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ACTIVE MANIPULATION OF FIELDS MODELED
BY THE HELMHOLTZ EQUATION

DANIEL ONOFREI

ABSTRACT. In this paper we extend the results pro-
posed in [36] and study the problem of active control in
the context of a scalar Helmholtz equation. Given a source
region Da and {v0, v1, . . . , vn}, a set of solutions of the ho-
mogeneous scalar Helmholtz equation in n mutually disjoint
“control” regions {D0, D1, . . . , Dn} of R2 or R3, respectively,
the main objective of this paper is to characterize the nec-
essary boundary data on ∂Da so that the solution to the
corresponding exterior scalar Helmholtz problem will closely
approximate vi in Di, respectively, for each i ∈ {0, . . . , n}.
Building up on the previous ideas presented in [36] we show
the existence of a class of solutions to the problem, provide
numerical support of the results in 2D and 3D and discuss
the existence of a minimal energy solution and its stability.

1. Introduction. During recent years, there has been a growing
interest in the development of feasible strategies for the control of
acoustic and electromagnetic fields with one possible application being
the construction of robust schemes for sonar or radar cloaking.

One main approach controls fields in the regions of interest by chang-
ing the material properties of the medium in certain surrounding re-
gions [4, 5, 8, 13, 14, 15, 39] (and the references therein). Several
alternative techniques are proposed in the literature (other than trans-
formation optics strategies) such as: plasmonic designs (see [2] and the
references therein), strategies based on anomalous resonance phenom-
ena (see [31, 32, 33]), conformal mapping techniques (see [24, 25]),
and complementary media strategies (see [23]).

In this paper, we will study an approximate control problem for
the exterior scalar Helmholtz equation, i.e., we will characterize the
boundary control functions on the source ∂Da so that we achieve
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desired control effects in the regions {D1, D2, . . . , Dn} of R2 or R3. The
method is novel in the sense that, instead of using microstructures, now
exterior active sources, modeled with the help of the above boundary
controls (which can represent velocity potential, pressure or currents),
are employed for the desired control effects.

In the applied community, active designs for the manipulation of
fields appear to have occurred initially in the context of low-frequency
acoustics (or active noise cancellation). Especially notable are the
pioneer works of Leug [26] (feed-forward control of sound) and Olson
and May [35] (feedback control of sound). The reviews [11, 12, 27,
28, 38, 40], provide detailed accounts of past and recent developments
in acoustic active control.

In the context of cloaking, the interior strategy proposed in [30]
employs a continuous active layer on the boundary of the control region
while the exterior scheme discussed in [17, 16, 18, 19] (see also [43])
uses a discrete number of active sources located in the exterior of the
control region to manipulate the fields. The active exterior strategy
for 2D quasistatics cloaking was introduced in [16] and, based on a
priori information about the incoming field the authors constructively
described how one can create an almost zero field control region with
very small effect in the far field. The proposed strategy did not work
for control regions close to the active source, it “cloaked” large objects
only when they were far enough from the source region (see [17]) and
was not adaptable for three space dimensions. The finite frequency
case was studied in the last section of [16] and in [19] (see also [17] for
a recent review) where three (or four in 3D) active sources were needed
to create a zero field region in the interior of their convex hull while
creating a very small scattering effect in the far field. The broadband
character of the proposed scheme was numerically observed in [18].
Experimental designs and testing of active cloaking schemes in various
regimes are reported in [9, 29, 41, 42].

In a recent development in [36], a general analytical approach based
on the theory of boundary layer potentials is proposed for the active
control problem in the quasi-static regime. In this spirit, this paper
extends the results presented in [36] to the case of scalar Helmholtz
equation.

The paper is organized as follows. In Section 2, we state the main
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results of the paper Theorem 2.1 and Corollary 2.2. Then, in Section 3
we present the proofs for the results, characterize a class of solutions for
Theorem 2.1 and Corollary 2.2 and discuss the corresponding minimal
energy solution. In Section 4, we show several numerical simulations to
support our existence results. In Section 5, we provide a brief discussion
about the stability of the minimal energy solution. We conclude the
paper with Section 6 where we highlight the potential impact of the
results and reiterate some of the ongoing challenges we face.

2. Statement of main results. In this section, we will state the
general results of the paper, Theorem 2.1 with Corollary 2.2, and then,
as an important example, in Remark 2.3 we will reformulate it in the
particular context of cloaking.

