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Abstract This paper is concerned with the well posedness and homogenization for a multiscale parabolic
problem in a cylinder Q of R

N . A rapidly oscillating non-smooth interface inside Q separates the cylinder
in two heterogeneous connected components. The interface has a periodic microstructure, and it is situated
in a small neighborhood of a hyperplane which separates the two components of Q. The problem models a
time-dependent heat transfer in two heterogeneous conducting materials with an imperfect contact between
them. At the interface, we suppose that the flux is continuous and that the jump of the solution is proportional
to the flux. On the exterior boundary, homogeneous Dirichlet boundary conditions are prescribed. We also
derive a corrector result showing the accuracy of our approximation in the energy norm.

Keywords Parabolic problem · Homogenization · Heat propagation · Rough interface · Correctors
Mathematics Subject Classification 35J75 · 35J65 · 35B27

1 Introduction

This work is devoted to the homogenization of a heat transfer problem posed on a domain separated by a
non-smooth interface. The interface is modeled as a highly oscillatory Lipschitz surface (for example, the
“sawtooth interface” sketched in Fig. 1) of height O(εκ) (with κ > 0) and the resulting interfacial resistance
gives rise to the flux of temperature proportional to a jump of the temperature, by a factor of order εγ , where ε
is the small parameter characterizing the small scale in the problem and γ ≤ 1 is a given real parameter. The
complexity of the domain geometry and the imperfect contact on the interface create interesting multiscale
phenomena with different macroscale behaviors depending on model parameters κ and γ .

A similar geometric setting was recently considered in the papers of Donato and Piatnitski [16] and Donato
and Giachetti [15] that discussed stationary diffusion problems. Domains with rough surfaces or boundaries
can be found in many applications such as flows, elastic bodies and electromagnetic waves over rough walls or
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interfaces. The roughness in the interface influences the general response of the system under consideration,
which rends the model difficult to handle numerically. This motivates the use of multiscale analysis, in order
to obtain a macroscopic homogenized model with a flat interface.

The use of homogenization to analyze problems in a domain with a rough or rapidly oscillating boundary
can be traced back from the works of Kohler et al. [25] and of Brizzi and Chalot [6,7]. A similar approach was
applied by Nevard and Keller [31] to analyze Maxwells equation and to the equations of the theory of linear
elasticity. In [1], Achdou et al. studied boundary conditions or wall laws for a laminar flow over a rough wall
with periodic roughness elements using homogenization.

Another related work on boundary homogenization can be found in Chechkin et al. [10] which considered
the asymptotic behavior of solutions of an elliptic problemwith an inhomogeneous Fourier boundary condition
in domains with rapidly oscillating locally periodic boundary. An unlimited growth of the (n−1)-dimensional
volume of the boundary as the small parameter tends to zero is assumed therein. On the other hand, for the cases
studied in [4–8,20,21,32], the (n − 1)-dimensional volume of the oscillating boundary remained uniformly
bounded.

Asymptotic analysis of imperfect transmission problems on two-component composites due to interfacial
resistances (as modeled by Carslaw and Jaeger [9]) was considered for different types of PDEs. First, Auriault
and Ene [2] considered the elliptic case, after which [13,18,27] continued the study. For the parabolic and
hyperbolic cases, one can check [14,17,19,23]. Hummel [22] showed earlier in the general case that when
γ ≥ 1, the solution becomes unbounded.

Homogenization problems on a prefractal layer were studied by Lancia et al. [26] (see also references
therein), while the multiscale analysis for optimal control problems on domains with highly oscillating bound-
aries was studied by Nandakumaran et al. [28] (see also [29]), among others. For general references on
homogenization, one can see [3,11,32].

In this paper, we study the well posedness and prove several homogenization results for a parabolic
problem with an imperfect contact on the rough fast oscillating interface separating a domain occupied by
heterogeneous materials. The peculiarity of this time-dependent problem is apparent in the lack of regularity
for the time derivative of the ε solution which further complicates the homogenization procedure in general,
and in particular the identification of the initial data. This is overcome by using a suitable compactness result
(Theorem 4), stated and proved in Sect. 4. Another challenge appearing in the present time-domain analysis
was the proof of uniform convergence with respect to time of the ε-solution to the homogenized solution
needed to assess the convergence of the initial data and in the corrector analysis.

Proposing several new arguments to deal with the challenges appearing in the time-dependent problem and
building up on the ideas presented in [15,16], depending on values of κ [introduced in (3)] and γ [introduced at
(26)], we characterize in Theorem 5 the homogenized limit as the unique solution of a macroscale problem and
prove suitable time-domain energy convergence and associated corrector results (Theorem 6). More explicitly
we characterize three possible macroscale behaviors as follows:

1. If (κ ≥ 1 and γ = 0) or (0 < κ < 1 and γ = 1 − κ), then the macroscale problem is modeled by
a parabolic PDE over a domain separated by a hyperplane with the continuous flux across it given by a
homogenized law.

2. If (κ ≥ 1 and γ < 0) or (0 < κ < 1 and γ < 1− κ), then the contribution of the microscale transmission
interface disappears in the homogenized limit and the macroscale model is governed by a parabolic PDE
in a smooth domain with homogeneous Dirichlet boundary conditions.

3. If (κ ≥ 1 and γ > 0) or (0 < κ < 1 and γ > 1 − κ), then the microscale transmission interface has a
very strong effect in the limit and the macroscale problem is modeled by a parabolic homogenized PDE on
two disjoint domains with identical initial conditions and homogeneous mixed boundary conditions, zero
flux on the flat part of the boundary and zero temperature otherwise.

This paper is organized as follows. In Sect. 2, the problem’s geometric setting and the relevant functional
spaces with their properties are presented. We then describe the parabolic problem and our assumptions in
Sect. 3. The existence and uniqueness of the solution of our problem are also shown in Sect. 3, using a theorem
based on a Galerkin type method. In Sect. 4, some uniform a priori estimates and compactness results which
are important for homogenization are derived. The homogenization of our multiscale problem (limit analysis
for ε << 1) is examined in Sect. 5, while the corrector results showing the form of the second term in the
asymptotic expansion for the multiscale solution are discussed in Sect. 6. Lastly, in Sect. 7, we present a
physical interpretation of the results as well as comments about possible applications.
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Fig. 1 An example of a possible geometry for a “sawtooth” interface

2 Preliminaries

In this work, we use the geometric framework and notations introduced in [16] (also used in [15]). Let N ≥ 2
and suppose ω is a smooth bounded subset of R

N−1 with l a positive number. We define the domain Q by

Q = ω×] − l, l[, (1)

which is an open bounded cylinder in R
N .

We denote by Y = ]0, 1[N the volume reference cell and by Y ′ = ]0, 1[N−1 the surface reference cell.
Furthermore, we let ε denote a positive sequence converging to zero. Assume g : Y ′ → R to be a Y ′-periodic
positive Lipschitz continuous function, that is, there exists Lg > 0 such that,

|g(y′) − g(y′
1)| ≤ Lg|y′ − y′

1|, for every y′, y′
1 ∈ Y ′. (2)

Suppose κ > 0 and x ′ = (x1, . . . , xN−1). We divide the set Q in two subdomains

Qε1 =
{
x ∈ Q, xN > εκg

(
x ′

ε

)}
(3)

and

Qε2 =
{
x ∈ Q, xN < εκg

(
x ′

ε

)}
, (4)

which are called the upper and the lower parts of Q, respectively.
The set

Γε = {
x ∈ Q, xN = εκg

(
x ′

ε

) }
(5)

represents an oscillating interface which separates Qε1 and Qε2 (see Fig. 1).
As observed in [16], the case κ = 1 presents a self-similar geometry because the interface Γε can be

obtained by dilatation of the fixed function yN = g(y′) in R
N . The case κ > 1 represents the “flat” case (i.e.,

∇x ′xN → 0 as ε → 0), while the case 0 < κ < 1 describes a highly oscillating interface (see [16] for details).
Setting g = max g, by construction, the set ω×[0, εκg] contains the oscillating interface, and the measure

of this set goes to zero as ε → 0 (see Fig. 1). Consequently,

χQεi
→ χQi

strongly in L p(Q), 1 ≤ p < +∞, and weakly * in L∞(Q).

In the sequel, we will also make use of the decomposition of ω×]0, εκg[ introduced in [16], that is,

ω×]0, εκg[= Bε1 ∪ Bε2 ∪ Γε,

where
Bεi = ω×]0, εκg[∩Qεi , i = 1, 2. (6)
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We suppose that A is a Y -periodic matrix field satisfying, for 0 < α < β,

(A(y)λ, λ) ≥ α|λ|2, |A(y)λ| ≤ βλ, a.e. in Y and for any λ ∈ R
N . (7)

Moreover, h will denote an Y ′-periodic function such that, for some h0 ∈ R
∗+,

h ∈ L∞(Γ ), and 0 < h0 < h(y′), a.e. on Γ, (8)

where
Γ = {yN = g(y′), y′ ∈ Y ′}.

We set, for any ε > 0,

Aε(x) = A
( x

ε

)
, hε(x ′) = h

( x ′

ε

)
. (9)

For any function v defined on Q we set

vε1 = v|Qε1 vε2 = v|Qε2 . (10)

Hence, for any v ∈ L2(Q) we have

‖v‖2L2(Q)
= ‖vε1‖2L2(Qε1)

+ ‖vε2‖2L2(Qε2)
.

Also, we use the notations:

– ṽ for the zero extension to the whole of R
N of a function v defined on a subset of Q,

– χE , the characteristic function of any set E ⊂ R
N ,

– mY ′(v) = 1

|Y ′|
∫
Y ′

f dy′, the average on Y ′ of any function v ∈ L1(Y ′).
– C to denote any generic positive constant independent of ε.

We define the limit domains with a flat interface by

Q1={x ∈ Q : xN >0}, Q2={x ∈ Q : xN <0}, Γ0={x ∈ Q : xN =0} (11)

and, for any function v defined on Q,
v1 = v|Q1 v2 = v|Q2 .

Observe that from definitions (3), (4) and (6),

Q1 = Qε1 ∪ Bε2, Q2 = Qε2 \ Bε2.

In the sequel, we also use the notations

Qε = Q \ Γε, Q0 = Q \ Γ0, Γε,0 = Γε ∪ Γ0, Qε,0 = Q \ Γε,0.

