Z. We will refer to this property as
scalability with scaling index ζ = 1

2 .
We first provide a necessary and sufficient condition to obtain

Gaussian statistics.

Lemma. If the random variables Z and η satisfy Eq. (9), then Z is
Gaussian if and only if η2 is a constant.

Indeed, if η2 is constant, say σ 2, then Z has characteristic function
exp

(−(σ 2t2)/2
)
, and therefore it is normally distributed with variance σ 2.
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Conversely, if Z has mean zero and is a Gaussian with variance σ 2, then
its characteristic function equals exp

(−t2σ 2/2
)
. Write s = 1

2 t2, g =η2, and
define the probability measure dP̃ = eσ 2

e−g dP . Then all moments of g

exist with respect to P̃ . The equality

e−σ 2s =
∫

e−gs dP

implies, upon differentiating with respect to s and setting s = 1, that
Ẽ[gn]=σ 2n for all n. Thus η2 is constant (Theorem 3.11 of ref. 21).

Next, we identify a set of conditions that gives anomalous statistics
for un. Condition (3) of the martingale CLT is satisfied if increments εk

have a variance bounded uniformly in n (i.e., there exists a c>0 such that
for all k, V ar [εk]=E

[
ε2
k

]
� c). To see this, note that

E

[
max

1�k�n

(
ε2
k/n

)]
�E

[
n∑

k=1

ε2
k/n

]
= 1

n

n∑

k=1

V ar [εk]� c,

Condition (1) is satisfied under the stronger property that there exists δ>0
and c1 >0 such that for all k

E[|εk|2+δ]� c1. (10)

This can be seen from

Prob

(
max

1�k�n

(|εk|/
√

n
)
>β

)
�

n∑

k=1

Prob
(|εk|/

√
n>β

)=
n∑

k=1

Prob
(|εk|>

√
nβ
)

and the fact that

c1 �E[|εk|2+δ]� (
√

nβ)2+δP rob
(|εk|>

√
nβ
)
.

Therefore Prob
(|εk|>

√
nβ
)
� c1/(

√
nβ)2+δ, which implies that

Prob

(
max

1�k�n

(|εk|/
√

n
)
>β

)
�n

c1

(
√

nβ)2+δ
→0 as n→∞.
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What remains is to find martingales that satisfy condition (2), where
η2 is not a constant. If εk’s are independent and identically distrib-
uted with finite variance σ 2, then from the classical CLT η2 = σ 2 in
probability. Once εk’s are allowed to be history dependent, the conditions
for convergence of

(
�ε2

k/n
)

become non-trivial, as illustrated by the
following example: consider a stochastic process with independent steps,
consisting of N1 steps from a distribution with finite variance σ 2

1 , followed
by M1 steps from a distribution with finite variance σ 2

2 , followed by N2
steps from the first process, M2 steps from the second, etc. For suitable
choices of N1 �M1 �N2 �M2 �· · · , η2 moves between σ 2

1 and σ 2
2 , and

fails to converge. Convergence of η2 requires more stringent conditions on
the stochastic process.

For processes introduced in Section 3, the distribution of η2 is not a
δ-function, as shown in Appendix A.

We conclude this section with the following observations. First, we
reiterate that once the conditions of the martingale CLT are satisfied, un =
xn/

√
n converges to a distribution F(u); i.e., the scaling index ζ is 1

2 . Sec-
ond, in contrast to Lévy processes, increments εk are not independent.
Further, for the examples we consider, the εk’s satisfy Eq. (10) (at least,
according to the numerical simulations). Note however that the condi-
tional variance, V ar

[
εn+1|ε(n)

]
, is not required to be uniformly bounded.

3. CONTINUOUS MARKOV PROCESSES

In order to study continuous processes, divide the interval t into subin-
tervals of δt and let n = t/δt ; it is assumed that δt is sufficiently large
for many martingale increments to occur in this interval. Now, let εk’s
denote the martingale increments in intervals δt . In order for the vari-
ance of increments in one unit of time to be uniformly bounded, it is nec-
essary and sufficient (see the first Lemma) that 1

δt
V ar [εk] be uniformly

bounded; i.e., that V ar
[
εk/

√
δt
]

be uniformly bounded. A priori, the limit
Z may depend on the particular discretization used. For the examples
given below, this is not the case, although we have not been able to derive
it analytically as yet.

