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Abstract. In this paper, we establish a scheme for the active manipulation of elec-

tromagnetic fields in prescribed exterior regions using a surface source. We prove the

existence of the necessary surface current (electric or magnetic) on a single source to

approximate prescribed electromagnetic fields on given regions of space (bounded or

possibly the far field). We provide two constructive schemes for the computation of the

required surface currents: our first strategy makes use of the Debye representation results

for the electromagnetic field and builds up on previous control results for scalar fields

discussed in [J. Integral Equations Appl. 26 (2014), pp. 553–579]; the second strategy we

propose makes use of integral electromagnetic representation results and follows theoret-

ically from the first. We provide theoretical validation for both computational schemes

and present supporting numerical simulations for the first strategy in several applied

scenarios.

1. Introduction. The study of electromagnetic waves has been a very popular sub-

ject of research due to its far-reaching applications, from remote sensing, biomedical

engineering and imaging to radar systems, defense, and warfare. A good amount of re-

search in this area deals with the design and implementation of accurate and efficient

numerical methods to solve electromagnetic problems such as those in the analysis of
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large scale systems [29], [26], [39], scattering analysis [66], [2], [62], [63], [68], and inverse

problems (see for instance [18], [64], [19]).

Theoretically, the controllability of Maxwell’s equations within dielectric bodies

through control of surface currents was studied in [35], [48] and [18]. These authors

have used the Hilbert Uniqueness Method of Lions [38] concerning the control of systems

and partial differential equations. Recent works on the interior control problem in var-

ious geometric configurations and/or specific media using surface currents include [33],

[34], [57], [15], [8]. The reference books [10] and [36] offer a comprehensive description

of important results on feedback control laws for general hyperbolic infinite dimensional

systems through the use of abstract Riccati equations.

Our work on active control strategies for exterior electromagnetic fields are motivated

by practical applications, such as scattering cancellation or field synthesis.

In scattering cancellation applications, it is assumed that a given target is interrogated

by an incident field and requires the construction of necessary boundary currents for the

partial or total cancellation of the resulting scattered field. Some works concerning this

application include [50] where a detailed sensitivity analysis is presented and [59, 60]

where the electromagnetic equivalence principle is used to show how a dipole array can

cancel the known scattered field from a cylinder. The authors in [42], [41], and [43]

studied the structure of non-radiating sources while those of [3], [21], and [20] considered

their applications for active cloaking. Experimental results on active cloaking are pre-

sented in [40] for quasistatic regime and in [24] for finite frequency regime. In a recent

review paper [28], the authors describe a strategy which make use of electromagnetic

equivalence principles to show how electromagnetic fields can be actively manipulated

in given regions of free space by using surface distributed active elements (obtaining an

alternative characterization of the so-called Huygens’ Metasurfaces).

The other class of applications is on field synthesis. Classically, the problem of field

synthesis requires the construction of necessary currents on an active source for the

approximation of a given far field pattern [7] (“the far field synthesis”). In our formulation

below, the field synthesis problem requires the construction of necessary currents on

the source for the approximation of various prescribed solutions of Maxwell equations

in various given exterior regions (possibly including, but not limited to, the far field

region). The problem of far field synthesis is well studied in the mathematical literature.

For instance, the monograph [7] presents a detailed discussion of optimization procedures

for the various related questions. The near field synthesis problem, on the other hand,

is mostly discussed in the engineering literature and in the review [12], the authors

summarized the recent progress on this problem and proposed a genetic optimization

algorithm based on the far field to near field mapping for a solution. The monograph

[31] discusses the use of far field to near field mapping in near field scanning applications.

Another approach to the control problem in the context of the above-mentioned ap-

plications is the use of novel composites for various control strategies based on trans-

formation acoustics and transformation optics techniques. In this regard, starting with

the works [30], [54], [17] (see also [23] where the idea of transformation invariance of

Maxwell equations was first used to compare EM fields in different structures), in recent

years there had been many research insights in the field of acoustic and electromagnetic
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metamaterials. For example, the monographs [58], [11], [27], [55], [16] and the references

therein offer insightful perspectives on the history, foundations, recent advances, and

possible applications of metamaterials. The effects of small heterogeneities and other

peculiar properties of metamaterials to proposed control strategies had also been studied

in [5], [4], [6] and the references therein.

