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We consider propagation of waves through a spatio-temporal doubly periodic material
structure with rectangular microgeometry in one spatial dimension and time. Both spatial
and temporal periods in this dynamic material are assumed to be the same order
of magnitude. Mathematically the problem is governed by a standard wave equation
(ρut)t − (kuz)z = 0 with variable coefficients. We consider a checkerboard microgeometry
where variables cannot be separated. The rectangles in a space–time checkerboard are

assumed filled with materials differing in the values of phase velocities
√

k
ρ but having

equal wave impedance
√

kρ . The difference between dynamic materials and classical
static composites is that in the former case the design variables will also be time
dependent. Within certain parameter ranges, the formation of distinct and stable limiting
characteristic paths, i.e., limit cycles, was observed in [K.A. Lurie, S.L. Weekes, Wave
propagation and energy exchange in a spatio-temporal material composite with rectangular
microstructure, J. Math. Anal. Appl. 314 (2006) 286–310]; such paths attract neighboring
characteristics after a few time periods. The average speed of propagation along the limit
cycles remains the same throughout certain ranges of structural parameters, and this was
called in [K.A. Lurie, S.L. Weekes, Wave propagation and energy exchange in a spatio-
temporal material composite with rectangular microstructure, J. Math. Anal. Appl. 314
(2006) 286–310] a plateau effect. Based on numerical evidence, it was conjectured in [K.A.
Lurie, S.L. Weekes, Wave propagation and energy exchange in a spatio-temporal material
composite with rectangular microstructure, J. Math. Anal. Appl. 314 (2006) 286–310] that
a checkerboard structure is on a plateau if and only if it yields stable limit cycles and
that there may be energy concentrations over certain time intervals depending on material
parameters. In the present work we give a more detailed analytic characterization of these
phenomena and provide a set of sufficient conditions for the energy concentration that was
predicted numerically in [K.A. Lurie, S.L. Weekes, Wave propagation and energy exchange in
a spatio-temporal material composite with rectangular microstructure, J. Math. Anal. Appl.
314 (2006) 286–310].

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we continue the work on the novel paradigm of dynamic composites. These are formations assembled
from materials which are distributed on a microscale both in space and time. This material concept takes into consideration
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Fig. 1. Space–time rectangular microstructure.

the inertial, elastic, electromagnetic and other material properties that affect the dynamic behavior of various mechanical,
electrical and environmental systems. In static or non-smart applications, the design variables such as material density
and stiffness, yield force and other structural parameters are position dependent but invariant in time. When it comes to
dynamic applications, we also need temporal variability in the material properties in order to adequately match the changing
environment. To this end, in dynamic material design, dynamic materials will take up the role played by classical composites
in static material design. Such materials demonstrate a number of unusual effects not achievable through conventional
composites; some of those effects are discussed in [2] and in references therein.

There also is a substantial theoretical difference between dynamic material composites and their static counterparts.
While the latter allow for a standard homogenization procedure [4–6] practically regardless of their structural microgeome-
try, the dynamic material assemblages often fail to demonstrate this property. To the best of our knowledge, the laminates
in space–time represent the only dynamic structures for which a standard homogenization operation received a rigorous
justification. Dynamic laminate is defined here as a periodic spatial pattern of different material properties: (k1,ρ1) and
(k2,ρ2); this pattern moves at some constant velocity. Formally, this procedure was successfully carried out for laminates a
decade ago in [1]. Since then, homogenization of laminates in space–time has been accomplished by two other approaches,
one of them based on the Floquet theory; all three methods are summarized in [2]. A rigorous mathematical foundation
for them was established relatively recently. In the case when the laminate pattern remains “subsonic,” i.e. it is moving at
the speed less than the phase velocity

√
k/ρ in either of the material constituents, the weak compactness of the set of

field components was established in [7]. It was based on the boundedness of total energy in the frame where the interfaces
in a laminate remain immovable (i.e, strictly static). When the laminate pattern is “supersonic,” i.e. moving at the speed
that exceeds both of the phase velocities

√
k/ρ , the required compactness was established in [8]. This time it follows from

the boundedness of the net momentum flux density defined as the integral of such density over time t (the total energy
is defined as minus the integral of the same integrand taken over the coordinate z). The time integration is carried out in
the frame in which the interfaces in a laminate appear to be strictly temporal. As mentioned above, for dynamic material
formations more general that laminates, there may be no room for a standard homogenization procedure based on the weak
compactness. Specifically, in [3] it was found that the energy in a checkerboard may, for certain parameter ranges, exhibit
exponential growth in time. It is certainly important to better specify conditions that lead up to such growth. Particularly
the growth was observed in connection with the limit cycles that arise in a checkerboard within appropriate ranges of
material parameters. This and other related issues are discussed in the following sections.

The paper is organized as follows. In the first part we analytically describe the so-called “plateaux effect,” numerically
observed in [3]. In the second part, we give sufficient conditions that ensure the energy growth, and, to some extent,
characterize a relative measure of the growth situations as opposed to the bounded energy cases.

