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1 Introduction _

The Periodic Unfolding Method, was first introduced in (4], (see also [6]}, for the
homogenization of problems in fixed as well as in variable domains, whenever one can
assume the scale separation.

The Method is operatorial in essence, and based on the properties of the Unfolding Op-
erator. The Unfolding Operator, depends on the structure of the problem to be analyzed,
and is defined as

T.: I(,) — L*(©, x Y)

where §), = U (e€+€Y) and Z, = {€ € ZV; (£ +€Y)NQ # #}. One of the main properties

€E,

of the Unfolfiing Operator is that it replace, integrals on 1, with integrals on the product
space £ X Y and weak convergence by strong convergence.

In this paper we present the limit analysis for the classic Neumann Sieve model and the
thick Neumann Sieve model. The geometry of the model is composed of a domain £ cut
in two parts by a hyperplane ¥ which, for the simplicity of the exposition is assumed
to be a subset of the plane II = {zy =0}. A periodical 2-dimensional network of size
¢ is considered on X, and an open set (hole in the sieve) is brought by scaling of ratio
de in each cell of the network, where § = d(¢). Let the reunion of all the barriers be
denoted by T.. Then, the barriers T, are considered part of the domain and Neumann
homogenous boundary condition are imposed on ¥\ 7.. When the Sieve has a certain
thickness A{¢) > 0 we have the thick Neumann Sieve model. We will only consider in this

paper the case when h(e) < ¢ the other situations being trivial. Depending on the limit
N2
behavior of the ratio

we obtain different limit equations. In order to obtain the

limit problems for these ?nodels we define the bl-Unfolding Operator, which characterizes
the geometry of the models, and acts only on a thin layer of size ¢ around the hyperplane
‘%, We present a few of its most important properties and apply the Periodic Unfolding
Method to complete our limit analysis. The homogenization of the classical Neumann
Sieve was discussed by many authors, see ([5], [11], [1], [18],[12]). The e-problem can be
expressed in a variational form as,

Vu Nydr =/ fi for all ¥ eV,

a2, 2.

where Q, = Q\ {E\ T.}. Let BY = {(¢',zn) ,zx > 0} and similarly define RY. If we
set 2, = QN RY and similarly for Q_, then we can write V, = {v € H'(f, UQ_) ;v =
Oon 0Q;[v] =0 on T.}, where [v] = v*|g — v~ |g for every function » € H'(Q, UQ_).
The solution u, converges weakly in (2, US1_) to a limit function ug. It is well-known
that up satisfies the following problem,

—Aug=f on QU0
Jug  Buy K . (1)
ant on- v o0

where n¥ and n” are the normals to & towards (2_ and 2, respectively and gz equals

the usual capacity of the set 7. The nonlinear Neuma.nn Sieve was recently dlscussed
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([2]) where P-convergence techniques are used.
In Section 3 we obtain the unfolded limit problem for this model and as a simple conse-
), for the quence of this result we recover problem™1) for ug. Although the limit problem for ug is
-r’ one can well-known in the mathematical community, our proof provides the unfolded formulation

for the limit problem which contain in it the problem for uy together with useful corrector
information. The idea of the proof is new and highlights the elegance of the Periodic
Unfolding Method, when one uses the Unfolding Operator which is well adapted to the
model.

The homogenization of the thick Neumann Sieve was studied in [20], for the case of an
uniform Sieve (i.e, it has an uniform thickness), symmetric with respect to X. Our model
properties is different then the one proposed in [10] in the sense that the sieve is nonuniform, but we
suppose that domain has the extension property as defined in [7]( this is not the case in