Now, for our functional spaces, we define the space W ε
i0 by

W ε
0i := {vi ∈ H1(Qεi ) | v = 0 on ∂Q ∩ ∂Qεi },

equipped with the norm
‖vi‖W ε

0i
= ‖∇vi‖L2(Qεi )

. (12)

As in [16], we also introduce [under notation (10)] the space W ε
0 defined by

W ε
0 := {v ∈ L2(Q) | vε1 ∈ H1(Qε1), vε2 ∈ H1(Qε2) and v = 0 on ∂Q}, (13)

equipped with the norm
‖v‖W ε

0
:= ‖∇v‖L2(Qε)

, (14)

where

∇v = ∇̃vε1 + ∇̃vε2,

that is, we identify ∇v with the absolutely continuous part of the gradient of v.
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Let us observe that (14) is a norm, due to the following Poincaré inequality: there exists a constant C such
that, for any v ∈ W ε

0 ,
‖v‖L2(Q) ≤ C‖∇v‖L2(Qε)

. (15)

Then we introduce the space

W 0
0 := {v ∈ L2(Q) | v1 ∈ H1(Q1), v2 ∈ H1(Q2) v = 0 on ∂Q},

equipped with the norm
‖v‖W 0

0
:= ‖∇v‖L2(Q0).

In this paper, we use the usual product norm, that is, if E1 and E2 are Hilbert spaces then

∀(u, v) ∈ E1 × E2, ‖(u, v)‖E1×E2 = (‖u‖2E1
+ ‖v‖2E2

) 1
2 .

Remark 1 It is straightforward from the definition and notation (10) that if v ∈ W ε
0 then (vε1, vε2) ∈ W ε

01×W ε
02.

On the other hand, if (v1, v2) ∈ W ε
01 × W ε

02 then v = ṽ1 + ṽ2 ∈ W ε
0 .

Moreover, the map

φ : v ∈ W ε
0 → (vε1, vε2) ∈ W ε

01 × W ε
02

is a bijective isometry, that is,

‖v‖2W ε
0

= ‖(vε1, vε2)‖2W ε
01×W ε

02
.

Indeed from (12) and (14),

‖v‖2W ε
0

=
∫
Qε1

|∇vε1|2 dx +
∫
Qε2

|∇vε2|2 dx

= ‖∇vε1‖2L2(Qε1)
+ ‖∇vε2‖2L2(Qε2)

= ‖vε1‖2W ε
01

+ ‖vε2‖2W ε
02

.

Since φ is bijective, in this paper we identify v ∈ W ε
0 with its image φ(v) ∈ W ε

01 × W ε
02.

Proposition 1 Let v ∈ (W ε
0 )′. Accordingly with Remark 1, let V be the map defined by

V : (u1, u2) ∈ W ε
01 × W ε

02 → v(u) = v(ũ1) + v(ũ2), for u = (u1, u2).

Then V ∈ (W ε
01)

′ × (W ε
02)

′. Conversely, if V = (V1, V2) ∈ (W ε
01)

′ × (W ε
02)

′ then

v : u ∈ W ε
0 → V (uε1, uε2) = V1(uε1) + V2(uε2)

defines an element of (W ε
0 )′. Moreover,

‖V ‖(W ε
01)

′×(W ε
02)

′ = ‖V1‖(W ε
01)

′ + ‖V2‖(W ε
02)

′ = ‖v‖(W ε
0 )′ . (16)

Proof Suppose v ∈ (W ε
0 )′. Observe that from the preceding remark,

|V (u1, u2)| = |v(u)| ≤ ‖v‖(W ε
0 )′‖u‖W ε

0

= ‖v‖(W ε
0 )′‖(u1, u2)‖W ε

01×W ε
02

.

This gives

‖V ‖(W ε
01)

′×(W ε
02)

′ = sup
u �=0

|V (u1, u2)|
‖(u1, u2)‖W ε

01×W ε
02

≤ ‖v‖(W ε
0 )′ . (17)

Therefore, V ∈ (W ε
01)

′ × (W ε
02)

′.
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On the other hand, let V ∈ (W ε
01)

′ × (W ε
02)

′. Then

|v(u)| = |V (uε1, uε2)| = |V1(uε1) + V2(uε2)|
≤ ‖V1‖(W ε

01)
′‖uε1‖W ε

01
+ ‖V2‖(W ε

02)
′‖uε2‖W ε

02

≤ ‖V ‖(W ε
01)

′×(W ε
02)

′‖(uε1, uε2)‖W ε
01×W ε

02

= ‖V ‖(W ε
01)

′×(W ε
02)

′‖u‖W ε
0
.

Thus,

‖v‖(W ε
0 )′ = sup

u �=0

|v(u)|
‖u‖W ε

0

≤ ‖V ‖(W ε
01)

′×(W ε
02)

′, (18)

from which we have v ∈ (W ε
0 )′. Equality of the norms follows from (17) and (18). ��

Proposition 2 There exists a positive constant C such that

‖vε1 − vε2‖L2(Γε)
≤ C max

{
1, ε

κ−1
2

}
‖v‖W ε

0
,

for every v = (vε1, vε2) in W ε
0 .

Proof In terms of the coordinates x ′ (see Remark 2.3 of [16]), we can write

‖ vε1 − vε2‖2L2(Γε)
=

∫
Γε

(vε1 − vε2)
2 ds

=
∫

ω

(
vε1

(
x ′, εκg

(
x ′

ε

))
− vε2

(
x ′, εκg

(
x ′

ε

)))2

×
(
1 + ε2(κ−1)|∇y′g(y′)|2

) 1
2

y′= x ′
ε

dx ′.

Clearly, since g is Lipschitz continuous,

‖(1 + ε2(κ−1)|∇y′g(y′)|2)
y′= x ′

ε

‖L∞(ω)
< C max{1, ε2(κ−1)},

so that

‖vε1 − vε2‖2L2(Γε)
≤C max{1, εκ−1}

∫
ω

(
vε1

(
x ′, εκg

(
x ′

ε

))
− vε2

(
x ′, εκg

(
x ′

ε

)))2

dx . (19)

For fixed ε, let zε1 be defined as

zε1(x
′, xN ) = ṽε1

(
x ′, εκg

(
x ′

ε

)
+ xN

)
,

where x ′ ∈ ω and 0 < xN ≤ l. Observe that

zε1(x
′, 0) = ṽε1

(
x ′, εκg

(
x ′

ε

))
, on ω (20)

and

zε1(x
′, l) ≡ 0, a.e. in ω.

Then since ω × {0} ⊂ ∂Q1, using the trace theorem and the Poincaré inequality (in the direction of xN ), we
have

‖zε1(x ′, 0)‖L2(ω) ≤ C

(
‖zε1(x ′, xN )‖L2(Q1)

+
∥∥∥∂zε1

∂xN
(x ′, xN )

∥∥∥
L2(Q1)

)

≤ C
∥∥∥∂zε1

∂xN
(x ′, xN )

∥∥∥
L2(Q1)

.

(21)
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In fact, the proofs of these results in Q1 are similar to the analogous ones in the half-space (see for instance
[12], Chapter 7). On the other hand, since

∂zε1
∂xN

(x ′, xN ) = ∂ṽε1

∂xN

(
x ′, εκg

(
x ′

ε

) + xN

)
,

we get ∥∥∥∂zε1
∂xN

(x ′, xN )

∥∥∥
L2(Q1)

=
∥∥∥∂vε1

∂xN

∥∥∥
L2(Qε1)

.

This together with (21) implies

‖zε1(x ′, 0)‖L2(ω) ≤ C
∥∥∥∂ṽε1

∂xN

∥∥∥
L2(Qε1)

. (22)

Now, let zε2 be defined, for fixed ε, as

zε2(x
′, xN ) = ṽε2

(
x ′, εκg

(
x ′

ε

)
+ xN

)
,

where x ′ ∈ ω and −(l + η) < xN < 0, for some η > 0. Here, we have

zε2(x
′, 0) = ṽε2

(
x ′, εκg

(
x ′

ε

))
, on ω (23)

and

zε2(x
′, (l + η) ≡ 0, a.e. in ω.

Then as done above, but for Qη = ω×] − (l + η), 0[ instead of Q1, we have

‖zε2(x ′, 0)‖L2(ω) ≤ C

(
‖zε2(x ′, xN )‖L2(Qη) +

∥∥∥∂zε2
∂xN

(x ′, xN )

∥∥∥
L2(Qη)

)

≤ C
∥∥∥∂zε2

∂xN
(x ′, xN )

∥∥∥
L2(Qη)

,

(24)

where C is independent of ε. Also, since

∂zε2
∂xN

(x ′, xN ) = ∂ṽε2

∂xN

(
x ′, εκg

(
x ′

ε

)
+ xN

)
,

we have ∥∥∥∂zε2
∂xN

(x ′, xN )

∥∥∥
L2(Qη)

=
∥∥∥∂ṽε2

∂xN

∥∥∥
L2(Qε2)

.

This implies together with (24) that

‖zε2(x ′, 0)‖L2(ω) ≤ C
∥∥∥∂ṽε2

∂xN

∥∥∥
L2(Qε2)

. (25)

From (19), (20), (22), (23), (25) and Remark 1, we get

‖vε1 − vε2‖L2(Γε)
≤ C max

{
1, ε

κ−1
2

} (∫
ω

|(zε1(x ′, 0) − zε2(x
′, 0)|2 dx ′

) 1
2

≤ C max
{
1, ε

κ−1
2

}} (
2‖zε1(x ′, 0)‖2L2(ω)

+ 2‖zε2(x ′, 0)‖2L2(ω)

) 1
2

≤ C max
{
1, ε

κ−1
2

}
‖v‖W ε

0
.

��
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3 Statement of the problem

The goal of this paper is to prove some existence and homogenization results as ε → 0, of the following
problem: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

u′
ε − div(Aε∇uε) = f in Qε×]0, T [,

(Aε∇uε)1 · νε = (Aε∇uε)2 · νε on Γε×]0, T [,
(Aε∇uε)1 · νε = −εγ (uε1 − uε2)hε on Γε×]0, T [,
uε = 0 on ∂Q×]0, T [,
uε(x, 0) = u0ε in Qε,

(26)

where γ ≤ 1, νε is the outward normal to Qε1 and Aε, hε satisfy (7)–(9).
Further, we make the following assumptions on the data:{

u0ε ∈ L2(Q),

f ∈ L2(0, T ; L2(Q)).
(27)

To establish the existence of a solution of problem (26), we consider its variational formulation as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find uε ∈ Wε, such that
〈u′

ε1, vε1〉(W ε
01)

′,W ε
01

+ 〈u′
ε2, vε2〉(W ε

02)
′,W ε

02

+
∫
Qε

Aε∇uε∇v dx + εγ

∫
Γε

hε(uε1 − uε2)(vε1 − vε2) dσ

=
∫
Q

f v dx, for every v ∈ L2(0, T,W ε
0 ),

uε(x, 0) = u0ε in Q,

(28)

where
Wε := {v = (vε1, vε2) ∈ L2(0, T ;W ε

0 ) and v′ ∈ L2(0, T ; (W ε
0 )′)},

equipped with the norm [see (14)]

‖v‖Wε = ‖∇v‖L2(0,T ;L2(Qε))
+ ‖v′‖L2(0,T ;(W ε

0 )′ .