This paper proposes a new approach in the active control of electromagnetic fields

to characterize the necessary surface currents on a single source to produce the desired

fields on prescribed exterior regions of space. Two possible computation schemes are

discussed: the first scheme is based on expressing the desired (vector) fields in terms of

(scalar) Debye potentials; the second strategy is based on using integral representation

results for the electromagnetic fields to reduce the problem to solving a series of integral

equations for certain electromagnetic moments. While we theoretically validate both

solution approaches we focus numerically only on the first approach offering supportive

simulations in several applied scenarios.

More explicitly, the first approach proposed in the paper gives rise to a pair of scalar

inverse source problems involving the Helmholtz equation as discussed in [52], [53], and

[25]. The solutions obtained for these inverse problems are then used to find the bound-

ary currents that will radiate an approximation of the prescribed electric and mag-

netic fields on the given exterior regions. Regarding this approach we mention that

the use of the Debye decomposition for the electromagnetic field is not a new idea (see

[37,44–47,49,51,56,61,67]). In fact, in [61] the author observed that in order to charac-

terize electromagnetic diffraction phenomena around a conical boundary it is enough to

solve the associated scalar problems for the two corresponding Debye potentials. But, to

the best of our knowledge, the use of Debye decomposition in corroboration with smooth

control results of the Helmholtz equation for a unified strategy for the active manipula-

tion of electromagnetic fields is a novel alternative approach which we believe presents

several important appealing qualities: constructiveness (which makes it computationally

friendly); simplicity, since it relies heavily only on the analysis for the scalar case; gener-

ality, since it provides a unifying platform for many interesting applications; feasibility,

since by design it offers the possibility to successfully understand possible discrete ap-

proximation methods for instantiation of the continuous surface currents theoretically

predicted.

The rest of the paper is organized as follows: Section 2 formally presents the problem

and states the paper’s main result, Theorem 2.1. Section 3 presents the proof of the main

result by two alternative approaches and highlights some important consequences of the

results. Section 4 establishes a framework for the numerical implementation of the theo-

retical results based on the first solution approach presented in Section 3. This includes

the description of the spherical harmonic decomposition of the prescribed electric and

magnetic fields and some analytic calculations that will make the numerical simulation

more accurate. This numerical framework is implemented and the results are presented

in Section 5. Finally, in Section 6, we offer some concluding remarks and some possible

future research directions.
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2. Main result. In this section we introduce the geometry and functional framework

of our problem and state our main result. In this regard, denote by Ds � R
3 the

open and connected source domain with a Liptschitz boundary, modeled as a surface

current on ∂Ds. In order to streamline the presentation, in what follows we will assume

that the media surrounding Ds is air and denote by Br the ball centered at the origin

and radius r (but any homogeneous and isotropic surrounding media will fit within the

framework of our presentation). Consider M ∈ N smooth mutually disjoint control

domains {D1, . . . , DM} in R
3 and let D0 be a domain including the origin such that⋃

i Di ∪ Ds � BR � D0 for some large enough R (where here and in the rest of the

document � denotes compact inclusion). In what follows, {D1, . . . , DM} and R
3 \ D0

will be referred to as the control regions. Note that in the case of scattering cancellation

application, Di = ∅ for each i ≥ 1. Next, we make the assumption that Ds and the

regions of control Di are well separated,

Di ∩Ds = ∅ for each i = 1,M. (2.1)

Fig. 1. Diagram of electromagnetic active field manipulation.

A sketch of the problem geometry is presented in Figure 1 where only four domains

{D0, D1, D2, D3} are represented and the source Ds is modeled as a surface magnetic

current. We consider wave propagation in a homogeneous isotropic source free non-

conductive medium in R
3. The time-domain Maxwell system reads ([9]):

∇×E = −μ
∂H

∂t
;∇×H = ε

∂E

∂t
, (2.2)

where μ, ε are the magnetic permeability and electric permitivity of the homogeneous

and isotropic ambient space. In the time-harmonic case considered in this paper, the

e−iwt time dependence is assumed but suppressed in what follows and thus the system

(2.2) becomes

∇×E = iμωH;∇×H = −iωεE. (2.3)
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Let BR as above and consider M + 1 pairs of vector functions {(Ei,Hi)}ni=0 such that:

(Ei,Hi)
solve Maxwell system in annular source free regions Σi centered in the

origin and with Di � Σi for 1 ≤ i ≤ M,

(E0,H0) is a radiating solution of the Maxwell system in Σ0 = R
3 \BR, (2.4)

where by a radiating solution of Maxwell equations we understand a solution which

satisfies the Silver-Muller radiation conditions at infinity, i.e.,

E(x)× x̂+
1

Y
H(x) = O(1/|x|2),

H(x)× x̂− YE(x) = O(1/|x|2), (2.5)

as |x| → ∞ uniformly with respect to x̂ ∈ S2 and where Y =
√

ε
μ denotes the admit-

tance in non-conductive media (see [9], [7]). The radiation conditions can be simply

rewritten for all the equivalent forms of the Maxwell system (see Section 3) and giving

a smooth enough boundary data, they guarantee uniqueness of solutions for Maxwell

exterior problems [13].