For the remainder of the paper, we limit considerations to Markov
processes; i.e., p

(
εk|ε(k−1)

) = p
(
εk|xk−1; (k −1)

)
for each k; here, the

possible dependence of the probability density on the step number (see
Section 2) is denoted explicitly. Markov processes satisfy the master equa-
tion(18)

W (x; t + δt)=
∫

dε W (x − ε; t) pδt (ε|(x − ε); t) , (11)
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where pδt (ε|x; t) denotes the probability density function for an incre-
ment ε to occur in time δt beginning from (x; t). Taylor expanding in the
variables t and x about W(x; t), and noting that V ar

[
ε/

√
δt
]

is bounded,

gives the Fokker–Planck equation(17,18,22)

∂

∂t
W(x; t)= 1

2
∂2

∂x2 (D(x; t)W(x; t)) , (12)

where the diffusion coefficient D(x; t) is given by

D(x; t)= 1
δt

∫
dε ε2pδt (ε|x; t)=V ar

[
ε√
δt

|x; t

]
. (13)

The derivation assumes the martingale condition E [ε|x; t ] = ∫
dε ε

pδt (ε|x; t)=0.
Observe next that, since the scaling index ζ = 1

2 , the probability den-
sity for scalable martingales can be written as

W(x; t)= 1√
t
F (u), (14)

where u=x/
√

t , and the pre-factor 1/
√

t has been included in order that
W(x; t) be normalized (i.e.,

∫
dxW(x; t) be time-independent). Only cer-

tain forms of D(x; t) can be consistent with this requirement. In order to
obtain them, change variables so that D(x; t)= D̄(u; t). Substituting in the
Fokker–Planck equation gives

∂

∂u
(uF(u))+ ∂2

∂u2

(
D̄(u; t)F (u)

)=0, (15)

which can be integrated to

uF(u)+ ∂

∂u

(
D̄(u; t)F (u)

)= c1(t). (16)

Here c1(t) is the “constant” of integration. Integrating a second time gives

D̄(u; t)=− 1
F(u)

∫ u

−∞
dv vF(v)+ 1

F(u)
(c1(t)u+ c2(t)) . (17)

where c2(t) is the second constant of integration.
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Examples. The Gaussian distribution F(u)=exp
(
− 1

2u2
)

corresponds

to D̄(u; t) = 1 + (uc1(t)+ c2(t)) exp
(

1
2u2

)
. The exponential distribution

F(u)=exp (−|u|) corresponds to a diffusion coefficient D̄(u; t)= (1+|u|)+
(uc1(t)+ c2(t)) exp (−|u|).

Note that the terms in D̄(u; t) that contain c1(t) and c2(t) do not
change the form of W(x; t). Hence, they will not be considered in the
remainder of the paper; i.e., only the t-independent part of D̄(u; t), hence-
forth denoted D(u), will be considered.

Conversely, if the diffusion coefficient D(u) is given, Eq. (15) can be
integrated to give

F(u)= 1
D(u)

exp
(

−
∫ u

dv
v

D(v)

)[
a1

∫ u

dv exp
(∫ v

dw
w

D(w)

)
+a2

]
,

(18)

where a1 and a2 are constants of integration. If D(u) is symmetric under
reflections about the origin and the process begins at x0 = 0 then F(u) is
symmetric;(23) consequently a1 =0, as can be seen from the anti-symmetry
of the left-hand side of Eq. (16). Then,

F(u)= 1
D(u)

exp
(

−
∫ u

dv
v

D(v)

)
. (19)

The form of F(u) for selected diffusion rates is given next. As mentioned
in Section 2, although V ar

[
εn/

√
δt
]

for each n is uniformly bounded, the

conditional variance V ar
[
εn/

√
δt |x; t

]
of the martingale differences, given

by D(u), is not required to be bounded with respect to u.