Using a Galerkin type method (see Zeidler [34], Theorem 23.A and Corollary 23.26, pp. 424–426), we can
deduce directly the following existence and uniqueness result for our problem:

Theorem 1 Let T > 0 and ε > 0 be fixed. Suppose that W ε
0 , Aε and hε are defined by (13), (7), (8) and (9),

respectively. If (27) holds then problem (28) has a unique solution.

Analogously, we define the space W0 given by

W0 := {v = (v1, v2) ∈ L2(0, T ;W 0
0 ) and v′ ∈ L2(0, T ; (W 0

0 )′)},
equipped with the norm

‖v‖W0 = ‖∇v‖L2(0,T ;L2(Q0))
+ ‖v′‖L2(0,T ;(W 0

0 )′ .

Remark 2 If v ∈ L2(0, T ;W ε
0 ) then in view of Proposition 2,

‖vε1 − vε2‖L2(0,T ;L2(Γε))
≤ C max

{
1, ε

κ−1
2

}
‖v‖L2(0,T ;W ε

0 ).

Remark 3 As a consequence of Proposition 1, it is straightforward to check that if v ∈ L2(0, T ; (W ε
0 )′) and

w ∈ L2(0, T ;W ε
0 ) then

〈v, w〉L2(0,T ;(W ε
0 )′),L2(0,T ;W ε

0 ) = 〈vε1, wε1〉L2(0,T ;(W ε
01)

′),L2(0,T ;W ε
01)

+ 〈vε2, wε2〉L2(0,T ;(W ε
02)

′),L2(0,T ;W ε
02)

.

Remark 4 Observe that the properties satisfied by W ε
0 and stated in Remarks 1, 2, 3 and Propositions 1, 2 still

hold in W 0
0 , with the obvious changes, simply by writing them for ε = 0.
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4 A priori estimates and compactness result

In this section, we prove some uniform estimates (with respect to ε) as well as a compactness result which is
essential for the homogenization of our problem. To do that, we assume that the initial data u0ε are bounded in
L2(Q) that is,

‖u0ε‖L2(Q) ≤ C. (29)

Theorem 2 Let uε be the solution of problem (28) with Aε and hε as in Theorem 1. Suppose (27) and (29)
hold. Then, ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(i) ‖uε‖L∞(0,T ;L2(Q)) < C,

(ii) ‖uε1 − uε2‖L2(0,T ;L2(Γε))
< Cε− γ

2 ,

(iii) ‖∇uε‖L2(0,T ;L2(Qε))
< C,

(iv) ‖u′
ε‖L2(0,T ;(W ε

0 )′) ≤ C
(
1 + ε

γ
2 max

{
1, ε

κ−1
2

})
,

(v) ‖u′
ε2‖L2(0,T ;H−1(Q2))

≤ C.

(30)

Moreover, for every δ > 0,

‖u′
ε1‖L2(0,T ;H−1(Qδ

1))
≤ C, for every ε ≤ εδ, (31)

where
Qδ

1 =: {x ∈ Q : xN > δ} (32)

and εδ is such that Qδ
1 ∩ Γε = ∅, for every ε ≤ εδ , with C independent of δ and ε.

Proof Choose v = (uε1, uε2) in the variational formulation (28). Applying integration on [0, T ] and using the
Hölder inequality we get for all t ∈ [0, T ],

1

2
‖uε(t)‖2L2(Q)

+
∫ t

0

∫
Qε

Aε∇uε∇uε dx ds + εγ

∫ t

0

∫
Γε

hε|uε1 − uε2|2 dσx ds

= 1

2
‖u0ε‖2L2(Q)

+
∫ t

0

∫
Q

f uε dx ds

≤ 1

2
‖u0ε‖2L2(Q)

+
∫ t

0
‖ f (s)‖L2(Q)‖uε(s)‖L2(Q) ds.

The properties of Aε and hε yield

1

2
‖uε(t)‖2L2(Q)

+ α

∫ t

0

∫
Qε

|∇uε|2 dx ds + εγ h0

∫ t

0

∫
Γε

|uε1 − uε2|2 dσx ds

≤ 1

2
‖u0ε‖2L2(Q)

+
∫ t

0
‖ f (s)‖L2(Q)‖uε(s)‖L2(Q) ds

≤ 1

2
‖u0ε‖2L2(Q)

+ 1

2

∫ t

0

(
‖ f (s)‖2L2(Q)

+ ‖uε(s)‖2L2(Q)

)
ds.

From here, we obtain for any t ∈]0, T [,

‖uε(t)‖2L2(Q)
≤ ‖u0ε‖2L2(Q)

+ ‖ f ‖2L2(0,T ;L2(Q))
+

∫ t

0
‖uε(s)‖2L2(Q)

ds.

Using Gronwall’s Lemma, (27) and (29), we conclude that

‖uε‖2L∞(0,T ;L2(Q))
≤ C.

Hence, we have (i). Using the above computations with t = T , we deduce further that

α

∫ T

0
‖∇uε‖2L2(Qε)

ds + εγ h0

∫ T

0
‖uε1 − uε2‖2Γε

ds ≤ C,
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obtaining (ii) and (iii). To show (iv), we take v = (vε1, vε2) ∈ W ε
0 as test function in the variational formulation

(28). Using the Hölder inequality, the boundedness of A and h, results (ii) and (iii), in view of (16), Remark
2 and Proposition 2 we have

|〈u′
ε, v〉L2(0,T ;(W ε

0 )′),L2(0,T ;W ε
0 )|

= |〈u′
ε1, vε1〉L2(0,T ;(W ε

01)
′),L2(0,T ;W ε

01)
+ 〈u′

ε2, vε2〉L2(0,T ;(W ε
02)

′),L2(0,T ;W ε
02)

|

=
∣∣∣
∫ T

0

∫
Q

f v dx dt −
∫ T

0

∫
Qε

Aε∇uε∇v dx dt

− εγ

∫ T

0

∫
Γε

hε(uε1 − uε2)(vε1 − vε2)dσx dt
∣∣∣

≤ ‖ f ‖L2(0,T ;L2(Q))‖v‖L2(0,T ;L2(Q)) + β‖∇uε‖L2(0,T ;L2(Qε))
‖∇v‖L2(0,T ;L2(Qε))

+ ‖hε‖L∞(Γε)ε
γ
2 ‖uε1 − uε2‖L2(0,T ;L2(Γε))

ε
γ
2 ‖vε1 − vε2‖L2(0,T ;L2(Γε))

≤ C‖v‖L2(0,T ;W ε
0 ) + Cε

γ
2 max

{
1, ε

κ−1
2

}
‖v‖L2(0,T ;W ε

0 )

= C
(
1 + ε

γ
2 max

{
1, ε

κ−1
2

})
‖v‖L2(0,T ;W ε

0 ). (33)

This proves (iv). To prove (v), let v2 ∈ H1
0 (Q2). Then, choosing v = ṽ2 ∈ W ε

0 in the previous computation
gives

|〈u′
ε2, v2〉| =

∣∣∣
∫ T

0

∫
Q2

f v2 dx dt −
∫ T

0

∫
Q2

Aε∇uε∇v2 dx dt
∣∣∣

≤ ‖ f ‖L2(0,T ;Q2)
‖v2‖L2(0,T ;Q2)

+ β‖∇uε‖L2(0,T ;Q2)
‖∇v2‖L2(0,T ;Q2)

≤ C‖v2‖L2(0,T ;H1
0 (Q2))

,

since here the boundary term equals zero, which gives the result. Similarly for v ∈ H1
0 (Qδ

1), choosing v = ṽ1
as test function in (33) gives (31). This ends the proof. ��

As shown in [15], a function in W 0
0 which present a jump on Γ0, can be approximated by functions in W ε

0
which have jumps on Γε. This is important since it allows to use test functions with jumps on the oscillating
interface and obtain, when passing to the limit, test functions with jumps on the flat interface. We state this
property below as a lemma and rewrite the proof for clarity and convenience.

Lemma 1 [15,16] Let ϕ ∈ W 0
0 . Then, for every ε, there exists ϕε ∈ W ε

0 such that the sequence {ϕε} verifies⎧⎨
⎩
(i) ϕε → ϕ, strongly in L2(Q) and in H1(Qδ

1),

(ii) χQεi∇ϕε ⇀ χQi∇ϕ, weakly in (L2(Q))N , i = 1, 2,
(iii) ‖∇ϕε‖L2(Πδ\Γε)

→ ‖∇ϕ‖L2(Πδ\Γ0)
,

(34)

for every δ > 0, where Qδ
1 is given by (32) and

Πδ =: {x ∈ Q : 0 ≤ xN ≤ δ}. (35)

Proof Let ϕ ∈ W 0
0 be given by

ϕ = (ϕ1, ϕ2) = (ψ1|Q1
, ψ2|Q2

),

with ψ1 and ψ2 ∈ H1
0 (Q). Then, the claimed sequence {ϕε} can be obtained by setting for every ε,

ϕε = (ψ1|Qε1, ψ2|Qε2) ∈ W ε
0 ,

observing that for any δ > 0,
Qδ

1 ⊂ Qε1, for ε small enough.

��
We state the following theorem by Simon [33] that would be useful in proving our compactness result in

the succeeding theorem.
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Theorem 3 [33] Let X, B, Y be Banach spaces with X ⊂ B ⊂ Y and X → Y a compact embedding. Suppose

F is bounded in L p(0, T ; X) where 1 ≤ p < ∞ and
∂F

∂t
be bounded in L1(0, T ; Y ). Then F is relatively

compact in L p(0, T ; B).

Theorem 4 Let Γε be defined by (5) and suppose that {vε}ε is a family of functions vε ∈ Wε such that⎧⎪⎨
⎪⎩
(i) ‖vε‖L2(0,T ;W ε

0 ) ≤ C,

(ii) ‖v′
ε1‖L2(0,T ;H−1(Qδ

1))
≤ C,

(iii) ‖v′
ε2‖L2(0,T ;H−1(Q2))

≤ C,

(36)

where Qδ
1 is given by (32).

Then, there exists a subsequence (still denoted {ε}) and a function v ∈ L2(0, T ;W 0
0 ) such that⎧⎪⎪⎨

⎪⎪⎩
(i) vε → v, strongly in L2(0, T ; L2(Q)),

(ii) χQε1
∇vε ⇀ χQ1

∇v weakly in L2(0, T ; (L2(Q))N ),

(iii) χQε2
∇vε ⇀ χQ2

∇v weakly in L2(0, T ; L2(Q))N ).

(37)

Moreover, the following convergence holds:

v′
ε ⇀ v′, weakly in D′([0, T ] × {Q1 × Q2}) (38)

and for any ϕ = (ϕ1, ϕ2) in D(Q1) × D(Q2) and ψ ∈ L2(0, T ),

lim
ε→0

〈v′
ε, ψϕ〉L2(0,T ;H−1(Qδ

1)×H−1(Q2)),L2(0,T ;H1
0 (Qδ

1)×H1
0 (Q2))

= 〈v′, ψϕ〉L2(0,T ;H−1(Q1)×H−1(Q2)),L2(0,T ;H1
0 (Q1)×H1

0 (Q2))
.