The main result of the paper regards the theoretical possibility to characterize needed

input data on the boundary of the active source domain Ds (i.e., conduction or magnetic

surface currents) so that given desired fields are well approximated in prescribed bounded

or unbounded mutually disjoint exterior regions of space. We have the following.

Theorem 2.1. Let 0 < δ � 1 be fixed and consider domains Ds and {Di}Mi=0 as above.

Also, let (E0,H0) and (Ei,Hi) with 1 ≤ i ≤ M as in (2.4). Then there exists smooth

surface magnetic currents M ∈ C∞(∂Ds) (or smooth conduction currents J ∈ C∞(∂Ds))

such that the solutions (E,H) of⎧⎨
⎩

∇×E = iμωH; ∇×H = −iωεE in R
3 \ D̄s,

E× n = M (or H× n = J) on ∂Ds,

(E,H) satisfy the Silver-Muller radiation condition at infinity,
(2.6)

where n is the unit exterior normal to Ds, satisfy

‖E−E0‖C(R3\D0) ≤ Cδ, ‖E−Ei‖C(Di)
≤ Cδ for each i = 1,M,

‖H−H0‖C(R3\D0) ≤ Cδ, ‖H−Hi‖C(Di)
≤ Cδ for each i = 1,M, (2.7)

where the constant C above depends only on ω, ε, μ.

3. Proof of the theorem and some further discussions. In this section we

present the proof of Theorem 2.1 in the case of a source domain Ds modeled by a

magnetic surface current M = E × n on ∂Ds mentioning that the case of a source

modeled by a conduction current J = H × n follows similarly. We then present two

approaches for the numerical computation of the required surface currents with the note

that the second computation strategy will give us the opportunity to include a discussion

about the possibility that the source allows for both types of surface currents, conduction

and magnetic.
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Proof. Our arguments for the proof of Theorem 2.1 make use of previous scalar con-

trol results obtained in [52], [53],[25], [32] together with representation results of the

electromagnetic field.

In what follows we will make use of two other forms of the Maxwell system. In this

regard, from (2.3) it can be easily observed that Ẽ =
√
ε E, H̃ =

√
μ H equivalently

satisfy

∇× Ẽ = ikH̃;∇× H̃ = −ikẼ (3.1)

and that A =
√
−iεω E,B =

√
iωμ H equivalently satisfy

∇×A = kB;∇×B = kA, (3.2)

where here the principal branch of the logarithm was used in the definition of the complex

square root above and in the last two equations, k = ω
√
εμ denotes the associated

wave number. In light of (3.2), it was shown in [65] that there exists unique ui, vi
(with zero average over the unit ball) solutions of the Helmholtz equation in Σi for each

i ∈ {0, . . . ,M} given by the following weakly singular integral operators:

ui(rr̂) = − r

2π

∫
B1

(
log(sin

γ

2
)
)
r̂ ·Ai(rr̂′)dσ

′,

vi(rr̂) = − r

2π

∫
B1

(
log(sin

γ

2
)
)
r̂ ·Bi(rr̂′)dσ

′, (3.3)

where Ai =
√
−iεω Ei,Bi =

√
iωμ Hi, r̂ denotes the unit vector along direction r,

r = |r|, γ denotes the geodesic distance between r̂ and r̂′, and ui(r), vi(r) satisfy

Ai(r) = ∇× (∇× uir) + k∇× vir, Bi(r) = ∇× (∇× vir) + k∇× uir in Σi (3.4)

for each i ∈ {0, . . . ,M} where the sets Σi for i ∈ {0, . . . ,M} were introduced in (2.4).

Moreover, it was shown in [65] that the radiation condition satisfied by (E0,H0) implies

that (u0, v0) is a radiating solution of the Helmholtz equation in Σ0 = R
3 \BR. Next we

make the observation that the results in [52] (see also [32], [53], [25]) can be immediately

adapted to obtain the following smooth control result.

