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In this article we extend the ideas presented in Onofrei and Vernescu
[Asymptotic Anal. 54 (2007), pp. 103–123] and introduce suitable second-
order boundary layer correctors, to study the H1-norm error estimate for
the classical problem of homogenization, i.e.

�r � A
x

�

� �
ru�ðxÞ

� �
¼ f in �,

u� ¼ 0 on @�:

(

Previous second-order boundary layer results assume either smooth enough
coefficients (which is equivalent to assuming smooth enough correctors �j,
�ij 2 W1,1), or smooth homogenized solution u0, to obtain an estimate of
order Oð�

3
2Þ. For this we use some ideas related to the periodic unfolding

method proposed by Cioranescu et al. [C. R. Acad. Sci. Paris, Ser. I 335
(2002), pp. 99–104]. We prove that in two dimensions, for non-smooth
coefficients and general data, one obtains an estimate of orderOð�

3
2Þ. In three

dimensions the same estimate is obtained assuming �j, �ij 2 W1,p, with p4 3.

Keywords: homogenization; error estimates; nonsmooth coefficients

AMS Subject Classifications: 35J15; 35B27

1. Introduction

This article is dedicated to the study of error estimates for the classical problem in
homogenization using suitable boundary layer correctors.

Let � 2 R
N, denote a convex bounded domain with a sufficiently smooth

boundary. Consider also the unit cube Y¼ (0, 1)N. It is well-known that for
A 2 L1(Y)N�N, symmetric and Y-periodic with mj�j2�Aij(y)�i�j�Mj�j2, for any
� 2 R

N, the solutions of

�r � A
x

�

� �
ru�ðxÞ

� �
¼ f in �,

u� ¼ 0 on @�

(
ð1Þ
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have the property that [1–4],

u� * u0 in H1
0ð�Þ,

where u0 verifies

�r � ðA
hom
ru0ðxÞÞ ¼ f in �,

u0 ¼ 0 on @�,

(
ð2Þ

with

A
hom
ij ¼MY Aijð yÞ þ Aikð yÞ

@�j
@yk

� �
ð3Þ

where MYð�Þ ¼
1
jYj

R
Y �dy and �j 2WperðYÞ ¼ f�2H

1
perðYÞjMYð�Þ ¼ 0g are the

solutions of the local problem

�ry � ðAð yÞðr�j þ ej ÞÞ ¼ 0: ð4Þ

Here ej represent the canonical basis in R
N. In this article, r and (r�) denote the full

gradient and divergence operators respectively, and rx, (rx�) and ry, (ry�) denote
the gradient and the divergence in the slow and fast variable respectively.

Remark 1 Throughout this article, we denote by � the continuous extension of a
given function � 2 Wp,m(�) with p, m 2 Z, to the space Wp,m(RN). With minimal
assumption on the smoothness of � a stable extension operator can be constructed
[5, Ch. VI, 3.1].

The formal asymptotic expansion corresponding to the above results can be
written as

u�ðxÞ ¼ u0ðxÞ þ �w1 x,
x

�

� �
þ � � � ,

where

w1 x,
x

�

� �
¼ �j

x

�

� � @u0
@xj

: ð5Þ

We make the observation that the Einstein summation convention will be used and
that the letter C will denote a constant independent of any other parameter, unless
otherwise specified.

A classical result [1–3,6], states that with additional regularity assumptions on the
local problem solutions �j or on u0, one has

u�ð�Þ � u0ð�Þ � �w1 �,
:

�

� ���� ���
H1ð�Þ
� C�

1
2: ð6Þ

Without any additional assumptions a similar result has been recently proved by
Griso [7], using the Periodic Unfolding method developed in [8], i.e.

u�ð�Þ � u0ð�Þ � ��j
:

�

� �
Q�

@u0
@xj

� �����
����
H1ð�Þ

� C�
1
2ku0kH2ð�Þ, ð7Þ

with

x2 ~��, Q�ð�ÞðxÞ ¼
X
i1,::,iN

M�
Yð�Þð�� þ �iÞ �x

i1
1,� � . . . �xiNN,�, � ¼

x

�

h i

2 D. Onofrei and B. Vernescu
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for � 2 L2(�), i¼ (i1, . . . , iN) 2 {0, 1}N and