(39)

Furthermore, let ϕ be given in W 0
0 and let {ϕε} be the corresponding sequence given by Lemma 1. If

‖v′
ε‖L2(0,T ;(W ε

0 )′) ≤ C, (40)

for some C independent of ε then v ∈ W0 and for every ψ ∈ L2(0, T ) the following convergence holds:

〈v′
ε, ψϕε〉L2(0,T ;(W ε

0 )′),L2(0,T ;W ε
0 ) → 〈v′, ψϕ〉L2(0,T ;(W 0

0 )′),L2(0,T ;W 0
0 ). (41)

Proof For any fixed δ > 0, let Q1 and Qδ
1 be given by (11) and (32), respectively. We show first that

vε → v, strongly in L2(0, T ; L2(Qδ
1)) × L2(0, T ; L2(Q2)).

Applying Theorem 3 with

X = H1(Qδ
1) × H1(Q2), B = L2(Qδ

1) × L2(Q2), Y = H−1(Qδ
1) × H−1(Q2),

and using (15) and (36) (ii)–(iii), we get

{vε} relatively compact in L2(0, T ; L2(Qδ
1)) × L2(0, T ; L2(Q2)), (42)

since for ε sufficiently small (depending on δ), one has Qδ
1 ⊂ Qε.

To prove (37) (i), we use a diagonalization argument for the sequence {vε}. Let {δn} be a positive sequence
converging to zero.

Applying (42) for δ = δ1, there is a subsequence {v(δ1)
εn1

} of {vε} (depending on δ1) which converges to v in

L2(0, T ; L2(Qδ1
1 )) × L2(0, T ; L2(Q2)). Similarly, applying (42) for δ = δ2, there exists a subsequence of

{v(δ1)
εn1

}, denoted by {v(δ2)
εnk

} (depending on δ2) which converges to v in L2(0, T ; L2(Qδ2
1 ))× L2(0, T ; L2(Q2)).

Proceeding in this manner, for δ = δ j , we get a subsequence {v(δ j
εnk

)} of {v(δ j−1)
εnk

} (depending on δ j ) which

converges to v in L2(0, T ; L2(Q
δ j
1 )) × L2(0, T ; L2(Q2)). Note that all of these sequences are subsequences

of {vε}.
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Taking the “diagonal sequence” {vϕ( j)} j∈N defined by vϕ( j) = v
(δ j )
εn j

, for every j ∈ N, which is still a
subsequence of {vε}), we have

vϕ( j) → v strongly in L2(0, T ; L2(Qδ
1)) × L2(0, T ; L2(Q2)), for all δ > 0. (43)

What we want to prove is that

vϕ( j) → v strongly in L2(0, T ; L2(Q)).

It remains to show that vϕ( j) → v strongly in L2(0, T ; L2(Q1)), that is,

∫ T

0

∫
Q1

(vϕ( j) − v)2 dx dt → 0.

By definition, for η > 0, we need to find a jη such that if j > jη, then

∫ T

0

∫
Q1

(vϕ( j) − v)2 dx dt < η. (44)

Now, for δ0 > 0 let us decompose the integral above as

∫ T

0

∫
Q1

(vϕ( j) − v)2 dx dt =
∫ T

0

∫
Q

δ0
1

(vϕ( j) − v)2 dx dt

+
∫ T

0

∫
Q1\Qδ0

1

(vϕ( j) − v)2 dx dt.

(45)

Let us show that there exists a δ0 such that the second term of the right-hand side of (45) becomes smaller

than
η

2
. To do that, let us write for any δ,

∫ T

0

∫
Q1\Qδ

1

(vϕ( j) − v)2 dx dt ≤ 2
∫ T

0

∫
Q1\Qδ

1

(
v2ϕ( j) + v2

)
dx dt. (46)

Observe first that there exists a δ∗ such that∫ T

0

∫
Q1\Qδ∗

1

v2 dx dt <
η

8
, for all δ < δ∗. (47)

Now, let us consider ∫ T

0

∫
Q1\Qδ

1

v2ϕ( j) dx dt.

We adapt to our case the same process used to prove (2.25) in [16], but integrating in time and with δ
instead of εκ ḡ. Therefore, if en = (0, . . . , 0, 1) then

vϕ( j)(x + δen) − vϕ( j)(x) =
∫ x+δen

x

∂vϕ( j)

∂xn
dxn, a.e. x ∈ Q1 \ Qδ

1.

It follows that
∫ T

0

∫
Q1\Qδ

1

v2ϕ( j)(x) dx dt =
∫ T

0

∫
Q1\Qδ

1

(
vϕ( j)(x + δen) −

∫ xn+δen

xn

∂vϕ( j)

∂s
ds

)2

dx dt.

Following the straightforward computations in [16], using notation (1) we get

∫ T

0

∫
Q1\Qδ

1

v2ϕ( j) dx dt ≤ 2
∫ T

0

(∫
ω×]δ,2δ[

v2ϕ( j) dx + δ2‖vϕ( j)‖2W ε
0

)
dt. (48)
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As shown in [16], by the Sobolev embedding theorem and (36) (i) if N > 2 and 2∗ = 2N

N − 2
we have

∫ T

0

∫
ω×]δ,2δ[

v2ϕ( j)(x) dx dt ≤ ‖vϕ( j)‖
(N−2)

N

L2(0,T ;L2∗ (ω×]δ,2δ[)) · meas(ω×]δ, 2δ[) 2
N

≤ C‖vϕ( j)‖
(N−2)

N

L2(0,T ;L2∗ (ω×]δ,�[) · (δ)
2
N

≤ C(δ)
2
N , (49)

for every j , where we used the fact that the embedding operator from H1(ω×]δ, �[) into L2∗
(ω×]δ, �[) is

uniformly bounded with respect to δ.
If N = 2, the embedding H1(ω×]δ, �[) ⊂ L p(ω×]δ, �[) is continuous for any p < ∞, so that we can use

in the computation above any p > 2 instead of 2∗, and then δ
2
N is replaced by δ

p−2
p in (49).

From (49) and (48), together with assumption (36) (i), it follows that there exists δ∗∗ so that

∫ T

0

∫
Q1\Qδ

1

v2ϕ( j) dx dt <
η

8
, for all δ < δ∗∗. (50)

By choosing δ0 = min{δ∗, δ∗∗}, from (46), (47) and (50), we have that

∫ T

0

∫
Q1\Qδ0

1

(vϕ( j) − v)2 dx dt <
η

2
. (51)

On the other hand, for the above δ0, by using (43), there exists a j0 (depending on η and δ0) such that

∫ T

0

∫
Q

δ0
1

(vϕ( j) − v)2 dx dt <
η

2
, for all j > j0. (52)

From (51) and (52) applied in (45), we obtain (44).
Following the same arguments in [16] adapted to our time-dependent case and using (36) (i) together with

convergence (37) (i), one can show (37) (ii) and (iii).
To prove (38), first notice that from (36) (ii) and (iii) we have that

v′
ε = (v′

ε1, v
′
ε2) ∈ D′([0, T ] × {Q1 × Q2})

Next, take ϕ = (ϕ1, ϕ2) in D(Q1) ×D(Q2). Observe that for ε sufficiently small there exists δϕ > 0 such
that supp ϕ1 ⊂ Qδ

1 so that ϕ1 ∈ H1
0 (Qδ

1). From (37) (i), for every ψ ∈ D(0, T ), we have

lim
ε→0

〈v′
ε, ψϕ〉D′([0,T ]×{Q1×Q2}),D([0,T ]×{Q1×Q2})

= lim
ε→0

〈v′
ε, ψϕ〉L2(0,T ;H−1(Qδ

1)×H−1(Q2)),L2(0,T ;H1
0 (Qδ

1)×H1
0 (Q2))

= − lim
ε→0

∫ T

0

∫
Q

ψ ′vεϕ dx dt

= −
∫ T

0

∫
Q

ψ ′vϕ dx dt

= 〈v′, ψϕ〉L2(0,T ;H−1(Q1)×H−1(Q2)),L2(0,T ;H1
0 (Q1)×H1

0 (Q2))

= 〈v′, ψϕ〉D′([0,T ]×{Q1×Q2}),D([0,T ]×{Q1×Q2})

which proves (38) and by density, we get (39).
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To prove (41), under assumption (40), let ϕ be given in W 0
0 and {ϕε} be given by Lemma 1. From (34) (i)

and (37) (i), for every ψ ∈ D(0, T ), we have

−
∫ T

0

∫
Q

ψ ′vϕ dx dt

= − lim
ε→0

∫ T

0

∫
Q

ψ ′vεϕε dx dt

= − lim
ε→0

∫ T

0
ψ ′〈vε, ϕε〉(W ε

0 )′,W ε
0
dt

= lim
ε→0

〈v′
ε, ψϕε〉L2(0,T ;(W ε

0 )′),L2(0,T ;W ε
0 )

≤ lim
ε→0

‖v′
ε‖L2(0,T ;(W ε

0 )′)‖ψϕε‖L2(0,T ;W ε
0 ).

Hence, (34) (iii) and our boundedness assumption on {v′
ε} imply that

|〈v′, ψϕ〉L2(0,T ;(W 0
0 )′),L2(0,T ;W 0

0 )| =
∣∣∣ −

∫ T

0

∫
Q

ψ ′vϕ dx dt
∣∣∣

≤ C lim
ε→0

‖ψϕε‖L2(0,T ;W ε
0 ) =C‖ψϕ‖L2(0,T ;W 0

0 ),

for every ϕ inW 0
0 and ψ ∈ D(0, T ). By a density argument, this is still true for ψ ∈ L2((0, T )), which proves

that v′ belongs to L2(0, T ; (W 0
0 )′) and convergence (41) holds true. ��

The following is immediate from the preceding result and Theorem 2.

Corollary 1 Under the assumptions of Theorem 2, there exists a subsequence (still denoted uε) and a function
u ∈ L2(0, T ;W 0

0 ) such that

⎧⎪⎪⎨
⎪⎪⎩
(i) uε → u, strongly in L2(0, T ; L2(Q)),

(ii) χQε1
∇uε ⇀ χQ1

∇u weakly in L2(0, T ; (L2(Q))N ),

(iii) χQε2
∇uε ⇀ χQ2

∇u weakly in L2(0, T ; (L2(Q))N ).