Theorem 3.1. Let 0 < δ � 1 be fixed and consider the Debye potentials ui, vi for

i ∈ {0, . . . ,M} introduced above. Assume (2.1) holds and consider smooth domains, D′
a,

{Wi}Mi=1 with D′
a � Ds, Di � Wi for i ∈ {1, . . . ,M}. Let BR � D0 and

⋃M
i=1 Di ∪Ds �

BR be defined as above. In addition, assume −k2 is not a Neumann eigenvalue for the

Laplace operator in BR or a Dirichlet eigenvalue for the Laplace operator in Da′ or Wi.

Let us introduce the following operator K : L2(∂Da′)→L2(∂BR)×ΠM
i=1L

2(∂Wi) defined

by

(Kψ)(x) =

∫
∂Da′

ψ(y)Φ(x,y)dy for x on ∂BR ×ΠM
i=1∂Wi,

where Φ(x,y) =
1

4π

eik|x−y|

|x− y| is the 3D fundamental solution for the Helmholtz equation.

Then one can characterize and compute two families of regularization parameters αu, αv

such that the functions u, v ∈ H1(Rd \Ds) defined by,{
u = −S[(αuI +K∗K)−1K∗f ], f = (u0, u1, . . . , uM ) in R

d \Ds,

v = −S[(αvI +K∗K)−1K∗g], g = (v0, v1, . . . , vM ) in R
d \Ds,

(3.5)
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are such that⎧⎪⎪⎨
⎪⎪⎩

Δu+ k2u = 0, Δv + k2v = 0 in R
d \Ds,

u, v satisfy the Sommerfeld radiation condition at infinity,

‖u− u0‖C2(R3\D0) ≤ δ, ‖v − v0‖C2(R3\D0) ≤ δ,

‖u− ui‖C2(Di) ≤ δ, ‖v − vi‖C2(Di) ≤ δ,

(3.6)

where K∗ denotes the adjoint of K and S demotes the single layer operator defined on

∂D′
a, i.e.,

(Sξ)(x) =
∫
∂Da′

ξ(y)Φ(x,y)dy for ξ ∈ L2(∂Da′).

We mention that the controls u, v predicted in Theorem 3.1 are explicitly constructed

and can be actually computed by employing the Tikhonov regularization method to-

gether with an L-curve algorithm or the Morozov discrepancy principle to calculate the

regularization parameters αu, αv (see [32], [53], [25]).

Remark 3.2. We remark that similar scalar control results presented in Theorem 3.1

could also be obtained by using double layer potentials or the modified integral operators

used in the literature to deal with resonant k’s [13, 14].

Remark 3.3. We remark that the sub-domain D′
a � Ds was introduced so that the

resulting boundary data for (u, v) introduced at (3.6) (i.e., restrictions of the integral

operators defined in (3.5) to ∂Ds) is smooth on the boundary of the actual physical

source domain ∂Ds, since this will be desirable from the computational point of view as

well as necessary for the well posedness of the exterior Maxwell boundary value problem

discussed below. Also, we observe that the domains Wi with Di � Wi for i ∈ {1, . . . ,M}
and BR � D0 were used because, as it is mentioned in [52], regularity results for the

interior and exterior Helmholtz problems help us get the desired C2 estimates (3.6) in

D0, Di from similar L2 estimates on ∂BR, ∂Wi, respectively.

The next step in our proof is to use the scalar control results presented in Theorem

3.1 and construct the necessary surface currents M such that the solution of (2.6) sat-

isfies (2.7). Thus, let (u, v) be as defined in Theorem 3.1. Then, elementary algebraic

manipulations and the well posedness of the exterior Maxwell problem imply that (A,B)

given by

A(x) = ∇× (∇× ux) + k∇× vx, B(x) = ∇× (∇× vx) + k∇× ux in R
3 \Ds (3.7)

are unique solutions of⎧⎨
⎩

∇×A = kB, ∇×B = kA in R
3 \ D̄s,

A× n = (∇× (∇× ux) + k∇× vx)× n on ∂Ds,

(A,B) satisfy the Silver-Muller radiation condition at infinity,
(3.8)

and based on (3.4), (3.6) we can immediately see that (A,B) satisfy

‖A−A0‖C(R3\D0) ≤ Cδ, ‖A−Ai‖C(Di)
≤ Cδ for each i = 1,M,

‖B−B0‖C(R3\D0) ≤ Cδ, ‖B−Bi‖C(Di)
≤ Cδ for each i = 1,M (3.9)
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for some constant C. Using again the equivalence between (2.3) and (3.2) we obtain that