�xikk,� ¼

xk � ��k
�

if ik ¼ 1

1�
xk � ��k

�
if ik ¼ 0

8><
>: x2 �ð� þ YÞ,

where

M�
Yð�Þ ¼

1

�N

Z
��þ�Y

�ð yÞdy and ~�� ¼
[
�2Z

N

�� þ �Y; ð�� þ �YÞ \� 6¼ ;
� �

:

In order to improve the error estimates in (6), boundary layer terms have been

introduced as solutions to

�r � A
x

�

� �
r��

� �
¼ 0 in �, �� ¼ w1 x,

x

�

� �
on @�: ð8Þ

Assuming A 2 C1(Y), symmetric and Y-periodic matrix and a sufficiently smooth

homogenized solution u0 it has been proved in [4] (see also [6]) that

u�ð�Þ � u0ð�Þ � �w1 �,
:

�

� �
þ ���ð�Þ

��� ���
H1

0
ð�Þ
� C�, ð9Þ

u�ð�Þ � u0ð�Þ � �w1 �,
:

�

� �
þ ���ð�Þ

��� ���
L2ð�Þ
� C�2: ð10Þ

Moskow and Vogelius [9] proved the above estimates assuming A 2 C1(Y),

Y-periodic matrix and u0 2 H2(�) or u0 2 H3(�) for (9) or (10) respectively.

Inequality (9) is proved in [10] for the case when A 2 L1(Y) and u0 2 W2,1(�).
Sarkis and Versieux [11] showed that the estimates (9) and respectively (10) still

holds in a more general setting, when one has u0 2 W2,p(�), �j 2W
1,q
perðYÞ for (9), and

u0 2 W3,p(�), �j 2W
1,q
perðYÞ for (10), where, in both cases, p4N and q4N satisfy

1
pþ

1
q �

1
2. In [11] the constants in the right-hand side of (9) and (10) are proportional

to ku0kW2,pð�Þ, and ku0kW3,pð�Þ respectively.
In order to improve the error estimate in (9) and (10), one needs to consider the

second-order boundary layer corrector, ’� defined as the solution of,

�r � A
x

�

� �
r’�

� �
¼ 0 in �, ’�ðxÞ ¼ �ij

x

�

� � @2u0
@xi@xj

on @�, ð11Þ

where �ij 2 Wper(Y) are solution of the following local problems:

ry � ðAry�ijÞ ¼ bij þA
hom
ij , ð12Þ

with Ahom defined by (2), MYðbijð yÞÞ ¼ �A
hom
ij , and bij ¼ �Aij � Aik

@�j
@yk
� @

@yk
ðAik�j Þ.

For the case when u0 2 W3,1(�) and �ij 2 W1,1(Y), with the help of ’� defined
in (11), Allaire and Amar [10] proved the following result:

u�ð�Þ � u0ð�Þ � �w1 �,
:

�

� �
þ ���ð�Þ � �

2�ij
�

�

� � @2u0
@xi@xj

����
����
H1ð�Þ

� C�
3
2ku0kW3,1ð�Þ: ð13Þ

This result shows that with the help of the second-order correctors one can

essentially improve the order of the estimate (9). In the general case of non-smooth

Applicable Analysis 3
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periodic coefficients, i.e. A 2 L1(Y) and u0 2 H2(�), inspired by Griso’s idea, we
proved in [12] that

u�ð�Þ � u0ð�Þ � ��j
�

�

� �
Q�

@u0
@xj

� �
þ ���ð�Þ

����
����
H1

0
ð�Þ

� C�ku0kH2ð�Þ, ð14Þ

with �� defined by

�r � A
x

�

� �
r��

� �
¼ 0 in �, �� ¼ u1 x,

x

�

� �
on @�, ð15Þ

where u1ðx,
x
�Þ¼
:
�j ð

x
�ÞQ�ð

@u0
@xj
Þ.

When u0 2 W3,p(�) with p4N we also proved in [12] that

u�ð�Þ � u0ð�Þ � ��j
�

�

� � @u0
@xj
þ ���ð�Þ

����
����
L2ð�Þ

� C�2ku0kW3,pð�Þ: ð16Þ

In this article, we present a refinement of (13) for the case of non-smooth coefficients
and general data. To do this, we start by describing the asymptotic behaviour of ’�
defined at (11). The key difference between the case of smooth coefficients, and the
nonsmooth case discussed in this article is that in the former, by means of the
maximum principle or Avellaneda’s compactness results [13], it can be proved that
the second-order boundary layer corrector ’� is bounded in L2(�) and is of order
Oð 1ffiffi

�
p Þ in H1(�), while in the latter one cannot use the aforementioned techniques to

describe the asymptotic behaviour of ’� in L2(�) or H1(�). Thus, one needs to
carefully address the question of the asymptotic behaviour of ’� with respect to �.