2. Analytic characterization of the limit cycles and plateau zones

In this section, we certify analytically the numerical observation made in [3, Section 4], regarding the formation of limit
cycles and the existence of the so-called plateau zones for problem (2.1) below. The units of space and time are so chosen
that the periods of the assemblage along the z and t axes are dimensionless.

As in [3], we consider a doubly-periodic distribution in the (z, t)-plane, i.e., in the rectangle (0, δ)× (0, τ ) (the periodicity
cell). Material 1 occupies the region formed by the rectangles {(0,m) × (0,n)} ∪ {(m, δ) × (n, τ )}, with 0 < m < δ and
0 < n < τ , and the rest of the cell is occupied by material 2, see Fig. 1. Material i is uniform with parameters ρi and ki
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which play the role of the density and stiffness, respectively. In this structure we consider the wave motion governed in
each material by the linear second order equation

(ρut)t − (kuz)z = 0, (2.1)

with ρ,k taking the values ρi,ki , within material i. The above equation can be reformulated as

ρut = vz, kuz = vt . (2.2)

Continuity of u and v across the material boundaries is imposed. As commonly used in the literature, γi = √
kiρi and

ai =
√

ki
ρi

denote, respectively, the impedance and the phase speed. We work in the same setting as in [3] and assume that

the two materials have the same wave impedance, i.e., γ1 = γ2
.= γ . Hence the two constituent materials will differ in their

phase speeds ai alone. Unless stated otherwise, we will assume throughout the paper that a2 > a1. The system (2.2) can
then be reduced to two independent first order equations

Rt + aRz = 0, Lt − aLz = 0,

for the Riemann invariants R = u − v
γ , L = u + v

γ . Without loss of generality, we will consider the right-going R-waves only,
by assuming that L = 0 (hence R = 2u) throughout the structure. Every R-wave propagating through a material gives birth
to only one secondary wave that travels into the adjacent material after it enters it through a horizontal or vertical material
interface.

The grid of a checkerboard structure with given δ and τ is defined by horizontal lines t = iτ , t = n + iτ and vertical lines
z = iδ, z = m + iδ for i ∈ N, as illustrated in Fig. 1.

Definition 1. Given a z1 ∈ [0, δ), we define Cz1 to be the class of all characteristic paths that originate at the point (z1,0)

on the z–t checkerboard grid each having the property that the path first intersects a vertical line of the grid, and then a
horizontal line, and then a vertical line again with this alternating pattern repeating.

Note that due to the periodicity of the checkerboard structure, it is enough to restrict our discussion and analysis to
paths that originate in the first spatial period, i.e. z1 ∈ [0, δ).

Given a characteristic path in Cz1 , we denote by z j the z-coordinate of the point of intersection of the path with the jth
horizontal line of the grid.

Definition 2. Given q ∈ N with q > 1, the average speed V q
av over q material periods of a characteristic path belonging to

the class C v
z1

is defined by

V q
av

.=
∑q

i=1
z2i+1−z1

iτ

2q
+

∑q
i=1

z2i+2−z2
iτ

2q
. (2.3)

Definition 3. A characteristic path in Cz1 will be called a limit cycle if there exist p,q ∈ Z
+ with p �= q both even or both

odd such that
zq − zp

[ q−1
2 ] − [ p−1

2 ] = δ.

A limit cycle is called stable if it attracts neighboring paths, i.e., there exists ε > 0 such that for any characteristic path
in Czε

1
with |zε

1 − z1| < ε we have∣∣zε
j − z j

∣∣→0 as j → ∞.

Here, zε
j denotes the intersection of the path originating at zε

1 with the kth horizontal of the grid. A limit cycle which is not
stable will be called unstable.

Define w j to be the difference between z j and the z-coordinate of the closest node of the grid located to the left of z j .
Given this, an equivalent definition for limit cycles in the class Cz1 reads:

Definition 4. A characteristic path in Cz1 is a limit cycle if there exist p,q ∈ Z
+ with p �= q both even or both odd such that

w p = wq.

A limit cycle is called stable if it attracts neighboring paths, i.e., there exists ε > 0 such that for any characteristic path with
|zε

1 − z1| < ε we have∣∣wε − w j
∣∣→0 as j → ∞.
j
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Here, wε
j is the difference between zε

j and the z-coordinate of the closest node of the grid located to the left of zε
j . A limit

cycle which is not stable will be called unstable.

We will see in what follows that the limit cycles in the class Cz1 , for an arbitrary z1 ∈ [0, δ], all have the same average
speed V q

av for any q ∈ N, q > 1.
Next, we will state the main theorems of this section. Henceforth, all limit cycles are assumed to belong to Cz1 .