First, we proceed with the description of the geometry and functional
framework. Let us consider the active source region, i.e., a smooth
domain Da ⊂ Rd, (where d = 2, 3) and let Da′ be such that Da′ ⊂⊂
Da where here and in the remainder of the paper “⊂⊂” denotes a
compact embedding and, by a domain, we understand an open simply-
connected subset of Rd. Let n ∈ N, consider n + 1 smooth mutually
disjoint domains (control regions) {D0, D1, . . . , Dn} in Rd, and let the
sets {Wi}ni=0 be smooth mutually disjoint sub-domains of Rd with
Di ⊂⊂ Wi for i = 0, n. Assume further that the antenna and the
regions of control are well separated,

(2.1) W i ∩Da = ∅, for i = 0, n,

and consider the following geometrical settings:

I. Wi is bounded for i = 0, n

(2.2)

II. Wi is bounded for i = 1, n and W0 = Rd \B for some

smooth bounded domain B with

{
Da ∪

∪
i=1,n

Wi

}
⊂⊂ B.

(2.3)

Consider also a set of n+ 1 functions {vi}ni=0 such that:

(2.4) vi ∈ L2(∂Wi), for each i = 0, n.
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The main mathematical result of the paper is stated below in Theo-
rem 2.1 and shows the theoretical possibility of characterizing needed
input data on the boundary of the active source Da so that, given
desired fields, {vi}i are well approximated in prescribed bounded or
unbounded mutually disjoint regions of space, {Wi}i, respectively. We
have

Theorem 2.1. Let 0 < δ ≪ 1 be fixed, and consider {W}i as above
with either of the cases I or II possible. In addition, assume

i) − k2 is not a Neumann eigenvalue for the Laplacian in Da′ .

(2.5)

ii) For each i = 0, n, if Wi is bounded,−k2 is not a Laplace

(2.6)

Dirichlet eigenvalue in Wi.

There exists an infinite class of functions vb ∈ C(∂Da) such that there
exists u ∈ H1(Rd \Da), satisfying

(2.7)



∆u+ k2u = 0 in Rd \Da,

u = vb on ∂Da,(
x

|x|
,∇u(x)

)
−iku(x)=o

(
1

|x|d−1/2

)
,

as |x| → ∞ uniformly for all
x

|x|

and

(2.8) ∥u− vi∥L2(∂Wi) ≤ δ.

Next, using classical estimates for the boundary value problems
associated to the Helmholtz equation, one can obtain the following
important corollary of Theorem 2.1:

Corollary 2.2. Assume that, for i = 0, n, the functions vi introduced
in Theorem 2.1 are solutions of the homogeneous scalar Helmholtz
equation in Wi, respectively. Assume also that, if (2.3) holds, then
we also have

(2.9) −k2 is not a Neumann eigenvalue for the Laplacian in B.
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Then, in the setting of Theorem 2.1, for each vb ∈ C(∂Da), u, the
corresponding solutions of (2.7) satisfy

(2.10) ∥u− vi∥C2(Di) ≤ Ciδ, for i = 0, n

where, for each i = 0, n, Ci = Ci(dist (∂Di, ∂Wi), k,Da).

Remark 2.3. The geometrical setting described in (2.3) corresponds
to the active cloaking problem. Indeed, let v0 = 0 and vi = −uint for
i = 1, n, where uint is a solution of the Helmholtz equation in B. Then,
in this new context, the results presented in Corollary 2.2 correspond to
the problem of acoustic or electromagnetic cloaking, where the active
source cancels an incoming interrogating field uint in different control
regions while maintaining a very low profile to a far field observer.

 

D1 

D3  

Da 

D2 

D0 

u у v1 

u у v2 

u у v3 

u у v0 

u = vb 

W1 

W0 

W3 

W2 

Da͛ 

Figure 1. 2D sketch of geometrical setting described at (2.3) for n = 3.

3. Proofs.

3.1. The case n = 1. In this section, we will consider the case
n = 1 and, in subsection 3.2, we will show how the proofs can then
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be immediately extended to the general case. Note that, in the case
n = 1, the two possible geometrical configurations presented at (2.2),
(2.3) become:

I. W0,W1 are bounded,(3.1)

II. W1 is bounded and W0 = Rd \B for some smooth

bounded domain B with W1 ∪Da ⊂⊂ B,(3.2)

and the functions to be approximated are, v1 ∈ L2(∂W1) and v0 ∈
L2(∂W0) as described in (2.4) for n = 1.