First, we can easily observe that �’� can be interpreted as the solution of an
elliptic problem with variable periodic coefficients and with weakly convergent data
in H�1(�). For this class of problems a result of Tartar [14] (see also [15]) implies

�’� *
�
0 in H1ð�Þ:

As a consequence of Proposition 2.2, we obtain that for u0 2 H3(�) and
�j,�ij 2W

1,p
perðYÞ, for some p4N, we have

k�’�kH1ð�Þ � C�
1
2ku0kH3ð�Þ: ð17Þ

Using (17) we are able to prove that for u0 2 H3(�) and �j,�ij 2W
1,p
per with p4N we

have

u�ð�Þ � u0ð�Þ � ��j
:

�

� � @u0
@xj
þ ��� �ð Þ � �

2�ij
:

�

� � @2u0
@xi@xj

����
����
H1ð�Þ

� C�
3
2ku0kH3ð�Þ: ð18Þ

Remark 2 states that in two dimensions due to a Meyer-type regularity for the
solutions of the cell problems, �j, �ij, estimate (18) holds only assuming u0 2 H3(�).

2. A fundamental result

In this section we analyse the asymptotic behaviour with respect to � of the solutions
to a certain class of elliptic problems with highly oscillating coefficients and
boundary data. The main result is stated in Proposition 2.2, but we will first present a
technical Lemma which will be useful in what follows.

4 D. Onofrei and B. Vernescu
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LEMMA 2.1 Let � be such that �2W1,p
perðYÞ with p4N, and let  2 H1(�). Then we

have Z
�

ry�
x

�

� �


 


2ð ðxÞ �M�
Yð ÞðxÞÞ

2dx � C�2k�k2W1,pðYÞk k
2
H1ð�Þ, ð19Þ

where M�
Yð�Þ ¼

1
�N

R
��þ�Y �ð yÞdy.

Proof Let ~�� � R
N be the smallest union of integer translates of �Y that covers�, i.e.

~��¼
: [
�2Z�

ð��þ �YÞ,

where

Z�¼
:
�2Z

N, ð��þ �YÞ \� 6¼ ;
� �

:

We start by recalling that there exists a linear and continuous extension operator

P : H1ð�Þ ! H1ð ~��Þ, with the continuity constant independent of � (see [7,16] for

details). In the rest of this section, without having to specify it every time, every

function in H1(�) will be extended trough P to H1ð ~��Þ. Next we proceed with the

proof of the lemma. We haveZ
�

ry�
x

�

� �


 


2ð ðxÞ�M�
Yð ÞðxÞÞ

2dx�

Z
~��

ry�
x

�

� �


 


2ð ðxÞ�M�
Yð ÞðxÞÞ

2dx

�
X
�2Z�

Z
��þ�Y

ry�
x

�

� �


 


2ð ðxÞ�M�
Yð ÞðxÞÞ

2dx

�
X
�2Z�

�N
Z
Y

jry�j
2ð ð��þ �yÞ�M�

Yð Þð��þ �yÞÞ
2dy:

ð20Þ

Let  (��þ �y)¼ z�(y). Using this in (20) we obtain,Z
�

ry�
x

�

� �


 


2ð ðxÞ �M�
Yð ÞðxÞÞ

2dx

�
X
�2Z�

�N
Z
Y

jry�j
2 z�ð yÞ �

1

jYj

Z
Y

z�ðsÞds

� �2

dy

�
X
�2Z�

�Nk�k2W1,pðYÞ z� �
1

jYj

Z
Y

z�ðsÞds

����
����2
L

2p
p�2ðYÞ

: ð21Þ

Note that ryz�¼ �rx (��þ �y). Next we will recall now a very important inequality

[17, Chap. 2] to be used for our estimates. For any p4N we have

k�k
L

2p
p�2ð�Þ

� cð pÞ k�kL2ð�Þ þ kr�k
N
p

L2ð�Þ
k�k

1�N
p

L2ð�Þ

� �
, ð22Þ

for any � 2 H1(�) and where c(p) is a constant which depends only on q,N,�. Then,