ding Op-
analyzed,

1e product [10]). To analyze the case of symmetric thick sieve we use similar arguments as in Section
3.
el and the The paper is organized as follows: In Section 2 we present the basic properties of the
1ain £ cut Unfolding Operator. In Section 3 we introduce the functional setting for our models and
5 assumed present the bl-Unfolding Operator with its most important properties. In Section 4 we
ark of size study the homogenization of the Neumann Sieve Model. The thick Neumann Sieve model
1g of ratio Is presented in Section 5. As an application we will show how the bl-Unfolding Operator
rarriers be can be used to pass to the limit in both models, the classical Neumann sieve model and the
Neumann thick Neumann sieve model. The case of non-symmetric sieve with variable coefficients,
3 a certain will be discussed in a forthcoming paper.
der in this
1 the limit ) ) .
btain the 2 General notations and properties for the Unfolding
aracterizes Operator
yperplane
Unfolding In the beginning of this section we fix a few notations which will be used frequently
Neumann in the rest of the paper. Let @ ¢ RV be an open and bounded sef, ¥ be an open cube
centered in the origin of RY, Yy = {y € ¥;yn =0}, T CC Yy and B CC Y. Let ¢ > 0,
em can be Y
4 = d(¢) > 0, be two small parameters, and define
N-2
k= lim O 2)
e—0 3
RY. If we . = N )
I 0= Consider E,={¢ € Z"; (£ + ¢Y) N # @} and define {}, = U {e£ +eY).
¢ Q). L= )
ﬁﬁ-tl-:now)n Let M C RY and A C RY. We define the capacity space corresponding to the bounded
set M C RV \ A with respect to R \ A to be,
H®Y\ Ay={2eLl*®" \ A) i V.PE[LYRY \ A)]Y and ®(z) constant on M}.  (3)
. .
) Define also the space A?(RY) as: . .
5&,—} equals K*®MY) = {®eLl"®RV\ 4);V,8¢ [LA(®N\ AV}

7 discussed
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One can consult [14] for more properties of these spaces. Now, if we have a periodic net
on RY with period Y, by analogy with the one-dimensional case, to each z € RY we can
associate its integer part, [z]y, such that = — (z]y € Y and its fractional part respectively,
ie, {z}y =z — [z]y. Therefore we have:

xne{f} +e[£] for any z € RV,
ely ely

Next, consider the hyperplane II = {z) = 0} and define & = IIN Q. For any given set
A C R, we will systematically use the notation A, for RY A and A_ for ¥ N A manner.
For the simplicity of the exposition we will make the convention that all the results stated
for A, are true also for A_ unless specified otherwise. We denote by n* the normal to
3 oriented toward 2_.

For a function u, by ut we denote it’s restriction to the domain 1y, le, ut =ulg, Let
[] denote the jump over I, ie, [u] = uf — ug.

The letter ¢ will denote a positive constant independent of any small parameter, otherwise
specified. Let M C RY and S ¢ M. By capa(S, M) we denote the classical 2-capacity of
the set S with respect to M, see [14}.

Next we will recall the definition of the unfolding operator, as it have been introduced in
([4]) and review a few of its principal properties. Let the unfolding operator he defined
as T, : L2(Q) — L*(Q, x Y) with

T.(d)(z,y) = ¢le E]Y +ey) for all ¢ € L3(8,).
We have (see [4]):

Theorem 2.1. For any v,w € L*(}) we have

1
T (vw) = T(v)T,(w)
2.
Vy (To(w)) = €T.(Vyu) where u € HY{Q)
3 :
vdx = — T.(v)dxd
Jorie= 7 [, Hordaiy
4 _
/ﬂ vdz — /ﬂ o T(v)dzdy} < [vl, (eq. dist(z,00)</(n)e})

5.

T(w) = w strongly in [*(QxY)
6. Let {w.} C LA(Q) such that w, — w in LX(Q). Then

T(we) ~ w in X2 x Y)
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7. Let w, — w in HYQ). Then there-ezists o subsequence still denoted by ¢ and
i € L* (Q; Hao(Y)) such that:
a) T{we) = w in L*(; H (V)
b) T.(Vw,) = Vw4 Vb in LA x Y).
See [4], [6] for the proofs and other properties of the Unfolding operator 7.

3 The bl-Unfolding operator

3.1 The functional setting

Let @ C B, Q, _, ¥ be defined as in Section 2. Define the set of the holes in the
sieve T, to be :

n=[ U {§e+65T}]ﬂQ.
c .

eZN-1x {0}
Define . = Q, UQ_UT, and & = Q. N {z; |zn} < §}.
In this section, following the idea presented in [4] we will introduce the bl-Unfolding
Operator which is designed to capture the contribution of the barriers in the limit process.