Theorem 5. For any material parameters δ, τ ,m,n,a1,a2 , with a1 �= a2 , we have:

(i) If (0, z1) belongs to material 1 (see Fig. 1), i.e., 0 � z1 = w1 � m, then all paths in the class Cz1 are characterized by the following
conditions:⎧⎪⎨

⎪⎩
m − a1n � w2 j+1 � a1

a2
(δ − m) − a1n + m,

δ − m − a1(τ − n) � w2 j+2 � a1

a2
m + δ − m − a1(τ − n),

(2.4)

for j = 0,1,2, . . . , and we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w2 j+1 = A1
1 − (

a2
a1

)2 j

1 − ( a2
a1

)2
+

(
a2

a1

)2 j

w1,

w2 j+2 = a2

(
n − m

a1
+ A1

a1

1 − ( a2
a1

)2 j

1 − (
a2
a1

)2

)
+

(
a2

a1

)2 j+1

w1,

(2.5)

for j = 0,1,2, . . . , where

A1 = a2

(
τ − δ

a1
+

(
a2

a1
− 1

)(
n − m

a1

))
. (2.6)

(ii) If (0, z1) belongs to material 2 (see Fig. 1), then all the paths in the class Cz1 are characterized by the following conditions:⎧⎪⎨
⎪⎩

δ − m − a2n � w2 j+1 � a2

a1
m − a2n + δ − m,

m − a2(τ − n) � w2 j+2 � a2

a1
(δ − m) + m − a2(τ − n),

(2.7)

for j = 0,1,2, . . . , and we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w2 j+1 = A2
1 − ( a1

a2
)2 j

1 − ( a1
a2

)2
+

(
a1

a2

)2 j

w1,

w2 j+2 = a1

(
n − δ − m

a2
+ A2

a2
· 1 − ( a1

a2
)2 j

1 − ( a1
a2

)2

)
+

(
a1

a2

)2 j+1

w1,

(2.8)

for j = 0,1,2, . . . , where

A2 = a1

(
τ − δ

a2
+

(
a1

a2
− 1

)
n + δ − m

a1

(
1 − a1

a2

))
. (2.9)

Proof. We will only present the proof of (i), as (ii) follows from similar ideas due to obvious symmetry arguments. Recall
that the grid of our rectangular microstructure was defined by the horizontal lines, t = jτ , t = n + jτ , and vertical lines
z = m + jδ, z = m + jδ, for j ∈ N (see Fig. 1).

We can see from Definition 1 that a trajectory in the class Cz1 whit (0, z1) in material 1, is characterized by the fact that
it always enters material 1 through a horizontal line of the space–time grid and always enters material 2 through a vertical
line of the grid. Let T j denote the t-coordinate of the point of intersection of the path with the ( j + 1)th horizontal line of
the grid. Also let t j be defined as the difference between T j and the t-coordinate of the closest node of the grid located
below T j .

Next, let p j be defined as the slope ( dz
dt ) of the segment between z j and the closest node of the rectangular space–time

microstructure going in the N–E direction. Similarly we define q j to be the slope ( dz
dt ) of the segment between t j and the

closest node of the rectangular space–time microstructure going in the N–E direction. In other words, p j and q j are defined
such that the conditions{

p j < a1,

a2 < q j for any j ∈ N,
(2.10)
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Fig. 2. Stable and unstable limit cycles in the checkerboard structure.

are necessary and sufficient for a characteristic path with phase speeds a1 and a2 starting at (0, z1) to belong to the
class Cz1 . Using the definitions of w j , t j , p j , q j and Cz1 together with an induction argument one can immediately see that

⎧⎪⎪⎨
⎪⎪⎩

p2 j+1 = m − w2 j+1

n
,

q2 j+1 = δ − m

n − t2 j+1
, for j � 0,

⎧⎪⎪⎨
⎪⎪⎩

p2 j = δ − m − w2 j

τ − n
,

q2 j = m

τ − n − t2 j
, for j � 1,

(2.11)

and ⎧⎨
⎩t2 j+1 = m − w2 j+1

a1
,

w2 j+1 = (τ − n − t2 j)a2, for j � 0,

⎧⎨
⎩t2 j = δ − m − w2 j

a1
,

w2 j = (n − t2 j−1)a2, for j � 1.

(2.12)

By using (2.10), (2.11) and (2.12) we obtain that a set of necessary and sufficient conditions such that a path starting at
(0, z1) in material 1 will belong to the class Cz1 is given by

⎧⎪⎪⎨
⎪⎪⎩

a1 > p2 j+1 = m − w2 j+1

n
,

a2 < q2 j+1 = δ − m

n − m−w2 j+1
a1

, for j � 0,

⎧⎪⎪⎨
⎪⎪⎩

a1 > p2 j = δ − m − w2 j

τ − n
,

a2 < q2 j = m

τ − n − δ−m−w2 j
a1

, for j � 1.
(2.13)

Also, by using (2.12) we obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w2 j+1 = a2

(
τ − n − δ − m

a1
+ a2

a1
n − a2

a2
1

m + a2

a2
1

w2 j−1

)
, for j � 1,

w2 j = a2

(
n − m

a1
+ a2

a1
(τ − n) − a2

a2
1

(δ − m) + a2

a2
1

w2 j−2

)
, for j � 2.