It is well known that, (see [7]), given vb ∈ C(∂Da), problem (2.7)
has a unique solution in H1(Rd \ Da). Hence, the question is: what
are the boundary functions vb ∈ C(∂Da) such that (2.8) holds? The
proof will be based on the ideas presented in [36] and, in order to
avoid redundant arguments, where the proof is very similar to a result
in [36], we will only state the result.

As in [36], we introduce the following space Ξ,

(3.3) Ξ ≡ L2(∂W1)× L2(∂W0).

Then Ξ is a Hilbert space with respect to the scalar product given by

(3.4) (φ,ψ)Ξ =

∫
∂W1

φ1(y)ψ1(y) dsy +

∫
∂W0

φ2(y)ψ2(y) dsy,

for all φ ≡ (φ1, φ2) and ψ = (ψ1, ψ2) in Ξ, where ( · ) above, denotes
the complex conjugate. Let k satisfy (2.5) and (2.6). Consider the
following integral operator, K : L2(∂Da′) → Ξ, defined as

(3.5) Ku(x, z) = (K1u(x),K2u(z)),

for any u ∈ L2(∂Da′), where

K1u(x) =

∫
∂Da′

u(y)
∂Φ(x,y)

∂νy
dsy, for x ∈ ∂W1,

K2u(z) =

∫
∂Da′

u(y)
∂Φ(z,y)

∂νy
dsy, for z ∈ ∂W0,(3.6)

with νy denoting the unit normal exterior to ∂Da′ and where Φ(x,y)
represents the fundamental solution of the relevant Helmholtz operator,



FIELDS MODELED BY THE HELMHOLTZ EQUATION 559

i.e.,

(3.7) Φ(x,y) =


eik|x−y|

4π|x− y|
, for d = 3

i
4H

(1)
0 (k|x− y|), for d = 2

In what follows, some steps will be similar as in [36], but for clarity
of the exposition we prefer to included them here. Let us consider the
integral operator, K : L2(∂Da′) → Ξ, defined at (3.5) and (3.6), and
introduce its adjoint, i.e., the operator K∗ : Ξ → L2(∂Da′) defined
through the relation

(3.8) (Kv, u)Ξ = (v,K∗u)L2(∂Da′ ), for all u ∈ Ξ, v ∈ L2(∂Da′),

where (·, ·)Ξ is the scalar product on Ξ defined in 3.4 and (·, ·)L2(∂Da′ )

denotes the usual scalar product in L2(∂Da′) defined as a vectorial
space over the complex field. We check, by a simple change of variables
and algebraic manipulations, that the adjoint operator K∗ is given by

(3.9) K∗u(x) =

∫
∂W1

u1(y)
∂Φ(x,y)

∂νx
dsy +

∫
∂W0

u2(y)
∂Φ(x,y)

∂νx
dsy,

for any u = (u1, u2) ∈ Ξ and x ∈ ∂Da′ . From classical potential theory
[21] (see also [7]) we have that the linear operators K and K∗ defined
above are compact. Furthermore, let us denote by Ker(K∗) the kernel
(i.e., null space) of K∗. Then, as in [36], we obtain the following result.

Lemma 3.1. If ψ = (ψ1, ψ2) ∈ Ker(K∗) then ψ ≡ (0, 0) in Ξ.

Proof. Let ψ = (ψ1, ψ2) ∈ Ker(K∗), and define

w(x) =

∫
∂W1

ψ1(y)Φ(x,y) dsy(3.10)

+

∫
∂W0

ψ2(y)Φ(x,y) dsy for x ∈ Rd,

where the integrals exist as improper integrals for x ∈ ∂W1 ∪ ∂W0.
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From K∗ψ = 0 and (3.9) we have that w satisfies

(3.11)


∆w + k2w = 0, in Da′

∂w

∂νx
= 0, on ∂Da′ .

From (2.5), we conclude that

(3.12) w = 0 in Da′ .

Then, because by definition w is a solution of Helmholtz equation in
Rd \ {W 0 ∪W 1}, by analytic continuation we conclude that

(3.13) w = 0 in Rd \ {W 0 ∪W 1}.

where we used the fact that the jump relations for the layer potentials
are valid for domains with multiple components. Next, we will make
use of the classical interior and exterior jump conditions for the layer
potentials with L2 densities and their adjoints (see [6] and the refer-
ences therein). Thus, from the continuity of the single layer potential,
we have

(3.14) w = 0 on ∂W1 ∪ ∂W0.

Hypotheses (2.6) and (3.14) imply

(3.15) w = 0 in W 1.

By using (3.13), (3.15), and the interior and exterior jump relations for
the adjoint of the double layer potential on ∂W1, we obtain that

(3.16) ψ1 = 0 on ∂W1.

