## UH - Math 3330 - Dr. Heier - Sample Midterm Exam - Spring 2013 Time: 75 min

1. Let the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by

$$
f(x)= \begin{cases}\frac{x+1}{2} & \text { if } x \text { is odd } \\ 2 x+1 & \text { if } x \text { is even }\end{cases}
$$

(a) (10 points) Is $f$ one-to-one? Does $f$ possess a left inverse? If yes, find a left inverse.
(b) (10 points) Is $f$ onto? Does $f$ possess a right inverse? If yes, find a right inverse.
2. (a) (10 points) Find the gcd of $a=124$ and $b=52$ by using the Euclidean algorithm as discussed in class. Also, find $m, n$ such that $\operatorname{gcd}(a, b)=m a+n b$.
(b) (10 points) Let $c, d, q, r$ be positive integers. If $c=d q+r$, prove that $\operatorname{gcd}(c, d)=$ $\operatorname{gcd}(d, r)$.
3. (a) (10 points) Find all solutions of the system

$$
\begin{aligned}
& x \equiv 1(\bmod 5) \\
& x \equiv 2(\bmod 11) .
\end{aligned}
$$

(b) (10 points) Find the solution of the following system of equations in $\mathbb{Z}_{7}$ :

$$
\begin{aligned}
& {[2][x]+[3][y]=[1]} \\
& {[3][x]+[2][y]=[2] .}
\end{aligned}
$$

4. (a) (10 points) Let $(G, *)$ be a group. Give a definition for a non-empty subset $H$ of $G$ to be a subgroup.
(b) (10 points) Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism. Let $H$ be a subgroup of $G$. Prove that $\phi(H)$ is a subgroup of $G^{\prime}$.
5. (20 points) Let $G$ be an abelian group. Prove that the set of all elements of finite order in $G$ forms a subgroup of $G$.
Remark: This subgroup is called the torsion subgroup of $G$. Recall that the order of a group element $x$ is the smallest positive integer $k$ such that $x^{k}=e$. If no such $k$ exists for a given $x$, we say the order of $x$ is infinite.