(2.14)

By solving the linear recurrences in (2.14) above together with conditions (2.13) we obtain the statement (i) of the
theorem. �

It has been numerically observed in [3] that, in the case of a square lattice, i.e., δ = τ , there are two limit cycles per
material period, one stable and the other unstable. For example, when m = 0.4, n = 0.5, a1 = 0.6, a2 = 1.1, the origination
points for the stable limit cycles correspond to z1 = 0.4953, and for the unstable limit cycle, we have z1 = 0.375. Fig. 2
clearly shows that the path pattern is the same for each period of origination.

We will now formalize analytically the conditions under which, in the case of a general rectangular lattice, there will be
limit cycles in the class Cz1 , both unstable and stable.
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Proposition 6. Assume that a2 > a1 . Then:

(i) There exists a unique stable limit cycle per material period in the class Cz1 , with the point of origination in material 2, i.e., 0 �
z1 = w1 + m � δ, and this cycle is characterized by the following conditions⎧⎪⎪⎪⎨

⎪⎪⎪⎩
δ − m − a2n � w1 = A2a2

2

a2
2 − a2

1

� a2

a1
m − a2n + δ − m,

m − a2(τ − n) � w2 = a1

(
n − δ − m

a2

)
+ A2a1a2

a2
2 − a2

1

� a2

a1
(δ − m) + m − a2(τ − n),

(2.15)

where A2 is defined in (2.9). Moreover, the w j on the stable limit cycle are given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w2 j+1 = w1 = A2a2
2

a2
2 − a2

1

,

w2 j+2 = w2 = a1

(
n − δ − m

a2

)
+ A2a1a2

a2
2 − a2

1

,

(2.16)

for j = 0,1,2, . . . . Therefore, the stable limit cycle originates at z = m + A2a2
2

a2
2−a2

1
at time 0.

(ii) There exists a unique unstable limit cycle with the origination point in material 1, i.e., 0 � z1 = w1 � m, and this cycle is charac-
terized by the following conditions⎧⎪⎪⎪⎨

⎪⎪⎪⎩
m − a1n � w1 = A1a2

1

a2
1 − a2

2

� a1

a2
(δ − m) − a1n + m,

δ − m − a1(τ − n) � w2 = a2

(
n − m

a1

)
+ A1a1a2

a2
1 − a2

2

� a1

a2
m + δ − m − a1(τ − n),

(2.17)

with A1 defined in (2.6). Moreover, the w j on the unstable limit cycle are given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w2 j+1 = w1 = A1a2
1

a2
1 − a2

2

,

w2 j+2 = w2 = a2

(
n − m

a1

)
+ A1a1a2

a2
1 − a2

2

,

(2.18)

for j = 0,1,2, . . . . Therefore, the unstable limit cycle originates at z = A1a2
1

a2
1−a2

2
at time 0.

When a1 > a2 , we have:

(i) There exists a unique stable limit cycle per material period in the class Cz1 , with the point of origination in material 1, i.e., 0 �
z1 = w1 � m and this cycle is characterized by conditions (2.17). Moreover, in this case w j on the stable limit cycle are given by

formulae (2.18). Therefore the stable limit cycle originates at z = A1a2
1

a2
1−a2

2
at time 0.

(ii) There exists a unique unstable limit cycle per material period in the class Cz1 , with the origination point in material 2, i.e., 0 �
z1 = w1 + m � δ and this cycle is characterized by conditions (2.15). Moreover, in this case w j on the unstable limit cycle are

given by formulae (2.16). Therefore the unstable limit cycle originates at m + A2a2
2

a2
2−a2

1
.

Proof. We will only prove the statement in the case when a2 > a1, the other case following by similar arguments. Note
that, in this case, i.e., a2 > a1, from formulas (2.5), (2.6), (2.8) and (2.9) we have

(0, z1) ∈ material 2 �⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w2 j+1 − w2 j−1 =
(

a1

a2

)2 j−1(
A2 − w1

(
1 −

(
a1

a2

)2))
,

w2 j+2 − w2 j =
(

a1

a2

)2 j−1(
A2 − w1

(
1 −

(
a1

a2

)2))
,

(0, z1) ∈ material 1 �⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w2 j+1 − w2 j−1 =
(

a2

a1

)2 j−1(
A1 − w1

(
1 −

(
a2

a1

)2))
,

w2 j+2 − w2 j =
(

a2
)2 j−1(

A1 − w1

(
1 −

(
a2

)2))
.