Equation (3.16) implies

(3.17) w(x) =

∫
∂W0

ψ2(y)Φ(x,y) dsy, for x ∈ Rd.

Note also that (3.13), (3.14), and (3.15) imply that

(3.18) w = 0 in Rd \W0.

Now, if (3.1) is true, then we may use the same ideas as above for w
given by (3.17) to show that

(3.19) ψ2 = 0 on ∂W0.
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If, on the other hand, (3.1) is false, then W0 is an exterior domain
and, unless we impose further restriction on k (to insure uniqueness of
the Dirichlet exterior problem) we cannot use the same tools as we did
above.

Thus, we need to proceed as follows. From the interior jump
condition for the adjoint of the double layer potential over ∂W0 = ∂B,
together with (3.18), we have that

(3.20)
∂w

∂νx
= −1

2
ψ2 almost everywhere on ∂B.

Since w is a solution of the Helmholtz equation in Rd \W0 = B, by
using the Green representation theorem for x ∈ Rd \B, we obtain

0 =

∫
∂B

∂w

∂νy
(y)Φ(x,y) dsy −

∫
∂B

w(y)
∂Φ(x,y)

∂νy
(y)dsy

= −1

2

∫
∂B

ψ2(y)Φ(x,y)dsy

= −1

2
w(x),(3.21)

where we used (3.14), (3.17) and (3.20) in the equalities above. Thus,
from (3.21) and the jump conditions, the adjoint of the second layer
potential over ∂W0 = ∂B, we obtain ψ2 = 0 on ∂W0. �

Next, as a consequence of Lemma 3.1, we obtain:

Proposition 3.1. The operator K is compact and has a dense range.

Proof. As in [36], consider

U ≡ K(C(∂Da′)).

Then U is a subspace of Ξ and, moreover, following similar arguments
as in [36], Lemma 3.1 implies that the set U ⊂ Ξ is dense in Ξ, and
thus the statement of Proposition 3.1 is proved. �

Proof of Theorem 2.1. The statement of Theorem 2.1 now follows
immediately. Indeed, the result of Proposition 3.1 implies that there



562 DANIEL ONOFREI

exists {wj}j ⊂ C(∂Da′), such that

(3.22) Kwj −→ (v1, v0), in Ξ.

Let us consider the double layer potential D with density φ ∈ C(∂Da′),
defined as

Dφ(x) =
∫
∂Da′

φ(y)
∂Φ(x,y)

∂νy
dsy, for x ∈ Rd \Da′ .

Then, from (3.22), we have that, for any δ ≪ 1, there exists an infinity
of indices j ∈ N such that, for vb = Dwj , on ∂Da, the function

u(z) =
∫
∂Da′

wj(y)∂Φ(z,y)/∂νy dsy, for z ∈ Rd \Da will be the unique

solution of (2.7) and satisfy (2.8). �

Remark 3.1. We make the observation that the fictitious domain Da′

with Da′ ⊂⊂ Da helped us obtain a very smooth datum vb on the
actual physical source boundary Da for the desired controls, and this
fact will be very important when we will make use of these results
for the similar control problem for Maxwell equations in free space or
waveguides ([1, 37]) through the Debye potentials representations.

Remark 3.2. Consider v1 ∈ L2(∂W1) and v0 ∈ L2(∂W0) as in (2.4)
for n = 1. One possible way to obtain the functions wj in (3.22) is
through the Tikhonov regularization [3, 10]. Indeed, for αj → 0 (i.e.,
Tikhonov regularizers) the functions wj ∈ C(∂Da′) defined by

(3.23) wj = (αjI +K∗K)−1K∗v, with v = (v1, v0),

have the property that, for any δ << 1, there exists an Nδ ∈ N such
that, for any j > Nδ, the functions uj given by

(3.24) uj(x) =

∫
∂Da′

wj(y)
∂Φ(x,y)

∂νy
dsy, for x ∈ Rd \Da′

satisfy

(3.25)



∆uj + k2uj = 0, in Rd \Da

uj ∈ C(∂Da)

∥uj − v0∥L2(∂W0) ≤ δ,

∥uj − v1∥L2(∂W1) ≤ δ.
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Proof of Corollary 2.2. Recall that we are in the case n = 1, i.e., (3.1)
or (3.2) hold and v0, v1 are solutions of the Helmholtz equation in W0

and W1, respectively. The next lemma presents two useful regularity
results.