(53)

Moreover, the following convergence holds:

u′
ε ⇀ u′, weakly in D′([0, T ] × {Q1 × Q2}) (54)

and for any ϕ = (ϕ1, ϕ2) in D(Q1) × D(Q2) and ψ ∈ L2(0, T ),

lim
ε→0

〈u′
ε, ψϕ〉L2(0,T ;H−1(Qδ

1)×H−1(Q2)),L2(0,T ;H1
0 (Qδ

1)×H1
0 (Q2))

= 〈u′, ψϕ〉L2(0,T ;H−1(Q1)×H−1(Q2)),L2(0,T ;H1
0 (Q1)×H1

0 (Q2))
.

(55)

Furthermore, if ϕ is given in W 0
0 and {ϕε} is the corresponding sequence given by Lemma 1 and if

γ + κ − 1 ≥ 0, (56)

then for every ψ ∈ L2(0, T ), one has u ∈ W0 and

〈u′
ε, ψϕε〉L2(0,T ;(W ε

0 )′),L2(0,T ;W ε
0 ) → 〈u′, ψϕ〉L2(0,T ;(W 0

0 )′),L2(0,T ;W 0
0 ). (57)

Remark 5 In the case γ +κ −1 < 0, we are unable to prove that ‖uε‖Wε < C and thus cannot prove the limit
result (57). Nevertheless, the above compactness result (53), (54) and (55) still holds true for our solution uε.
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5 Homogenization results

In this section, we describe the limit behavior of problem (28) as ε → 0. To do so, first we recall the
homogenized tensor A0 (see [3]) defined by

A0λ = mY (A∇wλ) (58)

with wλ ∈ H1(Y ) the unique solution, for any λ ∈ R
N , of⎧⎨

⎩
−div (A∇wλ) = 0 in Y,
wλ − λ · y Y -periodic,
mY (w − λ · y) = 0.

(59)

A crucial step in our aim of homogenizing (28) is to deal with the term in the boundaryΓ ε. Wewill separate
the results according to the value of κ and γ as follow:⎧⎪⎨

⎪⎩
(i) (κ ≥ 1 and γ = 0) or (0 < κ < 1 and γ = 1 − κ);
(ii) (κ ≥ 1 and γ < 0) or (0 < κ < 1 and γ < 1 − κ);
(iii) (κ ≥ 1 and γ > 0) or (0 < κ < 1 and γ > 1 − κ).

(60)

Our main result of this section is given in the following theorem:

Theorem 5 Under assumptions (7)–(9) and (27) let uε be the solution of problem (28) and A0 be given by
(58) and (59). Also, suppose that the initial condition u0ε satisfies:

u0ε ⇀ u0 weakly in L2(Q), i = 1, 2. (61)

For every γ ∈ R, there exists a function u ∈ W0 such that the following convergences hold true:
{
(i) uε → u, strongly in L2(0, T ; L2(Q)),

(ii) χQεi
∇uε ⇀ χQi

∇u, weakly in L2(0, T ; (L2(Q))N ), (62)

and
χQεi

Aε∇uε ⇀ χQi
A0 ∇u, weakly in L2(0, T ; (L2(Q))N ), (63)

for i = 1, 2. Moreover, in the following, we identify the limit u.

– Suppose that (60) (i) holds. Then, the function u is the unique solution of the problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u′ − div(A0∇u) = f in Q0×]0, T [,
(A0∇u)2 · n = (A0∇u)1 · n on Γ0×]0, T [,

(A0∇u)1 · n = H(g, h)(u1 − u2) on Γ0×]0, T [,
u = 0 on ∂Q,

u(0) = u0 in Q,

(64)

where H(g, h) is given by

H(g, h) =

⎧⎪⎨
⎪⎩
mY ′

(
h(1 + (|∇g|2)1/2

)
if κ = 1 and γ = 0,

mY ′(h) if κ > 1 and γ = 0,
mY ′(h|∇g|) if 0 < κ < 1 and γ = 1 − κ,

(65)

– Suppose now that (60) (ii) holds. Then, the function u belongs to L2(0, T ; H1
0 (Q)) with u′ ∈

L2(0, T ; H−1(Q)) and is the unique solution of the problem⎧⎨
⎩
u′ − div(A0∇u) = f in Q×]0, T [,

u = 0 on ∂Q,

u(0) = u0 in Q.

(66)
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– Finally, suppose that (60) (iii) holds. Then, u1 and u2 are the unique solution of the following two (inde-
pendent) Neumann problems: ⎧⎪⎪⎨

⎪⎪⎩
u′
1 − div(A0∇u1) = f in Q1×]0, T [,

A0∇u1 · n = 0 on Γ0×]0, T [,
u1 = 0 on ∂Q1 \ Γ0,

u(0) = u0 in Q1,

(67)

⎧⎪⎪⎨
⎪⎪⎩
u′
2 − div(A0∇u2) = f in Q2×]0, T [,

A0∇u2 · n = 0 on Γ0×]0, T [,
u2 = 0 on ∂Q2 \ Γ0,

u(0) = u0 in Q2.

(68)

Before giving the proof of this theorem, we prove the following result:

Proposition 3 Under the assumptions of Theorem 2, let uε be the solution of problem (28) and consider the
(sub)-sequence given by Corollary 1 which verifies convergences (53). If ϕ is given in W 0

0 and {ϕε} is the
corresponding sequence given by Lemma 1, then for every ψ ∈ D(0, T ) we have

lim
ε→0

∫ T

0

∫
Qε

Aε∇uεψ∇ϕε dx dt =
∫ T

0

∫
Q0

A0∇uψ∇ϕ dx dt. (69)

Moreover, ⎧⎨
⎩

(i) χQε1
Aε∇uε ⇀ χQ1

A0∇u weakly in L2(0, T ; (L2(Q))N ),

(i i) χQε2
Aε∇uε ⇀ χQ2

A0∇u weakly in L2(0, T ; (L2(Q))N ).
(70)

where A0 is given by (58).

Proof For fixed δ > 0, let Qδ
1 and Πδ be defined by (32) and (35), respectively. This implies that for ε

sufficiently small, we have (up a subsequence)

Aε∇uε ⇀ ξδ weakly in L2(0, T ; L2(Qδ
1)). (71)

Then, the classical homogenization methods used with test functions inD(Qδ
1) give the following convergence

of the flux, as ε → 0,
Aε∇uε ⇀ A0∇u weakly in L2(0, T ; L2(Qδ

1)). (72)

Hence, for any ϕ ∈ W 0
0 if {ϕε} is the corresponding sequence given by Lemma 1 we have

∫ T

0

∫
Qδ
1

Aε∇uεψ∇ϕε dx dt →
∫ T

0

∫
Qδ
1

A0∇u ψ∇ϕ dx dt, (73)

as ε → 0. Now, on the region Πδ , from (7), Theorem 2 and convergence (34) (iii) from Lemma 1, we have

lim
ε→0

∣∣∣
∫ T

0

∫
Πδ\Γε

Aε∇uεψ∇ϕε dx dt
∣∣∣

≤ lim
ε→0

‖Aε∇uε‖L2(0,T ;L2(Πδ\Γε))
‖ψ∇ϕε‖L2(0,T ;L2(Πδ\Γε))

≤ lim
ε→0

βC‖uε‖L2(0,T ;W ε
0 )‖∇ϕε‖L2(Πδ\Γε)

≤ C lim
ε→0

‖∇ϕε‖L2(Πδ\Γε)

= C‖∇ϕ‖L2(Πδ\Γ0)
.

Since the right-hand side of this inequality goes to zero as δ → 0, this together with (73) implies that

lim
ε→0

∫ T

0

∫
Qε1

Aε∇uεψ∇ϕε1 dx dt =
∫ T

0

∫
Q1

A0∇u∇ϕ1 dx dt. (74)
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In a similar manner using Q2 instead of Qδ
1 in (71)–(73) we obtain

lim
ε→0

∫ T

0

∫
Qε2

Aε∇uεψ∇ϕε2 dx dt =
∫ T

0

∫
Q2

A0∇u∇ψϕ2 dx dt.

This together with (74) gives (69).
Now, the sequence {χQε1

Aε∇uε} is weakly compact in L2(0, T ; L2(Q)) because of (7) and (30) (iii).

Using (72) and the arguments to show (37) (ii), convergence (70) (i) is proved. In a similar manner, one can
show (70) (ii). ��

We present below a technical result which concerns passing to the limit in the boundary term and it will
prove very useful in what follows. The result was proved for the static case in [15] (see also [16]) and the
time-domain version we present here follows immediately by integrating in time.

Proposition 4 [15] Let {wε} be a sequence such that wε ∈ Wε for every ε and

‖wε‖L2(0,T ;W ε
0 ) ≤ c, ‖wε1 − wε2‖L2(0,T ;L2(Γε))

≤ c ε− γ
2 , (75)

where c is a constant independent on ε. Suppose that for some w ∈ L2(0, T ;W 0
0 ) one has

{
(i) wε → w, strongly in L2(0, T ; L2(Q)),

(ii) χQεi∇wε ⇀ χQi∇w, weakly in L2(0, T ; (L2(Q))N ).

– If (60) (ii) holds, then

w belong to L2(0, T ; H1
0 (Q)).

Suppose now that {ψε} is another sequence verifying the same estimates (75) such that for some ψ ∈
L2(0, T ;W 0

0 ) {
( i) ψε → ψ, strongly in L2(0, T ; L2(Q)),

(ii) χQεi∇ψε ⇀ χQi∇ψ, weakly in L2(0, T ; (L2(Q))N ).

– If (60) (i) holds, then

lim
ε→0

εγ

∫ t

0

∫
Γε

hε(wε1 − wε2)(ψε1 − ψε2) dσ ds

= H(g, h)

∫ t

0

∫
Γ0

(w1 − w2)(ψ1 − ψ2) dσ ds, (76)

for every t ∈ [0, T ], where H(g, h) is given by (65).
– If (60) (iii) holds, then

lim
ε→0

εγ

∫ t

0

∫
Γε

hε(wε1 − wε2)(ψε1 − ψε2) dσ ds = 0, (77)

for every t ∈ [0, T ].
Proof of Theorem 5 Convergences (62) and (63) follow, for a subsequence, from (53) and (70), respectively.
Weneed to identify the limit u. To this aim,we letψ ∈ D(0, T ) andϕ inW 0

0 , denoting by {ϕε} the corresponding
sequence given by Lemma 1.

In the variational formulation (28), take (ϕε1ψ, ϕε2ψ) as test function so that

〈u′
ε1, ϕε1ψ〉(W ε

01)
′,W ε

01
+ 〈u′

ε2, ϕε2ψ〉(W ε
02)

′,W ε
02

+
∫
Qε

Aε∇uε∇ϕεψ dx

+ εγ

∫
Γε

hε(uε1 − uε2)(ϕε1 − ϕε2)ψ dσ =
∫
Q

f ϕεψ dx .
(78)
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Integrating both sides with respect to t and by Remark 3, we get

−
∫ T

0

∫
Qε

uεϕεψ
′ dx dt +

∫ T

0

∫
Qε

Aε∇uε∇ϕεψ dx dt

+ εγ

∫ T

0

∫
Γε

hε(uε1 − uε2)(ϕε1 − ϕε2)ψ dσ =
∫ T

0

∫
Q

f ϕεψ dx . (79)

Using (34) (i) and (53) (i),

lim
ε→

∫ T

0

∫
Qε

uεϕεψ
′ dx dt =

∫ T

0

∫
Q
uϕψ ′ dx dt. (80)

On the other hand, by Proposition 3,

lim
ε→0

∫ T

0

∫
Qε

Aε∇uε∇ϕεψ dx dt =
∫ T

0

∫
Q0

A0∇u∇ϕψ dx dt. (81)

For the limit involving the boundary term, that is, the third term on the left-hand side of (79), we distinguish
the values of γ and κ according to (60).