(2.19)
a1 a1
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Recall that from Definition 4, we have that a characteristic path is a limit cycle if there exist p,q ∈ N, p �= q, both odd or
both even, such that w p = wq . Without losing the generality let us assume p = q (mod 2), with p > q. We observe that

|w p − wq| =
p−q

2∑
j=0

(w p−2 j − w p−2 j−2). (2.20)

From Definition 4, relations (2.20), (2.19), and the fact that a1 �= a2, we conclude that there are only two limit cycles, i.e.
periodic paths, in the class Cz1 per time–space period, both having period 1, with one originating in material 2 and given
by conditions (2.15) and formulas (2.16), and the other originating in material 1 and given by conditions (2.17) and formulas
(2.18). Moreover, the above relations imply⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∣∣∣∣w2 j+1 − A2a2
2

a2
2 − a2

1

∣∣∣∣ =
(

a1

a2

)2 j∣∣∣∣w1 − A2a2
2

a2
2 − a2

1

∣∣∣∣,∣∣∣∣w2 j − a1

(
n − δ − m

a2

)
− A2a1a2

a2
2 − a2

1

∣∣∣∣ =
(

a1

a2

)2 j+1∣∣∣∣w1 − A2a2
2

a2
2 − a2

1

∣∣∣∣,
(2.21)

for (0, z1) in material 2, and, respectively,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣∣∣w2 j+1 − A1a2
1

a2
1 − a2

2

∣∣∣∣ =
(

a2

a1

)2 j∣∣∣∣w1 − A1a2
1

a2
1 − a2

2

∣∣∣∣,∣∣∣∣w2 j − a2

(
n − m

a1

)
− A1a1a2

a2
1 − a2

2

∣∣∣∣ =
(

a2

a1

)2 j+1∣∣∣∣w1 − A1a2
1

a2
1 − a2

2

∣∣∣∣,
(2.22)

for (0, z1) in material 1. From (2.21) and (2.22) we conclude that indeed the path given by (2.15) and (2.16) is a unique stable
limit cycle originating in material 2 while the path given by (2.17) and (2.18) is a unique unstable limit cycle originating in
material 1. �

By using Theorem 5 and Proposition 6, one arrives at

Corollary 7. Let 0 � z1 � δ. A necessary and sufficient condition for a characteristic line in class Cz1 to be a limit cycle is

V q
av = δ

τ
, for all q ∈ N.

Proof. Assume without loss of generality that the characteristic line starts in material 1. If this characteristic line is a limit
cycle (in this case unstable), then, from Definition 4, and relations (2.19), (2.20) obtained above we have that the only limit
cycle starting in material 1 is given by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
w2 j+1 = w1 = A1a2

1

a2
1 − a2

2

,

w2 j+2 = w2 = a2

(
n − m

a1

)
+ A1a1a2

a2
1 − a2

2

,

(2.23)

for j = 0,1,2, . . . . Moreover, Eqs. (2.23) and (2.3) show that V q
av = δ

τ for all q ∈ N.
For the inverse implication, assume that

V q
av = δ

τ
, for all q ∈ N.

Then, by (2.3),

0 = V q+1
av − V q

av =
∑q+1

i=1
z2i+1−z1

iτ

2q + 2
+

∑q+1
i=1

z2i+2−z2
iτ

2q + 2
−

∑q
i=1

z2i+1−z1
iτ

2q
−

∑q
i=1

z2i+2−z2
iτ

2q
. (2.24)

Since we either have zq = wq + [ q−1
2 ] for q odd, or zq = wq + [ q−1

2 ] + m for q even, from (2.24) we obtain

0 = −V q
av

1

q + 1
+ w2q+3 − w1

2τ (q + 1)2
+ w2q+4 − w2

2τ (q + 1)2
+ δ

τ (q + 1)
. (2.25)

Next, by using the hypothesis, after obvious simplifications we obtain

w2q+3 − w1 + w2q+4 − w2 = 0. (2.26)
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Fig. 3. Plateaux for a1 = 0.6, m = 0.4 and a2 between 0.6 and 1.4.

From (2.5) in Theorem 5 we can observe that unless a given characteristic path in the class Cz1 is a limit cycle (in which case
w2q+3 = w1, w2q+4 = w2), the sequences {w2 j+1} and {w2 j} will be both either strictly increasing or strictly decreasing.
This contradicts (2.26). Consequently, the given characteristic path corresponding to w j must be a limit cycle. �

Another numerical observation made in [3] is that if one considers the average speed associated with a path in the
composite with given phase speeds a1,a2, then there may exist intervals of n for which the average speed is constant for a
given m value; these intervals are called “plateaux” and the associated structure is referred to as “being on a plateau.” It is
conjectured in [3] that a structure is on a plateau if and only if the structure yields stable limit cycles. See Figs. 2 and 3.

By using Theorem 5 and Proposition 6, we can analytically describe this behavior of paths in the class Cz1 for 0 � z1 � δ.