Lemma 3.2. Let V be a smooth bounded domain in Rd, and consider
U ⊂⊂ V a smooth sub-domain. Let k ∈ R be such that

i) − k2 is not a Dirichlet eigenvalue for the Laplacian in V(3.26)

ii) − k2 is not a Neumann eigenvalue for the Laplacian in U.(3.27)

Consider f ∈ C(∂V ) and g ∈ C(∂U). Define zi ∈ C2(V ) ∩ C(V ) to
be the solution of the following interior Dirichlet problem

(3.28)

{
∆zi + k2zi = 0 in V

zi = f on ∂V.

and ze ∈ C2(Rd\U)∩C(Rd\U) as the solution of the following exterior
problem,

(3.29)


∆ze + k2ze = 0 in Rd \ U,
ze = g on ∂U,

(x/|x|,∇ze(x))− ikze(x)=o(1/|x|d−1/2),
as |x| → ∞, uniformly for all x/|x|.

Then, we have

∥zi∥C2(U) ≤ C∥f∥L2(∂V ),(3.30)

∥ze∥C2(Rd\V ) ≤ C∥g∥L2(∂U),(3.31)

where C = C(k, U, V ).

Proof. We first point out that the result can be obtained by adapting
the proof in [7, subection 3.4]. Another way to prove (3.28) and (3.29)
is by adapting the ideas in [22, subsection 6.5]. We will first sketch the
proof for the interior estimate (3.28). Let A denote the double layer
potential with L2 density on ∂V .

As in [22, subsection 6.5], by using the Fredholm alternative in
different dual systems together with (3.26), we can show that Ker( 12I−
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A) = 0 in L2(∂V ). From this and the compactness property of A (which
results from the Lax theorem, see [7, Theorem 4.11]) we have that
1
2I − A has a bounded inverse in L2(∂V ). From (3.26) and expressing
the solution zi as a double layer potential (see [7]), we obtain

(3.32) zi(z) =

∫
∂V

(
1

2
I −A

)−1

f(y)
∂Φ(z,y)

∂νy
dsy for z ∈ V.

Using the analyticity of zi in U , the fact that dist(U, ∂V ) > 0, Cauchy
inequality and the boundedness of (12I−A)

−1, we obtain (3.30). Finally,
one can see that, using (3.27) and with obvious modifications of the
above arguments, one can obtain the proof of (3.31). �

Following similar arguments as in [36], from Proposition 3.1, Lemma
3.2 applied in our context, and the fact that, by definition, for any
φ ∈ C(∂Da′), K1φ and K2φ are restrictions of Dφ on ∂W1 and ∂W0,
respectively, we obtain that the sequence {wj} ⊂ C(∂Da′) introduced
at (3.22) satisfies

∥Dwj − v1∥C2(D1) ≤ C∥K1wj − v1∥L2(∂W1) → 0,

(3.33)

∥Dwj − v0∥C2(D0) ≤ C∥K2wj − v0∥L2(∂W0) → 0,

for some constant C = C(k,D1, D0,W0,W1). Therefore, the statement
of Corollary 2.2 follows.

The next remark is a simple consequence of classical theory and
states that, for any desired level of accuracy δ, there exists a unique
function w0 ∈ L2(∂Da′) with minimal energy norm, i.e., with a minimal
L2(∂Da′) norm such that ∥Kw − v∥Ξ ≤ δ. Indeed, Proposition 3.1
together with the classical theory of minimum norm solutions based on
the Tikhonov regularization implies (see [22]):

Remark 3.3. For 0 < δ ≪ 1 and v ∈ Ξ, there exists a unique
w0 ∈ L2(∂Da′) solution of the following minimization problem,

(3.34) ∥w0∥L2(∂Da′ ) = min
∥Kw−v∥Ξ≤δ

∥w∥L2(∂Da′ ).

Moreover, the classical theory implies that the solution w0 of (3.34)
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belongs to C(∂Da′) and is the unique solution of
(3.35)
α0w0 +K∗Kw0 = K∗v, for some α0 such that ∥Kw0 − v∥Ξ = δ.

3.2. The general case n ≥ 2. The proofs of Theorem 2.1, Corol-
lary 2.2 as well as all the statements of the subsequent remarks offered
above for the case n = 1 can be immediately adapted to the general
case n ≥ 2 corresponding to two or more regions of control. The only
major modifications are the fact that the space Ξ is now defined by

(3.36) Ξ ≡
n∏

i=0

L2(∂Wn−i),

with the Hilbert topology induced by the usual scalar product and the
fact that the operator K : L2(∂Da′) → Ξ is now given by
(3.37)
Ku(x1,x2, . . . ,xn,x0) = (K1u(x1),K2u(x2), . . . ,Knu(xn),K0u(x0)),

for any u ∈ L2(∂Da′), where
(3.38)

Kiu(xi) =

∫
∂Da′

u(y)
∂Φ(xi,y)

∂νy
dsy, for xi ∈ ∂Wi, for i = 0, n.