First, suppose that (60) (i) holds. Then by Proposition 4, we have (76), that is,

lim
ε→0

εγ

∫ T

0

∫
Γε

hε(uε1 − uε2)(ϕε1 − ϕε2)ψ dσ dt

= H(g, h)

∫ T

0

∫
Γ0

(u1 − u2)(ϕ1 − ϕ2)ψ dσ dt, (82)

where H(g, h) is given by (65).
Hence, letting ε → 0 in (79) and combining (80)–(82) together with (34) (i), we have

−
∫ T

0

∫
Q
uϕψ ′ dx dt +

∫ T

0

∫
Q0

A0∇u∇ϕψ dx dt

+ H(g, h)

∫ T

0

∫
Γ0

(u1 − u2)(ϕ1 − ϕ2)ψ dσ dt =
∫ T

0

∫
Q

f ϕψ dx dt.

Next, assume that (60) (ii) is true. By Proposition 4, u belongs to L2(0, T ; H1
0 (Q)). Let ψ ∈ D(0, T ) and

ϕ ∈ D(Q). Choosing ϕψ as test function in the variational formulation (28), as ε → 0, no boundary terms
appear and we deduce that

u′ = div(A0∇u) + f ∈ L2(0, T ; H−1(Q)).

Thus, u belongs to L2(0, T ; H1
0 (Q)) with u′ ∈ L2(0, T ; H−1(Q)) and is solution of the equation in problem

(66).
Finally, if (60) (iii) is satisfied then by Proposition 4,

lim
ε→0

εγ

∫ T

0

∫
Γε

hε(uε1 − uε2)(ϕε1 − ϕε2)ψ dσ dt = 0.

Arguing as above, this implies together with (80) and (81) that ui , i = 1, 2 is a solution of the Neumann
problem (66) ⎧⎨

⎩
u′
i − div(A0∇u1) = f in Qi×]0, T [,

A0∇ui · n = 0 on Γ0×]0, T [,
u = 0 on ∂Qi \ Γ0.
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It remains to check that in the three cases, u satisfies the initial condition. Let ϕ = (ϕ1, ϕ2) in D(Q1) ×
D(Q2) and ψ ∈ C∞([0, T ]) with ψ(T ) = 0 and ψ(0) = 1. For ε small enough and using (ϕ1ψ, ϕ2ψ) as test
function in (28), we have

∫ T

0
〈u′

ε1, ϕ1ψ〉(W ε
01)

′,W ε
01
dt +

∫ T

0
〈u′

ε2, ϕ2ψ〉(W ε
02)

′,W ε
02
dt

+
∫ T

0

∫
Qε

Aε∇uε∇ϕψ dx dt =
∫ T

0

∫
Q

f ϕψ dx dt. (83)

Since ψ(0) = 1, using the initial condition in problem (28), we get
⎧⎪⎪⎨
⎪⎪⎩

∫ T

0
〈u′

ε1, ϕ1ψ〉(W ε
01)

′,W ε
01
dt = −

∫
Qε1

u0ε1ϕ1 dx −
∫ T

0

∫
Qε1

uε1ϕ1ψ
′ dx dt

∫ T

0
〈u′

ε2, ϕ2ψ〉(W ε
02)

′,W ε
02
dt = −

∫
Qε2

u0ε2ϕ2 dx −
∫ T

0

∫
Qε2

uε2ϕ2ψ
′ dx dt

Substituting these identities in (83) gives

−
∫
Q
u0εϕ dx −

∫ T

0

∫
Qε1

uεϕψ ′ dx dt +
∫ T

0

∫
Qε

Aε∇uε∇ϕψ dx dt

=
∫ T

0

∫
Q

f ϕψ dx dt.

In view of (61), (62) (i) and Proposition 3 we can pass to the limit as ε → 0 in this identity to obtain

−
∫
Q
u0ϕ dx −

∫ T

0

∫
Q
uϕψ ′ dx dt +

∫ T

0

∫
Q0

A0∇u∇ϕψ dx dt

=
∫ T

0

∫
Q

f ϕψ dx dt. (84)

On the other hand, using again ϕψ as test function in (78) with ψ(0) = 1 and ψ(T ) = 0 and passing now
to the limit in the duality pairing, thanks to (16) and (54), (55), after integrating with respect to t we obtain

〈u′, ψϕ〉L2(0,T ;H−1(Q1)×H−1(Q2)),L2(0,T ;H1
0 (Q1)×H1

0 (Q2))

+
∫ T

0

∫
Q0

A0∇u∇ϕψ dx dt =
∫ T

0

∫
Q

f ϕψ dx dt.
(85)

Integrating by parts in (85) we have

−
∫
Q
u(0)ϕ dx −

∫ T

0

∫
Q
uϕψ ′ dx dt +

∫ T

0

∫
Q0

A0∇u∇ϕψ dx dt

=
∫ T

0

∫
Q

f ϕψ dx dt.

(86)

From (84) and (86), we conclude that ∫
Q
(u(0) − u0)ϕ dx = 0

for every ϕ1 = (ϕ1, ϕ2) in D(Q1) × D(Q2), which implies that

u(0) = u0. (87)

To conclude the proof, observe that limit problems (64), (66), (67) and (68) have unique solutions since
A0 is positive definite. Hence, all the convergences involved for the three cases hold for the whole sequences.

��



P. Donato et al.

6 Corrector results

We complete here the convergences for the sequence of solutions {uε} of problem (28) proved in Sect. 5. The
following proposition provides the main tool for the corrector analysis, and it will be proved at the end of this
section.

Let us first introduce Cε = (Cε
i j )1≤i, j≤N , the classical corrector matrix (see for instance [3], [11]), given

by ⎧⎪⎨
⎪⎩
Cε
i j (x) = Ci j

( x
ε

)
, a.e. on Q

Ci j (y) = ∂w j

∂yi
(y), i, j = 1, . . . , N a.e. on Y.

(88)

where {e j }Nj=1 denotes the canonical basis of R
N and w j is the solution of problem (59), written for λ = e j .

Proposition 5 Assume the same hypothesis as in Theorem 5. Let ϕ = (ϕ1, ϕ2) with ϕi ∈ C∞(0, T ;D(Qi ))
and let Φ = (Φ1, Φ2) with Φi = (Φi1, Φi2, . . . , Φi N ) ∈ C∞(0, T ; (D(Qi ))

N ) for i = 1, 2. Let Fε, F0 be
defined by

Fε(t) = 1

2
‖uε(t) − ϕ(t)‖2L2(Qε)

+
∫ t

0

∫
Qε

Aε(∇uε − CεΦ)(∇uε − CεΦ)dxds

+ εγ

∫ t

0

∫
Γε

hε(uε1 − uε2)
2dσ ds (89)

and

F0(t) = 1

2
‖u(t) − ϕ(t)‖2L2(Q)

+
∫ t

0

∫
Q0

A0(∇u − Φ)(∇u − Φ) dx ds

+
∫ t

0

∫
Γ0

B(u1 − u2)
2dσ ds

for t ∈ [0, T ], with
B =

{
H(g, h), if (60) (i)
0, if (60) (i i) or (60) (i i i)

(90)

and where H(g, h) is defined at (65). Then, if

u0ε → u0 strongly in L2(Q), (91)

we have
lim
ε→0

||Fε − F0||C0[0,T ] = 0. (92)

Remark 6 Assuming the same hypothesis as in Proposition 5 and consider Eε, E0 defined by,

Eε(t) = 1

2
‖uε(t)‖2L2(Q)

+
∫ t

0

∫
Qε

Aε∇uε∇uεdx ds + εγ

∫ t

0

∫
Γε

hε(uε1 − uε2)
2dσ ds

E0(t) = 1

2
‖u(t)‖2L2(Q)

+
∫ t

0

∫
Q0

A0∇u∇u dx ds +
∫ t

0

∫
Γ0

B(u1 − u2)
2dσ ds

with B defined as in (90). Then, Proposition 5 for ϕ ≡ 0 and Φ ≡ 0 in R
N implies the following convergence

of the energies:
lim
ε→0

||Eε − E0||C0[0,T ] = 0.

Before providing the proof of Proposition 5, we will present its main consequence, which is the corrector
result stated in Theorem 6. Its proof makes use of the following technical lemma, which is well known in real
analysis as Dini’s Theorem:

Lemma 2 [24] Let {gε} be a sequence of non-decreasing real functions defined on a compact interval I of R,
which pointwise converges to a continuous function g on I . Then, gε converges to g uniformly on I .
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Theorem 6 Let uε be the solution of problem (28). Under the assumptions of Theorem 5, we have the following
convergences: {

(i) uε → u in C0([0, T ]; L2(Q)),

(i i) lim
ε→0

‖∇uε − Cε∇u‖L2(0,T ;[L1(Qε)]N ) = 0,

where Cε = (Cε
i j )1≤i, j≤n is the classical corrector matrix described in (88).

Proof By density, for every δ > 0 there exist ϕδ ∈ C∞(0, T ;D(Q)) and a vector function Φδ = (Φδ
1, Φ

δ
2)

with Φδ
i = (Φδ

i1, . . . , Φ
δ
i N ) in C∞(0, T ;D(Qi )

N ), i = 1, 2 satisfying
{

(i) ‖u − ϕδ‖C0([0,T ];L2(Q)) ≤ δ

(i i) ‖∇u − Φδ‖(L2(0,T,L2(Q0)))N
≤ δ.

(93)

Define

Gε(t) = Fε(t) − εγ

∫ t

0

∫
Γε

hε(uε1 − uε2)
2dσ ds,

G0(t) = F0(t) −
∫ t

0

∫
Γ0

B(u1 − u2)
2dσ ds,

(94)

for t ∈ [0, T ], where Fε, F0 are defined in (89) for ϕ = ϕδ, Φi = Φδ
i for i = 1, 2.

Let us prove that (92) and Proposition 4 imply

lim sup
ε→0

‖Gε‖C0[0,T ] ≤ ‖G0‖C0[0,T ] ≤ Cδ2. (95)

To do that, suppose first that (60) (i) or respectively (60) (iii) hold true. We apply Lemma 2 to the functions

gε = εγ

∫ t

0

∫
Γε

hε(uε1 − uε2)
2dσ ds, (96)

which are non-decreasing on [0, T ] to deduce that convergences (76) or (77) are uniform in [0, T ]. This
together with (92) and the definition of B at (90) imply (95).