(22) together with the Poincare–Wirtinger inequality, implies

z� �
1

jYj

Z
Y

z�ðsÞds

����
����
L

2p
p�2ðYÞ

� cpkryz�kL2ðYÞ: ð23Þ

Applicable Analysis 5

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
H

ou
st

on
],

 [
D

an
ie

l O
no

fr
ei

] 
at

 1
0:

29
 0

8 
M

ar
ch

 2
01

2 



Substituting (23) in (21), we haveZ
�

jry�
x

�

� �
j2ð ðxÞ �M�

Yð ÞðxÞÞ
2dx

� cp�
Nk�k2W1,pðYÞ

X
�2Z�

kryz�k
2
L2ðYÞ

¼ cp�
Nþ2k�k2W1,pðYÞ

X
�2Z�

Z
Y

rx ð��þ �yÞð Þ
2dy

¼ cp�
2k�k2W1,pðYÞ

X
� 2Z�

Z
��þ�Y

jrx j
2dx

� C�2k�k2W1,pðYÞk k
2
H1ð�Þ, ð24Þ

where C depends on p only. So the statement of the lemma is proved. g

PROPOSITION 2.2 Let ��R
N be bounded convex and with smooth enough boundary.

Consider the following problem:

�r � A
x

�

� �
ry�

� �
¼ h in �,

y� ¼ g� on @�
,

(
ð25Þ

where h 2 L2(�), the coefficient matrix A satisfies the hypothesis of the first section,
and we have that there exists �� 2W

1,p
perðYÞ with p4N, and z� a bounded sequence in

H1(�) such that

g�ðxÞ ¼ ���
x

�

� �
z�ðxÞ a.e. �: ð26Þ

Then there exists y� 2H
1
0ð�Þ such that

y� * y� in H1ð�Þ, ð27Þ

and y� satisfies

r � ðA
hom
ry�Þ ¼ h in �,

y� ¼ 0 on @�,

(
ð28Þ

where Ahom is the classical homogenized matrix defined in (3). Moreover we have

y� � y� � ��j
x

�

� �
Q�

@y�
@xj

� �����
����
H1ð�Þ

� C�
1
2 1þ k y�kH2ð�Þ

� �
, ð29Þ

where �j 2 Wper(Y) are defined in (4), Q� is defined in (7) and C depends only on p.

Proof To prove (27) and (28) Tartar’s result concerning problems with weakly
converging data in H�1 could be used. We prefer to present here a different proof
based on the periodic unfolding method developed in [8], which will also imply (29).
First, observe that the solution of (25) satisfy,

y� ¼ yð1Þ� þ yð2Þ� þ yð3Þ� , ð30Þ

6 D. Onofrei and B. Vernescu
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where yð1Þ� , yð2Þ� , yð3Þ� satisfy, respectively,

�r � A
x

�

� �
ryð1Þ�

� �
¼ h in �,

yð1Þ� ¼ 0 on @�,

8<
: ð31Þ

�r � A
x

�

� �
ryð2Þ�

� �
¼ 0 in �,

yð2Þ� ¼ ���
x

�

� �
Q�ðz�Þ on @�,

8><
>: ð32Þ

�r � A
x

�

� �
ryð3Þ�

� �
¼ 0 in �,

yð3Þ� ¼ ���
x

�

� �
ðz� �Q�ðz�ÞÞ on @�:

8><
>: ð33Þ

First, note that from Theorem 4.1 in [17], stated here in (7), we have

yð1Þ� ðxÞ � y�ðxÞ � ��j
x

�

� �
Q�

@y�
@xj

� �����
����
H1ð�Þ

� C�
1
2k y�kH2ð�Þ: ð34Þ

From [17] (see the two estimates before Theorem 4.1 there), by using an interpolation
inequality, we immediately arrive at,

k yð2Þ� kH1ð�Þ � C�
1
2k��kH1ðYÞ kz�kL2ð�Þ: ð35Þ

Next, we recall the following estimate from [17]:

ry��
:

�

� �
ðQ�u�M�

YuÞ
��� ���

L2ð�Þ
� C�k��kH1ðYÞkukH1ð�Þ, ð36Þ

for any u 2 H1(�). Then for yð3Þ� we obtain,

k yð3Þ� kH1ð�Þ � C ���
x

�

� �
ðz� �Q�ðz�ÞÞ

��� ���
H1ð�Þ

¼ C ���
x

�

� �
ðz� �Q�ðz�ÞÞ

��� ���
L2ð�Þ
þC ry��

x

�

� �
ðz� �Q�ðz�ÞÞ

��� ���
L2ð�Þ

þ C ���
x

�

� �
rx z� �Q�ðz�Þð Þ

��� ���
L2ð�Þ
� �2kz�kH1ð�Þk��kW1,pðYÞ

þ C ry��
:

�

� �
z� �Q�ðz�Þð Þ

��� ���
L2ð�Þ
þ �k��kW1,pðYÞkz�kH1ð�Þ

� C ry��
:

�

� �
ðz� �M�

Yz�Þ
��� ���

L2ð�Þ
þC ry��

:

�

� �
ðQ�z� �M�

Yz�Þ
��� ���

L2ð�Þ

þ C�k��kW1,pðYÞkz�kH1ð�Þ � C�k��kW1,pðYÞkz�kH1ð�Þ, ð37Þ

where C depends only on p and where we used triangle inequality in the fourth line
above and we used Lemma 2.1 and (36), respectively, to estimate the first and the
second terms in the fifth line. Substituting (34), (35), (37) in (30), we obtain the
statement of the proposition. g

3. Boundary layer error estimates

In this section, for the case of L1 coefficients, with the only assumptions that
�j,�ij 2W

1,p
perðYÞ for some p4N and u0 2 H3(�), we show that the left-hand side of

(13) is of order �
3
2. Indeed, we have the following theorem.
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THEOREM 3.1 Let A 2 L1(Y) and u0 2 H3(�). If there exists p4N such that

�j,�ij 2W
1,p
perðYÞ then we have

u�ð�Þ � u0ð�Þ � �w1 �,
�

�

� �
þ ���ð�Þ � �

2�ij
�

�

� � @2u0
@xi@xj

����
����
H1ð�Þ

� C�
3
2ku0kH3ð�Þ:

Proof As we did before, for the sake of simplicity, we will assume N¼ 3, the two-

dimensional case being similar. First, we will consider the problem with the

coefficients A replaced by their mollified version An, described bellow (see also [18],

Corollary B.1), and then conclude with a limiting argument. The new coefficients An

are given as follows.

Let mn 2 C1 be the standard mollifying sequence, i.e. 05mn� 1,
R
R

N mn dz ¼ 1,

spptðmnÞ � Bð0, 1
nÞ. Let An(y)¼ (mn�A)(y), where A has been defined Section 1

(see (1)). We have:

1: An is an Y periodic matrix

2: jAnjL1 5 jAjL1

3: An! A in Lp for any p2 ð1,1Þ: ð38Þ

Note that from (38) and the properties of A we have that cj�j2 � An
ijð yÞ�i�j �

Cj�j2 for all �2R
N. Next, for any i, j 2 {1, 2, 3} let �nij 2WperðYÞ be the solutions of

ry � ðA
nry�

n
ijÞ ¼ bnij �MYðb

n
ijÞ, ð39Þ

where

bnij ¼ �A
n
ij � An

ik

@�nj
@yk
�

@

@yk
ðAn

ik�
n
j Þ,

and MY(�) is the average on Y. We have that [18, Corollary B.8]

jry�
n
ijjL2ðYÞ5C and �nij * �ij in WperðYÞ, 8i, j2 f1, . . . , ,Ng,

where Z
Y

Að yÞry�ijry dy ¼ ðbij �MYðbijÞ, ÞðWperðYÞ, ðWperðYÞÞ
0
Þ

for any  2 Wper(Y) and with

bij ¼ �Aij � Aik
@�j
@yk
�

@

@yk
ðAik�j Þ:

We define

un2ðx, yÞ ¼ �
n
ijð yÞ

@2u0
@xj@xi

ðxÞ,

ðvn�ðx, yÞÞk ¼ An
kið yÞ�

n
j ð yÞ

@2u0
@xj@xi

ðxÞ þ An
klð yÞ

@�nij
@yl

@2u0
@xj@xi

: ð40Þ
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Following the same ideas as in [19], we can show that rx �MYðv
n
�Þ ¼ 0. Let

Rj
ki ¼MY An

ki�
n
j þ An

kl

@�nij
@yl

� �
; ðCnð yÞÞij ¼ An

ijð yÞ þ An
ikð yÞ

@�nj
@yk

, Ahom
n ¼MYðC

nð yÞÞ:

Consider �nij 2 ½L
2ðYÞ�3 defined by

�nij ¼

An
1i�

n
j þ An

1l

@�nij
@yl
� Rj

1i,

An
2i�

n
j þ An

2l

@�nij
@yl
� Rj

2i,

An
3i�

n
j þ An

3l

@�nij
@yl
� Rj

3i

0
BBB@

1
CCCAþ �nij, ð41Þ

with

�n1j ¼ ð0, � �
n
3j,�

n
2jÞ

T,

�n2j ¼ ð�
n
3j, 0, � �

n
1jÞ

T for j2 f1, 2, 3g,

�n3j ¼ ð��
n
2j,�

n
1j, 0Þ

T,

ð42Þ

where T denotes the transpose. The functions �nij 2WperðYÞ were defined in [12], as

solutions of

curly�
n
l ¼ Bn

l and divy�
n
l ¼ 0, ð43Þ

where Bnð yÞ ¼ Cnð yÞ � Ahom
n and Bn

l denotes the vector Bn
l ¼ ðB

n
ilÞi 2 ½L

2
perðYÞ�

N. It

was observed in [12] that for every 1 2 {1, 2, . . . ,N}

�nl * �l in ½WperðYÞ�
N where curly�l ¼ Bl and divy�l ¼ 0: ð44Þ

The conditions on �j, �ij and Remark 3.11 in [19] imply that k�l kW1,pðYÞ5C. Next,

using the symmetry of the matrix A, we observe that the vectors �nij defined above are

divergence free with zero average over Y. This implies that there exists

 n
ij 2 WperðYÞ

 �3
(see Theorem 3.4, [19] adapted for the periodic case), so that

curly 
n
ij ¼ �

n
ij and div  n

ij ¼ 0 for any i, j2 f1, 2, 3g: ð45Þ

By using simple limiting arguments (see Corollary B.4 and Corollary B.8 in [18])

together with (44) in the definition of �nij above, we obtain

�nij * �ij in ½L2ðYÞ�3, ð46Þ

where the form of �ij is identical with that of �nij and can be obviously obtained

from (46). Using the above convergence result and Theorem 3.9 from [19] adapted to

the periodic case, we obtain

 n
ij *  ij, in WperðYÞ for any i, j2 f1, 2, 3g,

and  ij satisfy

curly ij ¼ �ij and divy ij ¼ 0 for i, j2 f1, 2, 3g: ð47Þ

The hypothesis on �j and �ij implies that �ij defined at (46) belongs to the space

[Lp(Y)]3 and for all pairs (i, j) with i, j 2 {1, 2, 3} we have

k�ijk½LpðYÞ�3 � Cðk�ijk½LpðYÞ�3 þ k�j kLpðYÞ þ k�ijkW1,pðYÞÞ � C: ð48Þ
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Inequality (48) and Remark 3.11 in [19] imply that

k ijk½W1,pðYÞ�3 � C for i, j2 f1, 2, 3g: ð49Þ

Define pðx, yÞ ¼  ijð yÞ
@2u0
@xi@xj
ðxÞ and v2(x, y)¼ curlxp(x, y). We can see that p2H1

ð�,H1
perðYÞÞ and v2 2L

2ð�,H1
perðYÞÞ. Obviously, we have thatrx � v2¼ 0 in the sense of

distributions (see [9]). Next, using (40) we observe thatrx �MY(v*)¼ 0 where v* is such

that

vn� * v� weakly in L2ð�,L2
perðYÞÞ:

We have,

ðv�ðx, yÞÞk ¼ Akið yÞ�j ð yÞ
@2u0
@xj@xi

ðxÞ þ Aklð yÞ
@�ij
@yl

@2u0
@xj@xi

: ð50Þ

Using this and the fact thatZ
��Y

ðry � v2Þ�ðx, yÞdxdy ¼

Z
��Y

ðry � curlxpðx, yÞÞ�ðx, yÞdxdy

¼ �

Z
��Y

ðrx � curlypðx, yÞÞ�ðx, yÞdx dy

for any smooth function � 2 D(�; D(Y)), one can immediately see that

ry � v2 ¼ �rx � v�, ð51Þ

in the sense of distributions. Let pnðx, yÞ ¼  n
ijð yÞ

@2u0
@xi@xj
ðxÞ and vn2ðx, yÞ ¼ curlxp

nðx, yÞ.