4. Numerical support. In this section we will offer numerical
support of the results presented in Theorem 2.1 in the context of the
cloaking application as described in Remark 2.3. In what follows, Br(x)
will denote the disk with radius r and center x ∈ Rd.

In Figures 2 and 3 we plot the 2D (d = 2) results predicted by the
above theory (see Remark 2.3) in the case n = 1, Da = B0.1(0), W1 =
{(r, θ) ∈ (0.13, 0.19)×(2π/5, 3π/5)},W0 = R2\BR(0) withR = 10, and
the interrogating signal is a plane wave given by uint(x1, x2) = e−ikx2 ,
with wavenumber k = 10. The plots in the top half of Figure 2 show
the accuracy of the nulling obtained in the region of interest W1, while
the plots in the lower half of the figure show the necessary density wj

for αj = 10−10 together with the field near Da. We also remark that
in fact the relative L2 control error on ∂W1 is O(10−4).

In Figure 3 we can see the small residual field existent on ∂W0

as expected by the density result of Proposition 3.1 in the context
of cloaking (see Remark 2.3). We used the Tikhonov regularization
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Desired Field in the region of interest
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Figure 2. Numerical results in the two dimensions.

scheme to approximate the density function wj on several cross-sections
around the center of the antenna (see Remark 3.2).

For 3D (d = 3) numerical support we consider Da(−l, l) × Bδ(0)
and assume W1 = {Bδ+l1+l2(0) \ Bδ+l1(0)} × (−p, p), where l1, l2, p
are given positive reals to be specified in the numerical tests. We also
considered W0 = (−L,L)×BR(0) for some L > l and R > l1 + l2 + δ.

In Figure 4, we sketch the geometry considered for the 3D numerical
test. We will present the results predicted by the above theory (see
Remark 2.3) with

(4.1) uint(r, x) = J0

(
rχ1

R

)
eiβx,

where J0 represents the 0-th order Bessel-J function, χ1 represents the
first root of J0, and β =

√
(k2 − χ2

1/R
2).

We considered k = 6 (corresponding to a frequency of 300MHz),
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Figure 3. 2D accuracy of control on ∂W0 = ∂BR(0) with R = 10

αj = 10−10, δ = 0.01, l = 0.3, l1 = 0.1, l2 = 0.04, p = 0.1, R = 15 and
L = 9.

Figure 5 describes the contour plots of cross-sections of −uint (left
column) versus the cross-sections of the field generated by the active
antenna (right column). The three rows in Figure 5 represent the
two fields in W1 for three cross-section of the antenna, x = −0.029,
x = −0.0026, x = 0.0237, respectively.

Figures 6 and 7 each describe the density wj for αj = 10−10 for four
cross sections along the negative and the positive x-axis, respectively.
Recall that wj introduced in (3.22) are functions of (x, θ) on ∂Da. We
used the Tikhonov regularization scheme to approximate the density
function wj on several cross-sections around the center of the antenna
(see Remark 3.2). The larger amplitudes towards the end of the
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DL 

Figure 4. Sketch of the geometry for the 3D numerics.

antenna are caused by the fact that ∂Da is not smooth in our numerical
test. Even in this situation, one can see that the reasonable level of
oscillations in wj as well as the small power needed when away from
±l are a strong indicator about the feasibility of such a scheme.

In Figure 8 we show two plots of the accuracy of the above 3D
controls. The top plot shows the interpolation of 20 values of

∥uj(x, ·) + uint(x, ·)∥L2({Bδ+l1+l2
(0)\Bδ+l1

(0)}×{x})

∥uint∥L2(∂W1)

for 20 linearly equally spaced values of x in [−0.1, 0.1]. The bottom
plot in Figure 8 shows ∥uj(x, ·)∥L2(∂BR(0)×{x}) for 200 linearly equally
spaced values of x in [−9, 9]. Noting that on this particular cylindrical
geometry it is enough to look at L2 errors on cross sections along the
main axis and that for L large the value of ∥uj(±L, ·)∥L2(BR(0)) will be
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Figure 5. Accuracy of control in three different cross sections on the x-axis.

very small, we can observe the high accuracy of the control scheme.