On the other hand, if (60) (ii) holds true, then by using

Gε(t) ≤ Fε(t), for t ∈ [0, T ],
and taking the supremum with respect to t ∈ [0, T ] above and in view of (90) and (92) we obtain (95) in this
case as well. Next, the triangle inequality and (93) (i), give

‖uε − u‖2C0([0,T ];L2(Q))
≤ 2

(
‖uε − ϕδ‖2C0([0,T ];L2(Q))

+ ‖ϕδ − u‖2C0([0,T ];L2(Q))

)

≤ 2‖uε − ϕδ‖2C0([0,T ];L2(Q))
+ 2δ2.

(97)

The ellipticity of Aε implies
‖uε − ϕδ‖2C0([0,T ];L2(Q))

≤ 2‖Gε‖C0[0,T ]. (98)

From (95), (97) and (98) it follows that

lim sup
ε→0

‖uε − u‖2C0([0,T ];L2(Q))
≤ Cδ2. (99)

On the other hand, by the triangle inequality and Hölder inequality,

∫ T

0
‖∇uε − Cε∇u‖[L1(Qε)]N dt ≤ 2

∫ T

0
‖∇uε − CεΦδ‖[L1(Qε)]N dt

+ 2‖Cε‖[L2(Q)]N2

∫ T

0
‖Φδ − ∇u‖[L2(Qε)]N dt.

(100)
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The boundedness of Cε, (93), (94) and the ellipticity of Aε imply that
∫ T

0
‖∇uε − Cε∇u‖[L1(Qε)]N dt ≤ C‖Gε‖C0[0,T ]. (101)

Thus by using (95), (100), (101) we obtain

lim sup
ε→0

‖∇uε − Cε∇u‖L2(0,T ;[L1(Qε)]N ) ≤ Cδ2. (102)

The arbitrariness of δ in (99) and (102) implies the result. ��
Remark 7 Note that the sequence {gε} defined by (96) is equibounded but not equicontinuous, so that we
cannot apply the classical Ascoli–Arzela theorem to prove its uniform convergence in [0, T ]. Nevertheless,
we are able to overcome this difficulty by making use of Lemma 2.

Proof of Proposition 5 Observe that (89) can be written as

Fε(t)= 1

2
‖uε(t)−ϕ(t)‖2L2(Q)

+
∫ t

0

∫
Qε

Aε(∇uε − CεΦ)(∇uε − CεΦ)dxds

+ εγ

∫ t

0

∫
Γε

hε ·(uε1 − uε2)
2dσ ds

= 1

2
‖uε(t)‖2L2(Q)

−
∫
Q
uε(t)ϕ(t)dx + 1

2
‖ϕ(t)‖2L2(Q)

+
∫ t

0

∫
Qε

Aε∇uε∇uε dxds

+εγ

∫ t

0

∫
Γε

hε ·(uε1 − uε2)
2dσ ds −

∫ t

0

∫
Qε

AεCεΦ∇uε dx ds

−
∫ t

0

∫
Qε

Aε∇uεC
εΦ dx ds +

∫ t

0

∫
Qε

AεCεΦCεΦ dx ds

:= η1ε(t) − η2ε (t) + η3ε(t)

where

η1ε(t) = 1

2
‖ϕ(t)‖2L2(Q)

+
∫ t

0

∫
Qε

AεCεΦCεΦ dx ds (103)

η2ε (t) =
∫
Q
uε(t)ϕ(t) dx +

∫ t

0

∫
Qε

AεCεΦ∇uε dx ds

+
∫ t

0

∫
Qε

Aε∇uεC
εΦ dx ds (104)

η3ε(t) = 1

2
‖uε(t)‖2L2(Q)

+
∫ t

0

∫
Qε

Aε∇uε∇uε dx ds

+εγ

∫ t

0

∫
Γε

hε ·(uε1 − uε2)
2dσ ds (105)

Let us study the limit of ηiε(t) as ε → 0 for each i ∈ {1, 2, 3}.
Step 1 The term η1ε(t) defined in (103) is equal to

1

2
‖ϕ(t)‖2L2(Q)

+
∫ t

0

∫
ω×]εκ

0 g,l[
AεCεΦ1C

εΦ1 dx ds +
∫ t

0

∫
Q2

AεCεΦ2C
εΦ2 dx ds.

Observe that
∃ ε0 such that suppΦ1i ⊂ ω×]εκ

0 g, l[, ∀i = 1, . . . , N . (106)

This implies that

lim
ε→0

∫ t

0

∫
ω×]εκ

0 g,l[
AεCεΦ1C

εΦ1 dx ds = lim
ε→0

∫ t

0

∫
Q1

AεCεΦ1C
εΦ1 dx ds,
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so that by (59) and standard computations,

lim
ε→0

η1ε(t) = 1

2
‖ϕ(t)‖2L2(Q)

+
∫ t

0

∫
Q0

A0ΦΦ dx ds. (107)

To show the strong convergence of η1ε(t) in C
0[0, T ], we first observe that from (7) we have

||η1ε ||C0[0,T ] ≤ 1

2
||ϕ||2C0[0,T ]

+ β
(
||Φ1||2C0(0,T,C0(Q1))

+||Φ2||2C0(0,T,C0(Q2))

)
||Cε||2L2(Q)

≤ C. (108)

Next consider h << 1. By using the same ideas in (108) we obtain

|η1ε(t + h) − η1ε(t)| ≤ ||ϕ||2C0[0,T ] +
∫ t+h

t

∫
Qε

AεCεΦCεΦ dx ds

≤ hβ
(
||Φ1||2C0(0,T,C0(Q1))

+ ||Φ2||2C0(0,T,C0(Q2))

)
||Cε||2L2(Q)

≤ Ch. (109)

By Ascoli–Arzela theorem, (107) and estimates (108) and (109) imply

η1ε(t) → 1

2
‖ϕ(t)‖2L2(Q)

+
∫ t

0

∫
Q0

A0ΦΦ dx ds uniformly for t ∈ [0, T ]. (110)

Step 2 Next we proceed to study the term η2ε (t) defined in (104). In this regard, we rewrite η2ε (t) as

η2ε (t) = κ1
ε (t) + κ2

ε (t) + κ3
ε (t),

where

κ1
ε (t) =

∫
Q
uε(t)ϕ(t) dx, (111)

κ2
ε (t) =

∫ t

0

∫
Qε

AεCεΦ∇uε dx ds, (112)

κ3
ε (t) =

∫ t

0

∫
Qε

Aε∇uεC
εΦ dx ds. (113)

• We perform now the limit analysis of κ1
ε defined in (111). Using integration by parts, taking ϕ as a test

function in (28) and integrating in time we obtain

κ1
ε (t) =

∫
Q
uε(0)ϕ(0) dx +

∫ t

0
〈u′

ε, ϕ〉(W ε
0 )′,W ε

0
+

∫ t

0
〈uε, ϕ

′〉(W ε
0 )′,W ε

0

=
∫
Q
u0εϕ(0) dx −

∫ t

0

∫
Qε

Aε∇uε∇ϕ dx ds +
∫ t

0

∫
Q

f ϕ dx ds

+
∫ t

0

∫
Q
uεϕ

′dx dt

From (61), (63), (62) (i) and (87) for every t ∈ [0, T ] we obtain

κ1
ε (t) →

∫
Q
u(0)ϕ(0) dx −

∫ t

0

∫
Q0

A0∇u∇ϕ dx ds +
∫ t

0

∫
Q

f ϕ dx ds +
∫ t

0

∫
Q
uϕ′dx dt.

Using ϕ as a test function in the limit problem for u (described in Theorem 5) and integration by parts with
respect to time, we obtain

κ1
ε (t) →

∫
Q
u(t)ϕ dx for every t ∈ [0, T ]. (114)
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Next, from (7), (29), (30) (iii) and Hölder inequality we obtain

|κ1
ε (t)| ≤ C1

(
||u0ε ||L2(Q) + β||∇uε||L2(0,T,W ε

0 ) + || f ||L2(0,T,L2(Q)) + ||uε||L2(0,T,W ε
0 )

)
≤ C independent of t. (115)

For h << 1, by using the same ideas in (115) we deduce

|κ1
ε (t + h) − κ1

ε (t)| ≤
∣∣∣∣
∫ t+h

t

∫
Qε

Aε∇uε∇ϕ dx ds

∣∣∣∣+
∣∣∣∣
∫ t+h

t

∫
Q

f ϕ dx ds

∣∣∣∣
+

∣∣∣∣
∫ t+h

t

∫
Q
uεϕ

′dx dt
∣∣∣∣

≤ h
1
2

(
β||∇uε||L2(0,T,W ε

0 ) + || f ||L2(0,T,L2(Q) + ||uε||L2(0,T,W ε
0 )

)

≤ Ch
1
2 . (116)

As above, (114)–(116) imply

κ1
ε (t) →

∫
Q
u(t)ϕ dx strongly in C0[0, T ]. (117)

• For the second term κ2
ε (t) defined in (112), we write,

κ2
ε (t) =

∫ t

0

∫
Q1

AεCεΦ1∇uε1 dx ds +
∫ t

0

∫
Q2

AεCεΦ2∇uε2 dx ds.

From (58), if wi is given for λ = ei and wε
i = εwi (

x
ε
) a.e. in R

N then
⎧⎨
⎩

wε
i ⇀ xi weakly in H1(Q),

wε
i → xi strongly in L2(Q),

Aε∇wε
i ⇀ A0ei weakly in (L2(Q))N .