Examples.

(I) D(u)=1−→F(u)= exp
(
− 1

2u2
)

,

(II) D(u)=1+α|u|−→F(u)= exp
(
−|u|

α

)
/ (1+α|u|)(1−α−2),

(III) D(u)=1+|u|−→F(u)= exp (−|u|),
(IV) D(u)= (1+αu2

)−→F(u)= (1+αu2
)−(1+(1/2α))

.

Thus, suitable choices of D(u) can give exponential or power-law behavior
in F(u). Note that, in the final example α < 1 is needed in order for the
condition (10) to be satisfied.
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We have confirmed numerically that stochastic dynamics with diffu-
sion coefficients given in these examples give probability density functions
consistent with the analytically derived expressions. These computations
were conducted by integrating the (zero-drift) Langevin equation dX =
[D(X(t); t)]1/2N (0, dt).(24) The integrations are done using Ito calculus;
i.e., it is assumed that each step in the integration consists of a large num-
ber of stochastic increments and that variations in D(X(t); t) during the
interval can be ignored. Consequently, the deviations in a time interval δt

follows N (0,
√

Dδt).

4. DISTINGUISHING BETWEEN LÉVY AND VARIABLE DIFFUSION

PROCESSES

Given a stochastic process {εk} such that xn has a scalable, non-normal
distribution, is it possible to determine if Lévy or variable diffusion pro-
cesses are the more likely source of the dynamics? More precisely, is it
possible to eliminate one of the scenarios as the underlying cause of
the observed stochastic dynamics? One possible criterion is to test if the
variance of the stochastic process is finite (variable diffusion) or infinite
(Lévy). However, it is difficult to make this determination from a finite
time series. An alternative is to use the fact that while successive move-
ments of a Lévy process are independent, those in the variable diffusion
case depend on the location and time of the walk. For example, if D(u)

increases with |u| (as in the examples above), then large movements are
likely to leave xn (and hence D(u)) large; consequently, a large fluctuation
can generally be expected to be followed by additional (positive or nega-
tive) large increments. Lévy processes with independent increments will not
exhibit such correlations. Dynamics of Lévy and variable diffusion pro-
cesses, shown in Fig. 1, illustrates the difference.

Thus, one may consider distinguishing variable diffusion and Lévy
processes using the auto-correlation function of a time series. However,
since the process is martingale, the auto-correlation will vanish. On the
other hand, auto-correlation function of {ε2

k}(n) will only vanish for the
Lévy case. Specifically, for a random time series of length n, we use

C(m;n)≡ 1
V ar[ε2]

〈(
ε2
k −

〈
ε2
〉)(

ε2
k+m −

〈
ε2
〉)〉

, (20)

where 〈.〉 denotes the average over k. For Lévy processes, it is found
numerically that for m>0, C(m;n) decreases to zero as n increases, while
for variable diffusion processes with D(u)=1+|u|, it is found to decay as
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Fig. 1. Examples of 10,000 steps from a (a) Lévy distribution with ζ =2/3 and (b) variable
diffusion process with D(u) = 2(1 + u2). Unlike in (a), a large fluctuation in (b) is generally
followed by movements with higher amplitude.

exp(−αm/n); the n-dependence implies that a longer series contains larger
fluctuations.

For fluctuations in financial markets, C(m;n) is known to exhibit a
slow decay with m.(25) This phenomenon, referred to as “clustering of vol-
atility,” suggests that Lévy processes are unlikely to be the source of scal-
able non-Gaussian distributions in financial markets.

5. DISCUSSION

The theory we have presented is not merely a reformulation where an
observed scalable probability density function W(x; t) is recast into a suit-
ably chosen diffusion coefficient D(x; t). Rather, it introduces a new class
of stochastic dynamics. Unlike Lévy processes, the increments considered
in our work, although Markovian, are not independent. In addition, they
have finite variances. The scaling index for scalable diffusion processes
takes a unique value ζ = 1

2 . The probability density function W(x; t) for
continuous time stochastic dynamics takes the form 1√

t
F (u) and satisfies

the Fokker–Planck equation. The diffusion coefficient can be chosen to be
a function of u, and there is a correspondence between F(u) and the diffu-
sion coefficient D(u).