We need some more notations. Let ¥ =]—1, 1[ and let Y? =Y, UY_ UJT.
Define A, = {€ € Z¥~' x {0}; (€ + ¥*) N0 # 0} = Z, N1 and 5 = | {e +€¥?}.
EEA,
Consider also B, = {£ € ZV; &y # 0 and (e£+€Y)NQ # 0} and let U, = |, p {e€+€V}.

Let Q¢ = £ U and O, = Or NRY,.

The bl-Unfolding Operator, corresponding to the Sieve model, (see Figure 1}, is defined
as, Tos: LAHQ) — L*H x BY) with :

_ [#(e[®]),+ebzy ifdz€Y? and |zu|<t
Tesl¢)(m, 2) = { 0 if6z€RN\ Y4 or |zy| > &. @
Following the proof of Theorem 2.1 (see [4], [6]) one can show that properties similar to
1, 2, 3, and 4, hold for the bl-Unfolding Operator, 7, s (see Theorem 3.1 bellow).
Next we define the spaces

Ve{ve H{, UQ_); v=0 on 80}
VeE={veV,[v]=0 on T.}.
V is a Hilbert space with the scalar product defined by

<U,v >V=f Vu-Vv forall wveV.
)

] LU T oot
From now on we will only consider the case where k as defined in (2) satisfies:

0<k<oco. (5)
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3.2 _Estimates for the bl-Unfolding Operator
In order to obtain the estimates we will use the following identity:

Theorem 3.1. For all ¢ € L*(Q) we have that,
JN

. , iG] Tes(@)(z, 2) dzdz = f & dz.

1y xR +
Proof. We successively have

5N

m 0y xRY

1. dzd 6" 7. dxd
s(0)e. )dadz = ] e TNz =

!

z
qﬁe[—] +eyldzdy =
% £y (]2, revrdedy

:Cf
|Y| Z /n dy ]E+€Y+ B(e [?] +ey)de = gYllef + Yy | Z/ dlet + ey)dy

EYI fm x(1)¥y p(e [ ] +edz)drdz =

EEA, geA,

= -eN Z ] A{e€ + ey)dy = f ¢(z)dz, where , in the last two equalities above, we
56‘4:

have used that ¢(e [ ] +ey) = ¢(e§ +¢cy) for all x € €€ + €Y, and an obvious change of

variables. O

Corollary 3.2. Forall ¢ € L*(02.) we have that

eV

T Jougy @ Az < [ o

Proof. Note that

N
;fﬂ | Ts($)(2', z)Pde'dz < |Yf/ | Ta(6)(, 2)[2dzdz

and apply Theorem 3.1. O
From Corollary 3.2 we can obtain that for ¢ € H'({2,) we have:

e

i 41; - I, 2.4 < - 2 )
7T o el et <2[E=+ V. d (6)

Using 7. 5(V.¢) = 5V, T. s(¢), we obtain

5N2

VT s(¢)Pd'dz < S de.
T g ) mdzm2[21|V of2de GG
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Z=0Qnn

bove, we
hange of Pigure 1: The geometry of the Neumann Sieve ;
O
4 Passing to the limit in the Neumann sieve model
In this section we will present a new proof for the limit analysis of the classical Neu-
mann sieve model, (see Figure 1), based on the bl-Unfolding Operator. The Neumann
sieve model is ,
Ay = f in 0,
Ju du
P}y —=——E= E\T.
G ont an= 0 on
1, =0 on 851
O where f € L*(2) and n* is the exterior normal to ¥ oriented toward Q_.
The variational form of (P5) is,
f Vu,Vydz = / fo forall ¥ € V. . (8)
(6) Q. un_ a -
Using u. as a test function in {8} we can easily see that there exists a constant €' inde-
pendent of any small parameter such that,
lltelly < Clif 220, (9)
v ,
( ) where we used the Paincare inequality on ;. and £_ respectively. From (9) we have that
there exists uy € V such that u, — uy on a subsequence still denoted by e. The first limit
equation and the first part of the interface condition can be obtained in a classical way
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(see [3]). Indeed, consider 4 € D(2) and let 1 be a test function in problem (P§). Then
we have:

f VuVi{z)dz = | {z)fdz. (10
. .