Proposition 8. A structure yields two limit cycles, one stable and the other unstable, if and only if the structure is on a plateau, i.e., the
following two pairs of inequalities hold simultaneously:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
a1τ + (1 − a1

a2
)m − δ

a1 − a2
� n �

a1τ + (1 − a2
a1

)m − δ

a1 − a2
,

m − a2τ + a2
a1

(δ − m)

a1 − a2
� n �

m − a2τ + a1
a2

(δ − m)

a1 − a2
.

(2.27)

Proof. Without loss of generality we consider only the case a2 > a1 with the origination point in material 1, i.e., 0 � z1 =
w1 � m. As we see from Proposition 6, the possible (unstable) limit cycle is characterized by (2.17) and given by (2.18).
Therefore we need to show that conditions (2.17) are satisfied if and only if (2.27) is true.

The first inequality in (2.17)1 is equivalent to the first inequality in (2.27)2, the second inequality of (2.17)1 is equivalent
to the second inequality in (2.27)2, the first inequality in (2.17)2 is equivalent to the second inequality in (2.27)1, and finally
the second inequality in (2.17)2 is equivalent to the first inequality in (2.27)2. �
Remark 9. One can check that our formulae predict the exact interval for n when one fixes a1 and m. For example, if
δ = τ = 1, a2 = 1, a1 = 0.6 and m = 0.4, one has n = 0.6 to be the only value for which a limit cycle appears; see Fig. 3. We
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come to this conclusion as we observe that the left-hand side of (2.27)1 and the right-hand side of (2.27)2 both become
equal to 0.6 in this case. In general, if δ = τ and a2 = 1, then the limit cycles appear only for n = τ − m, and if a1 = 1, they
appear only for n = m.

3. Conditions on material parameters necessary and sufficient for energy accumulation

The phenomenon of energy accumulation in a time–space checkerboard microstructure originally observed in [3] came
up as a consequence of some special kinematics of characteristics, such that the energy is periodically pumped into the wave
as it travels through the checkerboard. This happens each time the characteristics (shown in Fig. 2 as broken lines) enter the
material with higher phase velocity via the horizontal interface. The energy growth then appears to be exponential, with the
exponent proportional to the logarithm of the ratio of higher/lower phase velocity. In the case when this ratio exceeds unity
only slightly, the characteristic paths may (in certain circumstances analyzed below) become close to being single straight
lines. To preserve the energy accumulation, it is then sufficient that these lines continue to enter the higher phase velocity
material from across the horizontal interface. In this section, we will give bounds for a small parameter μ > 0 such that a
given microstructure with parameters aμ

1 = p
q − μ and aμ

2 = p
q + μ will exhibit a limit cycle in the class Cz1 . The results

obtained help us understand for which values of p,q > 0, a straight line with slope p
q can be viewed as the asymptotic limit

(μ → 0) of the original paths and we are then able to prescribe a set of necessary and sufficient conditions on the material
parameters for such situations.

We now state the central theorem of this section.

Theorem 10. Suppose τ �= 2n. Let μ > 0 be a small parameter. Consider the microstructure with phase velocities aμ
1 = p

q − μ and

aμ
2 = p

q +μ, respectively. Then there exists μ̄ > 0 such that the microstructure will form a limit cycle in the class Cz1 for any μ ∈ (0, μ̄]
if and only if the following two conditions are simultaneously satisfied

p

q
= δ

τ
and

⎧⎪⎨
⎪⎩

if τ > 2n, then
1

2
<

n

τ
+ m

δ
� 3

2
,

if τ < 2n, then
1

2
� n

τ
+ m

δ
<

3

2
.

(3.1)

If the above conditions are satisfied, then the microstructure will form a limit cycle in the class Cz1 for all μ ∈ (0, μ̄] with μ̄ given
by

μ̄ =

⎧⎪⎨
⎪⎩

min
{
δ

( m
δ
+ n

τ − 1
2 )

τ
2 −n

, δ
τ

}
if τ > 2n,

min
{
δ

( 3
2 − m

δ
− n

τ )

n− τ
2

, δ
τ

}
if τ < 2n.

(3.2)

In the other cases, when at least one of the above conditions is not satisfied, there exist two positive values, 0 < μ1 < μ2 , such that
the microstructure will exhibit limit cycles in the class Cz1 for any μ ∈ [μ1,μ2].

Proof. Recall that in (2.27) a set of necessary and sufficient conditions for the formation of a limit cycle in the class Cz1

was established. We first set aμ
1 = p

q − μ and aμ
2 = p

q + μ in (2.27) and see for which material parameters these relations

stay true if μ is allowed to approach zero. Define n∗ .= τ − n, m∗ .= δ − m, and r = p
q . With a1 and a2 set as above, after

simple algebraic manipulations (2.27) becomes⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(τ − 2n)μ2 + (δ − 2nr − 2m)μ + r(δ − τ r) � 0,

(2n − τ )μ2 + (2m − δ − 2nr + 2τ r)μ + r(δ − τ r) � 0,

(2n − τ )μ2 + (2m − δ − 2nr)μ + r(τ r − δ) � 0,

(τ − 2n)μ2 + (δ − 2nr − 2m + 2τ r)μ + r(τ r − δ) � 0.