Consider  n
� and �

n
� defined as follows:

wn
1ðx, yÞ ¼ �

n
j ð yÞ

@u0
@xj
ðxÞ,

rn0ðx, yÞ ¼ Anð yÞrxu0 þ Anð yÞryw
n
1ðx, yÞ:

ð52Þ

 n
�ðxÞ ¼ un�ðxÞ � u0ðxÞ � �w

n
1 x,

x

�

� �
� �2un2 x,

x

�

� �
: ð53Þ

�n� ðxÞ ¼ An x

�

� �
run� � rn0 x,

x

�

� �
� �vn� x,

x

�

� �
� �2vn2 x,

x

�

� �
: ð54Þ

Note that

An x

�

� �
r n

�ðxÞ � �
n
� ðxÞ ¼ �

2 vn2 x,
x

�

� �
� An x

�

� �
rxu

n
2 x,

x

�

� �� �
: ð55Þ

We have the following lemma

LEMMA 3.2

ðiÞ k n
�kW1,1ð�Þ5C and k�n�kL1ð�Þ5C,

and there exists  � 2 W1,1(�) and �� 2 L1(�) such that

 n
� *

n
 �, r 

n
� *

n
r �, �

n
� *

n
��, weakly-* in the sense of measures:
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Also we have

 �ðxÞ ¼ u�ðxÞ � u0ðxÞ � �w1 x,
x

�

� �
� �2u2 x,

x

�

� �
,

��ðxÞ ¼ A
x

�

� �
ru� � r0 x,

x

�

� �
� �v� x,

x

�

� �
� �2v2 x,

x

�

� �
:

(ii) Moreover, �� 2 L2(�),  � 2 H1(�) and we have

A
x

�

� �
r �ðxÞ � ��ðxÞ ¼ �

2 v2 x,
x

�

� �
� A

x

�

� �
rxu2 x,

x

�

� �� �
, ð56Þ

with

r � ��ðxÞ ¼ 0 ð57Þ

in the sense of distributions.

Proof Using the fact that, for any i, j 2 {1, 2, 3}, �nj ,�
n
ij 2WperðYÞ and 

n
ij 2 ½WperðYÞ�

3

are bounded functions in this spaces, from the definition one can immediately see that

k n
�kW1,1ð�Þ5C and k�n�kL1ð�Þ5C:

Recall that

�nj * �j, �
n
ij * �ij in WperðYÞ and  n

ij *  ij in ½WperðYÞ�
3:

Using the above convergence results and simple limiting arguments presented in the

Appendix in [18] the statement (i) in Lemma 3.2 follows immediately. Next, observe

that �j,�ij 2W
1,p
perðYÞ, with p4 3 imply

 � 2H
1ð�Þ: ð58Þ

To prove (58) it is enough to see that

u2 �,
�

�

� ���� ���
H1ð�Þ

� �2k�ijkL1ðYÞku0kH2ð�Þ

þ �k�ijkW1,pðYÞku0kH3ð�Þ þ �
2k�ijkL1ðYÞku0kH3ð�Þ,

the rest of the necessary estimates being trivial. Similarly, from the definition of r0, v*
and v2 and the hypothesis �j,�ij 2W

1,p
perðYÞ, with p4 3, we see that �� 2 L2(�). Next

note that we immediately have

An x

�

� �
r n

� *
n
A

x

�

� �
r � weakly-* in the sense of measures: ð59Þ

Relation (56) follows immediately from (55), (59), relations (38) and a limit argument

based on the convergence results obtained at (i). Recall that in the smooth case it is

known from [9] that

r � �n� ¼ 0:

This is equivalent to Z
�

�n�r�ðxÞ dx ¼ 0 for any �2Dð�Þ:
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Using the fact that �� 2 L2(�), and that we have

�n� *
n
�� weakly-* in the sense of measures,

we obtain (57). We make the remark that a different proof for (57) can be found
in [11]. g

We observe that �j,�ij 2W
1,p
perðYÞ, with p4 3, implies  ij 2W

1,p
perðYÞ. Using this

we obtain

rxu2 x,
x

�

� ���� ���
L2ð�Þ
� k�ijkL1ðYÞ rx

@2u0
@xj@xi

����
����
L2ð�Þ

� k�ijkW1,pðYÞku0kH3ð�Þ

� Cku0kH3ð�Þ: ð60Þ

v2 x,
x

�

� ���� ���
L2ð�Þ
� Ck ijkL1ðYÞ rx

@2u0
@xi@xj

����
����
L2ð�Þ

� C
X
i,j

k ijkW1,pðYÞku0kH3ð�Þ

� Cku0kH3ð�Þ, ð61Þ

where, in (61) above we used (49). Similarly as in [9] substituting (60), (61) in (51), we

arrive at

A
x

�

� �
r �ðxÞ � ��ðxÞ

��� ���
L2ð�Þ
� C�2ku0kH3ð�Þ:

Consider the second boundary layer ’� defined as a solution of

r � A
x

�

� �
r’�

� �
¼ 0 in �, ’� ¼ u2 x,

x

�

� �
on @�: ð62Þ

Using (58) and similar arguments as in [9], we obtain

u�ðxÞ � u0ðxÞ � �w1 x,
x

�

� �
þ ���ðxÞ � �

2u2 x,
x

�

� �
þ �2’�

��� ���
H1

0
ð�Þ
� C�2ku0kH3ð�Þ: ð63Þ

Next we make the observation that without any further regularity assumption on
u0 or on the matrix of coefficients A, one cannot make use of neither Avellaneda

compactness result nor the maximum principle to obtain a L2 or H1 bound for ’�. In
fact, in [13] it is presented an example where a solution of (62) would blow up in the
L2 norm. By the unboundedness of ’� in L2, we can still make the observation that

using a result due to Tartar [14] (see also [15, Section 8.5]) concerning the limit
analysis of the classical homogenization problem in the case of weakly convergent

data in H�1(�) together with a few elementary computations we can obtain

�’�*
�
0 in H1ð�Þ:

Then applying Proposition 2.2 with h¼ 0, y�¼ �’�, �*(y)¼�ij(y), z�ðxÞ ¼ zðxÞ ¼ @2u0
@xi@xj

,

we obtain that

k�’�kH1ð�Þ � C�
1
2ku0kH3ð�Þ: ð64Þ
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Substituting (64) in (63) we have

u�ðxÞ � u0ðxÞ � �w1 x,
x

�

� �
þ ���ðxÞ � �

2�ij
x

�

� � @2u0
@xi@xj

����
����
H1ð�Þ

� C�
3
2ku0kH3ð�Þ ð65Þ

and this concludes the proof of Theorem 3.1. g

Remark 1 It has been shown in [20] that the assumptions �j,�ij 2W
1,p
perðYÞ for some

p4N are implied by the conditions that the BMO semi-norm norm of the
coefficients matrix a is small enough (see [20] for the precise statement). In a different
work by Lin and Vogelius [21], it has been shown that one can have �j,�ij 2W

1,1
per ðYÞ

in the case of piecewise discontinuous matrix of coefficients when the discontinuities
occur on certain smooth interfaces (see [21] for the precise statement). It is clear that
the lack of smoothness in the matrix A and the fact that we only assume u0 2 H3(�)
would not allow one to use neither Avellaneda compactness principle nor the
maximum principle to obtain bounds for ’� in L2 or H1.

Remark 2 For N¼ 2 we could use a Meyers-type regularity result and prove that
there exists p4 2 such that �j,�ij 2W

1,p
perðYÞ. Therefore Theorem 3.1 holds true in this

case in the very general conditions that u0 2 H3(�) and A 2 L1(Y).

4. Conclusions and future work

In this article we studied the question of H1 error estimates associated to the
problem (2). We proved in Theorem 3.1 an O(�3/2) estimate by assuming that the
homogenized solution u0 belongs to H3(�) and that the cell problems solutions �i, �ij
belong to Wper

1,p(Y) with some p4N. In Remark 2 we made the important
observation that in two dimensions there exists a p4 2 such that �i, �ij are in
Wper

1,p(Y) and thus the only assumption needed for the estimate of Theorem 3.1 to
be true will be u0 2 H3(�). If we look at the term in the estimate 66 we can observe
that this condition, i.e. u0 2 H3(�), is the most natural hypothesis for �ijð

x
�Þ

@2u0
@xi@xj

to
exists in H1(�). So in a sense we cannot expect a weaker assumption on u0 as long as
we desire an H1 estimate of the form (65). On the other hand, if we assume � convex
with sufficiently smooth boundary, together with smooth enough data, say,
f 2 H1(�), by using the fact that u0 solves a homogeneous Dirichlet problem with
constant coefficients in � classical elliptic regularity theory implies that u0 2 H3(�).
Following the results in [22] we believe that in some special situations, our estimate
can be proved for more general � (e.g. convex polyhedron) and we plan to explore
this in a forthcoming paper. With a different application in mind, in [18], we also
showed how our estimate can be used for the generalization of the results obtained in
[9] to the case of non-smooth coefficients.
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