Next we have:
f —Vufvw(a:)dz-i-f Vu, Vi (z)ds = / ¥(z) fdz.
i Y - 0,

Now we can pass to the limit in the above equality and obtain the first limit equation
of the unfolded formulation for the limit problem,

3 | VauwVey(z)ds = / Pfdz for all 3 € D(Q). (11)
Y]

ie{+-y %

We can see that equation (11) does not offer the complete information about the interface
condition we expect for uo on . From the fact that (11) is verified for all ¥ € () we
can easily obtain | .
G __Ou (12)
ont on-
But, in the limit, we would expect a relation between the jump of up and it’s normal

derivatives on . In order to obtain this interface condition, we will use the bl-Unfolding
Operator.

First we prove a few fundamental convergence results.

N
Proposition 4.1. Let v, — vy in V and define Mg, (v (") ﬁl—;—szl f T s(vi ), z)dz.
+ 1y8 -

&7+
Then we have

Ms (v) — uf strongly in L*(T).

The same result holds for v,

Proof. After an obvious change of variables, we have that for any ¢ € D(Q)

o [ T vea)drdy (13)
|Y+I DxYy -

LMﬁmWﬂMﬂME

The conclusion now follows from the following two Lemmas.

Lemma 4.2. let 2z, — z in HY(Q). Then if we define the strip Se = {z € RY ; |zn| < €},
we have )

lim - / lze — z|Pdz = 0.
e—0 ¢ 5.

Proof. For |t| < e we have

t Bz,

ZE(I’, t) = ZE(If, 0) + A E

(', $)ds.
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Therefore, from Minkowski inequality we obtain,
- 1 822
2z 1) <2 (zf(x’,o) +t/ — (x’,s)ds) ,
o Ozn

and integrating now over S, and using that |¢} < € we have,

€ . € : 2
lf /zf(:n’,t)dz’dt SZ] zf(:r’,O)da:’»{-e/ ]—%—(m',s)ds
€J-eJz {zn=0} —eJIT amN

and using the bound of z, in H'(£2) we arrive to the conclusion of the lemma. O

Lemma 4.3. One has

1 Te(wF) — vf lz2(zxryy — O

and the similar result is true for v, .

Proof. Let {vf}een € C°(£24) be such that v% — v strongly in H'(€2,). Then we have
() = 3 2y < 1T} = vidllageryy + 17e0f ~ v 2mxriy+

H[Te(vf) — v§l|r2marny + l[of — o5 || z2(mxvy) €

1 1
Z 2
c c
(—. / |v:—va“|2) +(- / 1v3—v§|2) +
€ E-EI- € E“i’

'*‘“71(’05 - ’Ugnm{zxn} + Hﬂg - UgIILZ(ExY+}.

1A

where we used Corollary 3.2. Using Lemma 4.2 and property 6 in Theorem 2.1 we can
pass to the limit in the above inequality and obtain the desired result. |

Finally we can use Lemma 4.3 and pass to the limit in (13) to prove the statement of
the Proposition 4.1. O

Proposition 4.4. Let v, € V, such that v, — vy in V. Then, there exists UT €
LA(Z, Ko(RY) and U~ € L2(Z, Ko(RY)) such that, up to a subsequence still denoted by
€,8, we have

5ot ]
T (v - Mg, (1)) U in LA(ESL7®RY)
€2
PLE:
e% vzg:.é(ﬁj)_\sz-l' in Lz(E:L?oc(RN))

and the same results hold for v7 end U™.
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Proof. Indeed, using the fact that 7, ;(Mg, (v]))(z, 2) = Mg, (v}) for any (r, z) € Ex 1Y},
the Poincare-Writinger inequality and (7) we have,