(3.3)

Next observe that if we define the functions

T (x, y,μ) = A(x)μ2 + B(y)μ + C + 2xrμ,

L(x, y,μ) = A(x)μ2 + B(y)μ + C − 2xrμ, (3.4)

where A(x) = τ − 2x, B(y) = δ − 2y and C = r(δ − τ r), then the system (3.3) is equivalent to{
T (n,m,μ) � 0, L(n,m,μ) � 0,

T
(
n∗,m∗,μ

)
� 0, L

(
n∗,m∗,μ

)
� 0.

(3.5)

For any given pair of (x, y), let us denote by t1,2(x, y) and l1,2(x, y) the roots μ of T (x, y,μ) = 0 and L(x, y,μ) = 0,
respectively. To simplify the exposition, we introduce the notations
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t1,2(n,m) = ε1,2, t1,2
(
n∗,m∗) = ε∗

1,2,

l1,2(n,m) = ε̃1,2, l1,2
(
n∗,m∗) = ε̃∗

1,2. (3.6)

Observe that without loss of generality we can assume that C > 0, the opposite case being treated similarly by working
with −T and −L instead of T and L. Let �T (x, y) = (B(y) + 2xr)2 − 4A(x)C and �L(x, y) = (B(y) − 2xr)2 − 4A(x)C be the
two discriminants of T (x, y,μ) = 0 and L(x, y,μ) = 0, respectively.

Note that, for C > 0 and A(x) �= 0 we have{(
t2(x, y) − t1(x, y)

)
sgn

(
A(x)

)
> 0,(

l2(x, y) − l1(x, y)
)

sgn
(

A(x)
)
> 0.

(3.7)

With this observation, and following a few standard arguments concerning the sign of a quadratic function, we state the
following:

Lemma 11. Let (x, y) be fixed. Consider the following general system{
T (x, y,μ) � 0,

L(x, y,μ) � 0.
(3.8)

Then:

1. If �T (x, y) < 0 and �L(x, y) < 0, there is no positive μ satisfying (3.8).
2. If �T (x, y) < 0 and �L(x, y) � 0, then (3.8) is satisfied for

μ ∈ [
min

{
l1(x, y), l2(x, y)

}
, max

{
l1(x, y), l2(x, y)

}]
.

3. If �T (x, y) � 0 and �L(x, y) < 0, then (3.8) is satisfied for

μ ∈ [
min

{
t1(x, y), t2(x, y)

}
, max

{
t1(x, y), t2(x, y)

}]
.

4. If �T (x, y) � 0 and �L(x, y) � 0, then (3.8) is satisfied for{
μ ∈ {

R \ (
t1(x, y), t2(x, y)

)} ∩ [
l1(x, y), l2(x, y)

]
, if A(x) > 0,

μ ∈ {
R \ (

l2(x, y), l1(x, y)
)} ∩ [

t2(x, y), t1(x, y)
]
, if A(x) < 0.

(3.9)

Now we find the two sets of μ > 0 for which the first two inequalities of system (3.5) and the last two inequalities
in system (3.5) are respectively satisfied. The final range of μ > 0 for which the system is satisfied is obtained as the
intersection of those two sets.

By comparison arguments between the roots of T (n∗,m∗,μ), L(n∗,m∗,μ), T (n,m,μ), and L(n,m,μ), we prove

Proposition 12.

(i) If A(n) > 0, then we have
1. For �T (n,m) < 0 and �L(n,m) < 0, there will be no μ > 0 to satisfy (3.5).
2. For �T (n,m) < 0 and �L(n,m) � 0, the system (3.5) is satisfied for

μ ∈ [
ε̃∗

1 , ε∗] ∩ [ε̃1, ε̃2],
using (3.6).

3. For �T (n,m) � 0 and �L(n,m) < 0, the system (3.5) is satisfied for

μ ∈ [
ε̃∗

1 , ε∗] ∩ [ε, ε2].
4. For �T (n,m) � 0 and �L(n,m) � 0, the system (3.5) is satisfied for

μ ∈ [
ε̃∗

1 , ε∗] ∩ [ε̃1, ε̃2] ∩ {
R \ [ε, ε2]

}
.

(ii) If A(n) < 0, then we have
1. For �T (n∗,m∗) < 0 and �L(n∗,m∗) < 0, there are no μ > 0 which satisfy (3.5).
2. For �T (n∗,m∗) < 0 and �L(n∗,m∗) � 0, system (3.5) is satisfied for

μ ∈ [ε̃1, ε] ∩ [
ε̃∗

1 , ε̃∗
2

]
.

3. For �T (n∗,m∗) � 0 and �L(n∗,m∗) < 0, system (3.5) is satisfied for

μ ∈ [ε̃1, ε] ∩ [
ε∗

1 , ε∗
2

]
.
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Fig. 4. Characteristic paths when μ = 0.4δ/τ .