(118)

By a change of scale, ∫ t

0

∫
Ω

Aε∇wε
i ∇v dx ds = 0 ∀v ∈ L2(0, T, H1

0 (Ω)), (119)

for every open set Ω ⊂ R
N . It follows from (118), (119) and (62) (i) that

∫ t

0

∫
Q1

AεCεΦ1∇uε1 dx ds =
∫ t

0

∫
Q1

Aε∇wε
i ∇(Φ1i uε1) dx ds

−
∫ t

0

∫
Q1

Aε∇wε
i ∇Φ1i uε1 dx ds

= −
∫ t

0

∫
Q1

Aε∇wε
i ∇Φ1i uε1 dx ds

→ −
∫ t

0

∫
Q1

A0ei∇Φ1i u1 dx ds,

(120)

where Einstein index summation was used in the above. In a similar manner,∫ t

0

∫
Q2

AεCεΦ2∇uε2 dx ds → −
∫ t

0

∫
Q2

A0ei∇Φ2i u2 dx ds. (121)

Therefore, applying again integration by parts in the limit integrals in (120) and (121) we obtain

lim
ε→0

κ2
ε (t) =

∫ t

0

∫
Q0

A0Φ∇u dx ds. (122)
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Now, it follows from (30) (i) and the properties of Φ, Aε and Cε that κ2
ε (t) is bounded in H1(0, T ). Hence,

by using this and the compactness of the injection H1(0, T ) ⊂ C0(0, T ) in (122) we obtain

lim
ε→0

κ2
ε (t) =

∫ t

0

∫
Q0

A0Φ∇u dx ds, strongly in C0[0, T ]. (123)

• To handle κ3
ε (t) introduced in (113), we choose the test function v = Φiw

ε
i in the variational formulation

(28). Observe that

κ3
ε (t) =

∫ t

0

∫
Qε

Aε∇uεΦi∇wε
i dx ds

=
∫ t

0

∫
Qε

Aε∇uε∇(Φiw
ε
i ) dx ds −

∫ t

0

∫
Qε

Aε∇uε∇Φiw
ε
i dx ds

=
∫ t

0

∫
Qε

f Φiw
ε
i dx ds −

∫ t

0
〈u′

ε1, Φiw
ε
i 〉 ds −

∫ t

0
〈u′

ε2, Φiw
ε
i 〉 ds

− εγ

∫ t

0

∫
Γε

hε(uε1 − uε2)((Φwε
i )1 − (Φwε

i )2) dσ ds

−
∫ t

0

∫
Qε

Aε∇uε∇Φiw
ε
i dx ds.

Now, since (106) holds and for ε ≤ ε0, supp(Φ2) ⊂ Q2, we have

εγ

∫ t

0

∫
Γε

hε(uε1 − uε2)((Φwε
i )1 − (Φwε

i )2) dσ ds → 0, (124)

as ε → 0. On the other hand, by Remark 3 and considering (55) (extended to L2(0, T, H1
0 (Q0) by a classical

density argument), using (118) we get

lim
ε→0

(∫ t

0
〈u′

ε1, Φiw
ε
i 〉 ds +

∫ t

0
〈u′

ε2, Φiw
ε
i 〉 ds

)
= lim

ε→0

∫ t

0
〈u′

ε, Φiw
ε
i 〉 ds

=
∫ t

0
〈u′, Φi xi 〉 ds.

(125)

Using (124) and (125) and together with (118) and (63), we have

lim
ε→0

κ3
ε (t) =

∫ t

0

∫
Q

f Φi xi dx ds −
∫ t

0
〈u′, Φi xi 〉 ds −

∫ t

0

∫
Q0

A0∇u∇Φi xi dx ds

=
∫ t

0

∫
Q

f Φi xi dx ds −
∫ t

0
〈u′, Φi xi 〉 ds −

∫ t

0

∫
Q0

A0∇u∇(Φi xi ) dx ds

+
∫ t

0

∫
Q0

A0∇uΦ dx ds.

(126)

Using the fact that (106) holds and supp(Φi ) ⊂ Qi , i = 1, 2, considering the limit problems satisfied by u
(see Theorem 5), we obtain

∫ t

0

∫
Q0

A0∇u∇(Φi xi ) dx ds =
∫ t

0

∫
Q

f Φi xi dx ds −
∫ t

0
〈u′, Φi xi 〉 ds. (127)

Combining (126) and (127), it follows that

lim
ε→0

κ3
ε (t) =

∫ t

0

∫
Q0

A0∇uΦ dx ds.
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Now, observe that by (63), the definition of Cε, assumption on Φ and the Hölder’s inequality,

|κ3
ε (t)| ≤ ‖Aε∇uε‖L2(0,T ;[L2(Q)]n‖Cε‖[L2(Q)]n2 ‖Φ‖L∞(0,T ;[L2(Q)]n ≤ c,

where c is independent of t . Moreover, for any h > 0 small enough,

|κ3
ε (t + h) − κ3

ε (t)| ≤ ‖Aε∇uε‖L2(0,T ;[L2(Q)]n‖Cε‖[L2(Q)]n2 h
1
2 ‖Φ‖L∞(0,T ;[L2(Q)]n

≤ ch
1
2 → 0, as h → 0, uniformly in ε.

Thus, by Ascoli–Arzela theorem,

κ3
ε (t) →

∫ t

0

∫
Q0

A0∇uΦ dx ds strongly in C0([0, T ]). (128)

Combining (117), (123) and (128), we have,

lim
ε→0

η2ε (t) =
∫
Q
u(t)ϕ dx +

∫ t

0

∫
Q0

A0Φ∇u dx ds +
∫ t

0

∫
Q0

A0∇uΦ dx ds (129)

strongly in C0([0, T ]).
Step 3 Finally we discuss the limit behavior of η3ε(t) introduced in (105). Thus, taking uε as test function in
(28) and integrating with respect to time we obtain

η3ε(t) =
∫ t

0

∫
Q

f uε d ds + 1

2
‖u0ε‖2L2(Q)

.

Using (91) and (62) (i) we obtain that

lim
ε→0

η3ε(t) →
∫ t

0

∫
Q

f u dx ds + 1

2
‖u0‖2L2(Q)

, for all t ∈ [0, T ]. (130)

Next, it easy to observe that (27) and the fact that u ∈ C0(0, T, L2(Q)) imply that the sequence of functions
η3ε is equibounded and equicontinuous in C0[0, T ]. Then (130) and Ascoli–Arzela theorem imply,

η3ε(t) →
∫ t

0

∫
Q

f u dx ds + 1

2
‖u0‖2L2(Q)

, strongly in C0[0, T ]. (131)

Finally, using u as a test function in the limit problem (see Theorem 5) and integrating with respect to time,
convergence (131) becomes

η3ε(t) → 1

2
‖u(t)‖2L2(Q)

+
∫ t

0

∫
Q0

A0∇u∇u dx ds

+
∫ t

0

∫
Γ0

B(u1 − u2)
2dσ ds

(132)

strongly in C0[0, T ]. Finally, from (110), (129) and (132) we obtain (92). ��
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7 Physical interpretation of results and applications

In this section, wewill first offer a discussion on the physical interpretation of the homogenization and corrector
results presented in Theorems 5 and 6 followed by a brief account of possible applications of our study and
future work.

Let us assume a three-dimensional space. The main question addressed in the paper is mathematically
described in (26) (see also Fig. 1), and it is our aim to characterize a computationally feasible macroscale
model to describe the multiscale problem of heat flow through two different microstructures (of characteristic
length ε << 1) separated by a rough interface, the geometry of which depends in a prescribed fashion when
ε << 1. For simplicity, we will further assume h = 1 in (26) and |ω| = 1 in (11) where here and in what
follows |S| denotes the area of the set S ⊂ R

2.
First, we note that in the formulation of our main problem (26), the condition on the interface Γε relating

the fluxes and the jump of the temperature is written per unit area. Hence, the actual microscale physical heat
transfer coefficient (the proportionality constant), Kε, between the heat flux through Γε and the temperature
over Γε is given by

Kε = εγ |Γε|. (133)

Next, recall that the area of a surface S described by z = f (ξ ′) = f (ξ1, ξ2) for ξ ′ ∈ Σ and some arbitrary
smooth function f is given by

|S| =
∫

Σ

√
1 + f 2ξ1(ξ

′) + f 2ξ2(ξ
′)dξ ′. (134)

where fξi denotes the partial derivative of the function f with respect to its i th variable. Assuming that the
function g introduced in (2) is smooth enough, from (134) and the definition of Γε in (5), we have

|Γε| =
∫

ω

√
1 + ε2κ−2g2x1

(
x ′

ε

)
+ ε2κ−2g2x2

(
x ′

ε

)
dx ′. (135)

From (135) it easily follows that:

Kε

εγ
→ 1, if κ > 1

Kε

εγ+κ−1 → mY ′(|∇g|), if 0 < κ < 1

Kε

εγ
→ mY ′

(√
1 + |∇g|2

)
, if κ = 1, (136)

where mY ′( f ) denotes the average on Y ′ (the surface reference cell) of the function f .
The results in (136) explain then the behavior obtained in Theorem 5. Indeed,

1. If (κ ≥ 1 and γ = 0) or (0 < κ < 1 and γ = 1 − κ), then the heat transfer coefficient on the interface
Kε approaches a constant for ε << 1 (ε infinitely small) and thus the homogenous macroscale problem
is modeled by a parabolic PDE over a domain separated by a hyperplane Γ0 with the continuous flux
proportional to the temperature jump across it with proportionality constant given by the constant limit of
Kε.

2. If (κ ≥ 1 and γ < 0), then the heat transfer coefficient on the interface satisfies Kε ≈ εγ for ε << 1.
Similarly, if (0 < κ < 1 and γ < 1 − κ) then Kε ≈ εγ+κ−1 for ε << 1. In both of these situations, the
heat transfer coefficient on the interface, i.e., Kε, becomes infinitely large for ε → 0 and so, a realistic finite
flux across the interface implicitly implies that the temperature becomes continuous across the interface in
the limit when ε → 0. Hence, as a consequence, the contribution of the microscale transmission interface
disappears in the homogenized limit and the macroscale model is governed by a parabolic PDE in the
whole domain with homogeneous Dirichlet boundary conditions.

3. As above, if (κ ≥ 1 and γ > 0) or respectively (0 < κ < 1 and γ > 1 − κ), the heat transfer coefficient
on the interface satisfies Kε ≈ εγ and respectively Kε ≈ εγ+κ−1 for ε << 1. In both of these situations,
the heat transfer coefficient on the interface, i.e., Kε, approaches zero as ε → 0 and so the microscale
transmission interface has a very strong effect in the limit and the macroscale problem is modeled by a
parabolic homogenized PDE on two disjoint domains with identical initial conditions and homogeneous
mixed boundary conditions, zero flux on the flat part of the boundary and zero temperature otherwise.
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In Sect. 6, we present the corrector analysis for our homogenization result. First, the result of Remark 6
states the fact that the energy associated with the multiscale model (26) approaches (as ε → 0) the energy
of the limit problem presented in Theorem 5. Thus, as expected from the physical point of view, for a given
microscale ε, the energy of the proposed macroscale model will be close to the energy of the multiscale
problem. Then, the corrector results of Theorem 6 show that the macroscale problem given in Theorem 5 can
indeed be used for an approximation for the evolution of both the microscale temperature and its gradient.

A direct application of our results could be their use as part of alternative strategies for the design of efficient
material interfaces between given microstructures with the purpose of controlling the overall heat transfer.
Another important application of our results will be for the associated multiscale approximate controllability
problem where prescribed controls described as interior heat sources [mathematically appearing as additional
additive terms in the right-hand side of the PDE (26)] will be employed to satisfy certain global optimality
constraints. Because these controls will also depend on the microscale ε << 1, the overall multiscale solution
will be very difficult to compute and so a homogenized macroscale model (PDE + control) will be desired
instead. This problem will be studied, and the results will be reported in a forthcoming paper.
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