N=-2

iz

1
2

+ . € +y12
. ?:.6(”: MY+ ('U( )”LZ(E.L?(Rf)) <

N2

<

c ||vz’1;.6(vj)“i,2(8x%1’_f_) <c Zglvzvelzdﬂ" < C”Ue”% )
+

and this shows that there exists U+ € L*(Z, L*'(RY)) such that,

N-2

&

k\)l

Tos (v - M5, (v})) = U* in LA(Z,L¥(RY). (14)

s

€
From (6) and (7) we have that there exists V*+ € L* (S xRY, RY) such that,

N
2

ST T 5(Vart) = VT in LAExRY,RY). (15)

For every ¢ € D(T x RY | RY), from property 3 in Theorem 2.1, we have

N-2

f 0% 3T, 5(V 0 )pdz'dz = j 87
nxRY

1
110 5
ExzY] €2

V. T s(v)pdr'dz.

Passing to the limit when € — 0 we get

=2

¢

[~

VoTes(v]) = V¥ in LA(5, L, (RY)). (16)

£} loc

sl

€
Similar results hold for /= and V— .
Next we have,

N-2 ) N

ELi— N=2
Lo SO Tattysastis = [ Sz - 7)) oo -
Ixivy €2 ) Zxivi ez

=2

o
- f T (v~ M, () Vadda'dz.
Ex%l’f

T
€3

Using (14) and {16) we pa.és to the limit in the above equality, and obtain,

] o Vbl = / o U Vaic'dz = f V.Ut gdddz
x Dx xR

and this together with (15) show that V,U* € L¥(%, L3(RY)).
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From the Proposition 4.1 and Proposition 4.4 for u} and u; we have that there exists
Ut e L3S, KXRY)) and U~ € L¥(Z, K*(RY)) such that

Uz, z) — U (2, 2) = —kfup] for ae. (2',2) €T xT (17)

where k has been defined in (2) and we know (5).

Now we define the test functions needed to characterize the contribution of the holes
T, to the limit problem. Define the spaces

Xt ={weC®RY);, v=c=o(T) on T; supp(v) CC (—ISY}

1
X" ={weC®®RY); v=c=0(T) on T; supp(v) CC EY}

Let v+ & X+ and v~ € X~. Consider the following two sequences,

&) e
v (T)—ot —66—! if0<zy <z

v} (z) = 2 {18)

vH(T) otherwise

and similarly defined v7. We will consider next the extension by zero of vJ and
v7 to the hole space RV still denoted by vF and v, respectively. It is clear from the
definition that [v}] = [u7] = 0 on T.. Then obviously v} — v*(T) weakly in H 1{92,) and
vy — v~ (T) weakly in H(£2.).

For 9 € D(R) and v} as above use ¢(z) = P(z)v7(z} as a test function in problem
(P§). We have:

VauVop(z)v7 (z)dz + j Vouah(x)Vevtds = f folzhwt(z)dz.  (19)
o Q

4

For the first term of the left hand side of {19) we can pass to the limit and obtain :

Vot Vap(z)u} (z)de — v {(T) / Veug Vaopde. (20)
O+ 158

For the second term of the left hand side of (19} we use:

Vaudh(z)Vyv, de = / Voua(z)Vavt dz =
et

24
N
_ @ T (Vat VTos () (= Vel dz =
defY| £ xRY
r5N—2
=1 V. T (T s () (= Vv )dz'dz 21
T oy T TV (21)

where £, =54 N1L
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Using the straightforward inequality
|| Zes() — ‘»[’“Lm(zx-g,y) = Cf‘fvﬂb”z,m(n)”

we obtain
T s(P)Vu" — 9V, u" strongly LA(Z x rY). (22)
From (16}, (22) and (21) we have for ¢ — 0:
Voul p(z)Voutds — ~—k—/ VU Y(z)Vvtdrdz. (23)
27 IY’ =xRY

So from (19), (Qb), (23) we have,

vH(T) f Veud Vebdr — L / VU () Vutde'dz = v*(T) / fodz.  (24)
Q+ |Y| EXIRJ_: Q+

Similarly, if we choose ¢(z) = Y(z)v7 (2) as a test function in problem (P;) we obtain,

v‘(T)'[] Vetg Vothdr — T}%fz RNVZU_?,D(z)VLU_dx'dz = 'U“(T)/ﬂ Jdz. (25)

Note that equation (11) can be rewritten a8,

Aug=f on Q,UQ_, . (26)
and if we consider ¢ € D(Q) as a test function in the equation (26}, we obtain,
dug
Vet Vethde — A da’ = fudz. (27)
Ly z On oy
g .,
VougVatde — | Z90dy' = | fudy. (28)
Q- = On 0.