Fig. 5. Characteristic paths when μ = 0.499δ/τ .

4. For �T (n∗,m∗) � 0 and �L(n∗,m∗) � 0, system (3.5) is satisfied for

μ ∈ [ε̃1, ε] ∩ [
ε̃∗

1 , ε̃∗
2

] ∩ {
R \ [

ε∗
1 , ε∗

2

]}
.

From Proposition 12, it is immediately seen that for C > 0 and A(n) �= 0 the closure of the range of μ satisfying (3.8)
does not include 0. Therefore we conclude that the only case for which a line can be viewed as an asymptotic limit of
a limit cycle of the class C v

z1
in a microstructure with aμ

1 = p
q − μ and aμ

2 = p
q + μ is when C = r(δ − τ r) = 0, and this

highlights r = δ
τ as the only possible slope dz

dt for such a line.
A careful analysis for the case C = 0 completes the proof of the theorem. �

Remark 13. The case A(n) = 0 is trivial and one can show that in this case no limit cycles are formed in the microstructure
when μ → 0 if C �= 0. On the other hand, if C = 0, then one always has limit cycles for arbitrarily small μ. That is, in this
case, the limit cycles approach the line with slope r = δ

τ as μ → 0.
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Fig. 6. Characteristic paths when μ = 0.51δ/τ .

Fig. 7. Characteristic paths when μ = 0.6δ/τ .

4. Numerical verification

In this section, we provide numerical support for the theory developed herein. We use δ = 2, τ = 3. The first set of results
investigates the checkerboard structure described by n

τ = 0.4 and m
δ

= 0.15. Criterion 2 of Theorem 10 is thus satisfied, and
according to the theorem and (3.2), there is a critical value

μ̄ = 0.5δ/τ = 1/3

such that, when a1 = 2/3 − μ and a2 = 2/3 + μ, limit cycles with speed δ/τ = 2/3 for μ ∈ [0, μ̄] develop. The figures in
this section show the behavior of paths of right-going information R = u − v/γ ; these paths originated at uniform locations
on the interval [−2,2].

Figs. 4 and 5 show these paths in the cases when μ is chosen in the subcritical zone, taking values 0.4δ/τ and 0.499δ/τ .
It is clearly seen that the paths converge to limit cycles so that information propagates with an overall speed of δ/τ = 2/3
as predicted. When supercritical values of μ are considered, we find that no limit cycles form. Figs. 6 and 7 illustrate this
for μ = 0.51δ/τ and μ = 0.6δ/τ .
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Fig. 8. Characteristic paths when μ = 0.4δ/τ .

Fig. 9. Characteristic paths when μ = 0.499δ/τ .

For the second set of results, we pick n
τ = 0.7. If we also select m

δ
= 0.7, then (3.2) again promises limit cycles when

μ̄ = 0.5δ/τ = 1/3. In Figs. 8 and 9, limit cycles with speed 2/3 are clearly seen when μ = 0.4δ/τ and μ = 0.499δ/τ . Figs. 10
and 11 illustrate that no limit cycles form when values of μ greater than the critical μ̄ value are used; here, μ = 0.51δ/τ
and μ = 0.6δ/τ .

5. Conclusions

In the above, we considered paths belonging to the class Cz1 introduced in Section 2. The specifics of this class is that
every path enters the higher phase velocity (hpv) material 2 via the horizontal (temporal) interface, and leaves it through
the vertical (static) interface; see Fig. 1. With this special behavior of characteristics, the wave energy increases by the factor
a2
a1

at each entrance into the hpv-material, and the energy flux remains continuous at each departure from this material. As

a result, we create non-stop wave energy accumulation by the factor ( a2
a1

)2 per period. The advantage of such an arrange-
ment is obvious: it avoids entrances of the characteristics into the lower phase velocity (lpv) material 1 via the horizontal
interface: every such entrance would cause the decrease of energy by the factor a1

a2
. Instead, the characteristics enter the

lpv-material through the vertical interface which does not affect the energy due to the continuity of the energy flux. The-
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Fig. 10. Characteristic paths when μ = 0.51δ/τ .

Fig. 11. Characteristic paths when μ = 0.6δ/τ .

orem 10 in Section 3 establishes conditions necessary and sufficient for a microstructure with parameters aμ
1 = p

q − μ and

aμ
2 = p

q +μ to exhibit limit cycles in the class Cz1 within the range (0, μ̄] for μ. The closure of the range includes the point

μ = 0 which means that the line of slope δ
τ may then be viewed as a limit of closed neighboring trajectories that approach

it as μ → 0; the energy carried by the wave blows up in infinite time for all such paths with μ �= 0. This is the reason
why homogenization as classically understood is not possible for this problem, and the study of the limit behavior of char-
acteristics is the instrument through which one can gain information about the wave propagation through a checkerboard
structure.
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