5. A few remarks about stability. In this section we will offer
a few insights into the important question of stability of the solution
to problems (2.7) and (2.8). For simplicity, we consider in this section
the case of cloaking as described in Remark 2.3 for n = 1. Thus, let
(v0, v1) = (0,−uint) ∈ Ξ where uint solves the Helmholtz equation in
BR(0) and represents the interrogating field, and let 0 < δ ≪ 1 as
above. Proposition 3.1 then implies that there exists a sequence of
functions w ∈ L2(∂Da′) such that

(5.1) ∥Kw + (0, uint)∥Ξ ≤ δ,
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Figure 6. Density current wj(θ) for four cross sections along the negative
x axis.

where K was defined at (3.5) and the space Ξ was introduced at (3.3).
Remark 3.3 further provides the existence and characterization of a
minimal energy solution for problem (5.1) in the sense of (3.34).

Note that, as shown at the end of the respective proof, the statement
of Theorem 2.1 for n = 1 is implied by (5.1) if one considers vb = D1(w)
on ∂Da, where the operator D1 was introduced in (3.6). Also observe
that, by uniqueness, for vb = D1(w), problems (2.7) with (2.8) are
equivalent to problem (5.1) above and thus can be viewed as a Fredholm
equation of first kind associated to the compact operator K. It is well
known that this type of problem is usually extremely ill-posed, and
thus, the stability of the solution with respect to small perturbations
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Figure 7. Density current wj(θ) for four cross sections along the positive
x axis

in uint is a major concern from the physical feasibility point of view.
That is why we dedicated a separate research effort to this question. In
this regard, in [20], we have completed a detailed sensitivity analysis of
problem (5.1) where, in the context of cloaking and for several different
types of interrogating fields, we studied the broadband character of the
scheme, its stability and the power budget (L2(∂Da)-norm). Among
other important observations, two major facts were strongly suggested
by our sensitivity analysis:

A. The minimal norm solution for problem (5.1) will have a broad-
band character with very small L2(∂Da)-norm and will be sta-
ble with respect to small perturbations in uint, only in the case
when dist(∂W1, ∂Da) << 1.

B. The case when uint corresponds to a plane wave appears more
sensitive to measurement noise than the case when uint corre-
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Figure 8. Control accuracy on ∂W1 and ∂W0.

sponds to a far field point source.

In what follows we only present two stability results for fixed fre-

quency in 2D: one for uint(x) =
i
4H

(1)
0 (k|x−x0|) with x0 = (−10000, 0)

and the other for uint(x1, x2) = eikx1 . In both cases, we used Tikhonov
regularization with the Morozov discrepancy principle for the choice of
regularization parameter α to compute a minimal norm solution for the
problem (5.1).

For the stability discussion, we considered a perturbed interrogating
field uϵint with deterministic noise level of half percent, i.e.,

(5.2)
∥uϵint − uint∥L2(∂W1)

∥uint∥L2(∂W1)
= ϵ = 0.005.

Then, we studied the power budget (L2(∂Da)-norm) and stability
of the minimal energy solution for the problem (5.1) as a function of
µ = dist(∂W1, ∂Da). In each of the two cases introduced above, plane
wave or point source interrogating signals, we respectively considered
the power budget of the perturbed solution ϕϵ (i.e., minimal energy
solution of (5.1) with uϵint as the interrogating field) and the relative
L2 error between ϕϵ and the unperturbed solution ϕ0 (i.e., minimal
energy solution of (5.1) with uint as the interrogating field).
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In Figure 9 we assumed n = 1, Da = B0.01(0),W1 = {(r, θ) ∈ (0.01+
µ, 0.014 + µ) × (−π

4 ,
π
4 )}, for µ ∈ (0.001, 0.03) and W0 = R2 \ BR(0)

with R = 10, wavenumber k = 10, and the interrogating signal is a

point source at x0 = (−10000, 0) with uint(x1, x2) =
i
4H

(1)
0 (k|x− x0|).