Using (27) and (24), we obtain the second equation in the unfolded formulation for
the limit problem, i.e,

K + + T f@ub‘” ’
V] szfVZU P(2)Vu (2)de'dz = vt (T) zan_'_i,bdx (29)

for all 9 € D() and all v+ e X+. Similarly, from (28) and (25) we can write the third
equation in the unfolded formulation for the limit problem, i.e,,

k _ _ ry Oug :
m/leﬁ‘_"vzvr Yz} Vv (z)d:t:‘dz =~ (T) E-(%_—#) (30)
forall € D(Q) and all v~ € X

Now we can give the unfolded formulation of the limit problem for the classical Neu-
mann Sieve model: -
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Theorem 4.5. The unfolded formulation for the limit of the problems (P§) is:
-Find (uo, UT,U7) € V x LT, K2(RY)) x LA(Z, K*(RY)) such that for allp € D(S2),
vt € Xt andv™ € X~ we have

1. Z}/ﬂ Vi Vay()ds = /g wfdz

ie{+,—

2. x VU y(z) ot (z)de'dz = v*(T)f bug
lYI EXIR_:: T 5ﬂ+
k Bu-
3. VU 92V~ (2)de'dz = v (T j '
Y| SexrY v() =) () 5 On”

where Ut and U~ verifies (17).

We will prove next that the above problem is well posed and as a consequence we
will show that Theorem 4.5 gives (1) as the problem satisfied by uo. Indeed, from the
second and the third equations in Theorem 4.5, and using (17) we can easily prove the
existence and uniqueness for U+ € L2(X, K2(RY)) and U~ € L4(E, K*(RY)). Therefore,
to prove the well-posedness of the unfolded problem, we need to prove the existence and
uniqueness for up € V.

Let v~ (2, zy) = —v™ (%', —zn) and consider U~ the extension of U~ by reflexion with
respect to the hyperplane ¥, ie,,
o F U, 2w) if 2y <0
Um(z) = { U~(z,—=zy) otherwise . (81)

Using v~ as above in (30) and subtracting (30) from (29), after an obvious change of
variable we obtain,

k
|Y1 xRy
where we used (12). One can immediately see that (32) implies,

ug 9
— e L .
dnt €L(®)

Now consider the foliowing capacity problem:
6+ € H®Y)
. V.07V, Vdz = ¥(T) (33)
fon all W € HA (V)

+
Sug

dnt (32)

VAU = U7 )(z) Vvt (2)da'dz = 21;‘*(T)/
£

- where Hy*(RY) has been-defined in Section 2. It is well known that the problem (33) .
is well possed. We use the following notation:

U=Ut-0" on RY, UeL*Z K*@®Y))
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From (29) and the cell problem (33) we obtain,

2iY| B N
'3 — (AWIE 3
Uz, z) = T 8n+(z)6 (2) on ZxRY.

Now using (17) and (12) we have

20V | Bug 2Y| fuy

Note that, from the symmetry of (33) with respect to & we have,

1 2

o1(1) = caps(T,RY U (T x {0}))  capy(T,RV)’

So the final limit problem can be written as (1), i.e,

—Aug=f on 0, U
Ouf  Ouy K2 34
#:#:4——|Yl[ug]cap2(T,RN) on . (34)

5 The thick Neumann Sieve.

In this section we will present an extension of the classical Neumann Sieve model to the
case when the Sieve has a certain thickness h(e) =~ ¢ and ¢ > 0 is & small parameter. We
will use the same notations, with the same meaning as in the previous section, otherwise
specified. We also need some new notations for this model. We recall that for an arbitrary
set A C RY we defined by A, = AN RY and similarly A_. Also without loss of generality

1
we will assume again, that Y =] — 2 -;-[N and that 0 € T C IL.