The fact that successive events are independent in Lévy processes and
only martingales in our variable diffusion processes implies that dynamics
can be used to identify which model is more suitable to represent a given
time series of stochastic events. We propose the use of the auto-correla-
tion of ε2

k ’s as such a test. Previous studies of financial markets suggest
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that they consist of increments that are not independent, and hence sug-
gest that independent Lévy processes are unlikely to be the correct expla-
nation for the observed non-Gaussian probability density functions.(25)

The need for x-dependent diffusion coefficients implies that the sto-
chastic dynamics is not invariant under translations in x. In particular, for
the examples given earlier, the origin is both the starting point of the walk
as well as the location where D(x; t) is minimized. In financial markets,
one does expect any sudden large fluctuation in the price of a stock to be
followed by a period of high anxiety in the part of traders; consequently
the stock can be expected to trade at a significantly higher rate. This is
equivalent to an increase in the diffusion rate. However, if the price of the
stock settles at this new value, it is likely that the location of the minimum
in D(x; t) will move towards it. Thus, a more realistic model of financial
markets would involve a coupled variation of the price of the stock and
the location of the minimum of the diffusion coefficient.(26)

A time-dependent, but x-independent drift µ(t) of the stochastic
process can be introduced by including a “drift” term −µ(t)W(x; t) on
the right side of the Fokker–Planck equation.(18) Redefining u to be

1√
t

(
x − ∫ t

µ(s)ds
)

gives Eq. (12), and the rest of the analysis presented
here follows.

Finally, one may inquire if the martingale CLT can be generalized to
include processes whose distributions do not scale as n1/2; i.e., the variable
Z in Eq. (8) is the limit of

∑
εk/nξ , where ξ is not necessarily 1/2. In par-

ticular, can Lévy processes fit into such a description. A related question
is if and under what conditions do Lévy processes with memory give self-
similar distributions. We are currently working towards addressing these
issues.

APPENDIX A: ANOMALOUS MARTINGALE PROCESSES

When the diffusion coefficient is a function of u, the martingale sums
may fail to have a normal distribution. We have chosen processes where
E
[|εk|2+δ

]
is uniformly bounded, so that conditions (1) and (3) of the

martingale CLT are satisfied. Hence, the random variable Z is not distrib-
uted normally because (1/n)

∑
ε2
k does not approach a constant (in prob-

ability) for large n. We illustrate this failure with two examples of discrete
random walks.

The distribution of η2 for a finite-step martingale with D(u) = 1 +
|u| is shown in Fig. 2(a). Since D(u) � 1 for all u, η2 is non-vanishing
only when the argument is larger than 1, where it decays exponentially. As
expected from the analysis, F(u) is found to be 1

2 exp (−|u|).
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Fig. 2. The density function F of η2 = limn→∞ 1
n

∑n
1 ε2

k for random walks with (a) D(u)=
1 + |u|, and (b) D(u) = 1 + tanh(|u|). The fact that they are not δ-functions implies that
lim

(
xn/

√
n
)

is not Gaussian, see Section 2.

Next, consider a martingale with D(u) = (1+ tanh |u|). For a fixed
t , D(u) varies between 1 and 2, and for a fixed x, it reduces to 1 with
increasing t . The histogram of η2, computed numerically for a set of
100,000 random walks of length 100,000, converges to the function shown
in Fig. 2(b). Since 1 � D(u) � 2, η2 is non-zero only in the interval
[1,2]. The corresponding probability density function W(x; t) has the form

1√
t
F (u), but F(u) is not Gaussian. In contrast, if the diffusion coefficient

is chosen to be (1+ tanh |x|) or
(
1+ tanh(1/

√
t)
)
, η2 is found to be con-

stant, and W(x; t) is found to approach a Gaussian.
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