The left plot in Figure 9 shows the L2(∂Da)-norm of the minimal
energy solution ϕϵ for problem (5.1) with perturbed incident field uϵint
defined as in (5.2) as a function of µ ∈ (0.001, 0.03). The right
plot in Figure 9 presents the L2(∂Da) relative difference between
ϕϵ and ϕ0 and the minimal energy solutions of the perturbed and
unperturbed problems, respectively, for µ ∈ (0.001, 0.03). Note that
||Kϕϵ||L∞(BR(0)) ≈ O(10−5).
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Figure 9. Stability for point source interrogating field as a function of
µ = dist(∂W1, ∂Da).
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In Figure 10, we assumed n = 1, Da = B0.01(0), W1 = {(r, θ) ∈
(0.01 + µ, 0.014 + µ) × (−π/4, π/4)}, for µ ∈ (0.001, 0.03), W0 =
R2 \ BR(0) with R = 200, wavenumber k = 10, and the interrogating
signal is a plane wave given by uint(x1, x2) = eikx1 .

The left plot in Figure 10 shows the L2(∂Da)-norm of the minimal
energy solution ϕϵ for the problem with perturbed incident field uϵint
defined as in (5.2) as a function of µ ∈ (0.001, 0.03). The right plot
in Figure 10 describes the L2(∂Da) relative difference between ϕϵ and
ϕ0 the minimal energy solutions of the perturbed and unperturbed
problems, respectively, for µ ∈ (0.001, 0.03). Observe that, in this case
||Kϕϵ||L∞(BR(0)) ≈ O(10−2).
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Figure 10. Stability for plane wave interrogating field as a function of
µ = dist(∂W1, ∂Da).
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Comparing the two figures, one can observe that, even for µ << 1 the
L2(∂Da) norm of the solution is larger for the plane wave interrogating
field than for the point source interrogating field. This is intuitive since,
in the first case, one tries to approximate a plane wave with a decaying
field, and this as expected will require a larger L2(∂Da) norm. Also,
the decay of the solution is slower for the plane wave interrogating
field than for the point source interrogating field, strengthening our
conclusion that the former case is less feasible compared with the latter
case.

In Figure 9, one can see the very small L2 norm on ∂Da and relative
good stability associated with dist(∂W1, ∂Da) << 1 for the case of an
interrogating signal originating from a far field point source which are
encouraging for the cloaking problem described in Remark 2.3.

The above numerical plots support the general sensitivity claims
above for k = 10 but a more complete discussion, analytic and numeri-
cal, is performed in [20]. We mention also that, for the above computa-
tions, we used a Fourier basis to represent the solution on ∂Da. Hence,
also encouraged by our current tests in the electromagnetic regime, we
believe that these results can be dramatically improved if one consid-
ers a localized basis for the representation of the solution on ∂Da, i.e.,
linear splines interpolation, and we plan to consider this type of basis
for our future stability investigations.

6. Conclusions. We have theoretically shown the existence of a
class of controls for the radiated solution of the scalar Helmholtz
equation. Analytic results and numerical tests performed in [20]
suggest that these solutions are stable, work over a broadband of
frequencies and require realistic power budgets on the source only in
near field regions, i.e., for control regions situated in the vicinity of the
source. In this regard, in this paper we presented two finite frequency
2D numerical results.

We believe our results can be used for various applications where
the control of acoustic fields in homogeneous isotropic media is of im-
portance and we also perceive this paper as a first step towards un-
derstanding the more complex problem of control of electromagnetic
fields and, in this regard in [1] and [37], we show, analytically and
through real data simulations, that by cleverly using the theory of De-
bye potentials (which provide the link between scalar Helmholtz fields
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and electromagnetic fields) one can prove similar results in the context
of near field control of normal modes in waveguide and of free space
electromagnetic fields. In our work, we build on the single antenna case
and propose active arrays to control acoustic or electromagnetic fields
in the near field regions.

Although equally important for the practical point of view, there
are important technical differences between the acoustic regime where,
through transducers, a speed differential can be obtained but the envi-
ronment may be heterogeneous, and the electromagnetic regime where
there is no speed differential but the environment is homogeneous. Also,
defending a fixed site (e.g., ground building) where the communication
with the exterior may be maintained through underground wires, is less
challenging than defending a moving airplane, for example, where the
doppler effect must be considered and where maintaining communica-
tion capabilities and differentiating between friendly and enemy signals
are additional challenges.

Finally, we mention that in any real life application of such results,
one either needs to know the nature (phase, and magnitude) of the
interrogating field or one needs to pair the finite frequency (i.e., time-
harmonic) scheme with a feedback time-control loop for the sensing
and countering of unknown interrogating signals.

Although our current results, including the forthcoming works
[1, 37], consider only time-harmonic fields with a priori known in-
terrogating signals, as a next step we are planning to consider the full
time-domain problem first for a case of a dipole antenna defending a
conducting surface and then subsequently for planar and, respectively,
conformal antenna arrays defending a given site.
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