We will introduce next the class of admissible sets, which can be used to describe our
thick sieve, :

Definition 5.1. Let Sf = E?\ {z e RY; |zy| = 2i; |#'| < 2—1(5} Then we say that the
set I is an admissible set and denote that by, F e F, if:

i) F, unbounded open subset of RY

#) F symmetric with respect to all the hyperplans passing through the origin and which
are orthogonal to one of the vectors in the canonical basis of RY.

) F is such that F N %V C 85 forany0 < d<<1

iv) F; and F_ are unbounded, FNT =0 and F = FLuP_u{linF}.

As an example, in Figure 2 and Figure 3 we present the 2D and respectively the 3D
geometry of a set F in the class F.
Let ¥ = (Y, \6F,)U(Y_\SF_}UGT. Let I, = {6 €2 % {0); e£+c¥* C Q} and

define F* = U {(e€ + edF)N (£ +€Y)}. Let Qf = Q4 \ F¥ and Q¢ be similarly defined.
£el,
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Figure 2: The 2D geometry of the set F

Let T' C Yy and let the holes in the sieve, T, be as before, i.e.,

T, = | {ee+eT}| N0
£€ZN-1 {0}
Define 2, = 25 U2 UT, and &, = Q. N {z; |zn| < £}. Consider also H, = T\ {T,UF*}

In the case when F has a sufficiently smooth boundary, the thick Neumann Sieve
probletn, (see Figure 4 below), can be stated as follows:

—~Auy,=f in {2,
du Ou

P e = €

(P3) It o Qon GFUH,
u.=0 on of}

where f € L*(?) and n*, n~ denote the exterior normals to 02 and Q¢ respectively.
The variational formulation is

Vu Vi = fib forall eV, (35)
e 2.
where the space V, is as in Section 4. With the new notations introduced above let B, be
as in Section 4 and define & = | J{et+€Y*}, {7 = U, and ) = (7 NRY. Similarly
£€l,
as in (4) using the new notations of this section, we can define the Unfolding operator for
the thick sieve, i.e.,
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Figure 3: The 3D geometry of the set F

Tos: L2(8) — L2(Q x RY) with

T.5(0)(z, 2) = {gt[')(e[%]y+et52) ifdz €Y’ and .|ry|<t

if dzeRV\ Y? or |zy] > (36)

£
5 .
Next, in the same way as in the proofs of Theo

rem 3.1 and Corollary 3.2 can be proved
that similar results hold for this model, ie.,

Theorem 5.2. We have that
aN 1 2
ey 1. s(0)(z,2) dedz = = ¢ dr forall ¢ € L*(2)
Y] Ja,xdve 2 /5t
and
Corollary 5.3. We have

5N
= L T, ddds < [ s foratt g€ )
[Y4] Jex ivf by

In what follows we are going to need the following definition, (see [7]):

i
Definition 5.4. Let k € Z with k 21landp > 1. Let D, be a given sequence of open i
and bounded sets in RY, and ¢ > 0 a small parameter. We say that D, has the uniform
extension property with respect to € in the Sobolew space WhP | if there exist a sequence of
linear and continuous operators E, - Wke(D) —» We(RY) such that

sup [[E:f|o < +o0.
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Figure 4: The geometry of the Thick Neumann Sieve

Next, following the same arguments as in the previous section and considering the
same test functions we cbtain the unfolded formulation of the limit problem for the thick
Neumann Sieve model, ie.,

Theorem 5.6., Assume that Q5 and Q. have the uniform extension property with respect
to ¢ and that F € F. Then the unfolded formulation of the limit for the problem (Pg) is

Find (uo, U+, U}y € V x L¥(Z, K*(RY \ F)) x L¥(Z, K*(RN \ F7)) such that for all
P € D), vt € Xt and v~ € X~ we have '

L Y | VauwVey(z)ds = f Y fdz
N

ie (-

k 8u+
2‘_-_ sz+ VZ+ dfd=+T -.,-.—0.-.

Pilnanpe 7 VW () =) | 5
3. F V.U (@) Ve ()de'dz = v~ (T) [ 2y (37)
¥ exrM - + - = On”

where U* and U~ vem’ﬁés (17) and uy is the weak limit of the sequence of uniform exten-
sions of u,.’

Proof. The first equation of the limit problem is cbtained identically as in (11), Section
4. For the other two equations, the arguments are similar as those used in the previous
section with only a few technical extra difficutties. Indeed consider again, v+ € X+ and
v~ € X7. Let v} and v be as in (18). For ¢ € D(f2) and v} as above similarly as in
Section 4 use ¢(z) = P(x)v}(z) as a test function in problem (Pf). We obtain:

Vo Vop(@i! (m)dz + | Vauah(@)Voutdo = f fo(z)ut(z)dz.  (38)
_ a

ﬂ+ Q+
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All the limit arguments used in Section 4 to pass to the limit in (19) can be used here
too, except the limit analysis for the first term above. In this case we cannot pass to the
lmit directly. We have,

f Vot Vop(z)vt (z)de = f Vou Vo(xvt (x)dz + v+ (T) Vo Vop{z)de
a3 3

{zn>%}
(39)
and for the first integral of the right hand side, using Cauchy inequality, we obtain

] Vau Vo(z)vf (z)dx < [ Vau ) ( [ [V (z)v] (2)Pdz)E <
Iy 5 g

< g Fllzzl V() |1 [|oF ||z - o(e?).

For the second term of the right hand side of (39) we can pass to the limit directly
and obtain a similar statement as in (20). The analysis is done in the same way as in the
previous section and we finally obtain the last two equations in Theorem 5.5. 0

For a corollary we give the characterization of a class of admissible sets F such that
the domains 4 and Q¢ we do have the uniform extension property.

Corollary 5.6. Let F € F and assume that the boundary of F't is the graph of a Liptschitz
function. Assume also that F+ does not intersect 5 at right angles. Then the domains

Q5 and Q. have the uniform extension property with respect Yo ¢ and the Theorem 5.5
holds.

Proof. Note that by symmetry we have that the boundary of F~ is also the graph of
a Liptschitz function and does not intersect T at right angles. We can extend outside
04 and Q. by zero because of the homogenuous Dirichlet boundary condition on 8.
Next we only need to prove that the domains RY \ F% and RY \ F* have the uniform
extension property. We can see that this is a consequence of the fact that these domains
are special Liptschitz domains in the sense of Stein (see [19]), and therefore there exist
a sequence of linear continuous extension operators uniformly bounded in the operator
norm by a constant depending on the Liptschitz constant of the domains {see Stein {19],
Thrm. 5°,page 181), which in our case is the Lipschitz constant of the boundary of F. O

Using the same arguments as in Section 4, we show that the unfolded problem (37)
is well posed and as consequence we obtain the limit problem satisfied by ug in a similar
way.

First we have,

- +
S 2%13%91‘(2) on Tx {RYV\F*} . - {40)

where [/~ € LX(Z, Ko(RY \ F)) is the extension of [/~ by reflexion with respect to &
and U* € L(S, Ko (RY \ F*)), U~ € L3S, Ko(rN \ F~)) are the weak limits of T, ;(u})

4
i
H
;

e
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and 7, s(u_ ) respectively and where 6% is the solution of the following capacity problem:
6+ € Hy"(RY \ F¥)
V.81V, Udz = U(T) (41)
RY\F+
for all ¥ € Hp"(RY \ F*)

where H7*(RY \ F*) has been defined in Section 2. Note that U+ and U™, similarly
as in Section 4, verify condition (17).

From (40), the cell problem (41) and (17) we obtain the limit problem for u, i.e,

—~Aug=f on QL UQ_
Bul  Bug % (42)
-~ on- VDM B T

where from the symmetry,

cape(T, (RY \ F)) _

L ap(T, ®Y\FHU(T x {0})) = 9

0+(T)
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