each of the magnetic surface currents M =
1√
−iεω

(∇× (∇×ux)+k∇×vx)×n on ∂Ds

radiates an exterior electromagnetic field E,H with the properties that

‖E−E0‖C(R3\D0) ≤ Cδ, ‖E−Ej‖C(Dj)
≤ Cδ for each j = 1,M,

‖H−H0‖C(R3\D0) ≤ Cδ, ‖H−Hj‖C(Dj)
≤ Cδ for each j = 1,M, (3.10)

where the constant C depends only on ω, ε, μ. �
Remark 3.4. The above proof can be immediately adapted to show that, in the same

conditions as in Theorem 2.1, one can characterize conduction currents J = H× n such

that (2.6), (2.7) hold true.

Remark 3.5. Note that from the physical point of view, the instantiation of magnetic

surface currents M = E × n or conduction surface currents J = H × n on the source

region ∂Ds will correspond to a Perfect Magnetic Conductor (PMC) or, respectively, a

Perfect Electric Conductor (PEC) in Ds.

First strategy for the computation of the surface currents. The proof of Theorem 2.1

presented above suggests the first scheme for the computation of the surface currents

required on the boundary of the source ∂Ds:

1. Use the given electromagnetic fields (Ei,Hi) in source free regions Σi and (3.3) to

compute their respective scalar Debye potentials (ui, vi) for each i = 0,M (see (3.4)).

Alternatively, one could consider spherical harmonics approximation of (Ei,Hi) on an-

nular regions Σi, and by using the fact that for each i = 0,M we have ΔBr
ui =

−rEi · r̂,ΔBr
vi = −rHi · r̂ for each r with (r, θ, ϕ) ∈ Σi (where r̂ has been defined

in (3.3) and ΔBr
denotes the Laplace-Beltrami operator on the sphere ∂Br) and that

spherical harmonics are eigenfunctions of ΔBr
obtain another computational avenue for

(ui, vi) for each i = 0,M .

2. Employ the computed (ui, vi) for each i = 0,M to solve the two scalar inverse

problems and find the scalar potentials (u, v) as in (3.5).

3. Use the properties of spherical harmonics in (3.7) (employing the equivalence

between (2.3) and (3.2)) to explicitly compute the radiated electromagnetic field (E,H)

corresponding to the computed scalar potentials (u, v). The desired surface magnetic

current (or conduction current) required on the surface is given then by E×n (or H×n)

on ∂Ds.

As mentioned in Remark 3.5 the above analysis considers only the case when the

source Ds is filled with a PEC or PMC material and thus supports only one type of sur-

face current, conduction current or magnetic current, respectively. Theorem 2.1 states

the existence of magnetic or conduction surface currents so that the resulting radiated

electromagnetic fields will satisfy (2.6), (2.7) and it also reveals a potential way to con-

struct and compute these boundary currents by making use of the scalar control results

of Theorem 3.1. We remark that due to the presence of the highly numerically unstable

operators ∇× and ∇×∇× in this scheme, its computational feasibility requires the use

of a global basis expansion (e.g., spherical harmonics) for the unknown surface densities

(dipole moments) so that the differential expression can be analytically computed before

the assembly of the moment matrix.
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Second strategy for the computation of the surface currents. In what follows we present

our second approach for the characterization and calculation of the required surface cur-

rents in Theorem 2.1. This approach, while providing another strategy for the computa-

tion of the surface currents predicted by Theorem 2.1 above will also apply to the general

case of sources Ds supporting magnetic as well as conduction surface currents (where

non-trivial interior fields will also exist inside Ds), and will be a stepping stone towards

the case of disconnected source regions, (i.e., arrays or swarms).

Following [7, Section 2.10], we introduce the electromagnetic field (Em,Hm) (solution

of (2.3)) generated by a magnetic ideal dipole with dipole moment a ∈ R
3 and located

at point y ∈ R
3 as

Em(x) = iωμ∇x × (aΦ(x,y)), Hm(x) =
1

iωμ
∇x ×Em(x), x ∈ R

3 \ {y}, (3.11)

and the electromagnetic field (Ee,He) generated by an electric ideal dipole with dipole

moment a ∈ R
3 and located at point y ∈ R

3 as

He(x) = ∇x × (aΦ(x,y)), Ee(x) = − 1

iωε
∇x ×He(x), x ∈ R

3 \ {y}. (3.12)

Next, we also recall two fundamental electromagnetic representation results [13, Section

4.2] (see also [22]).

Theorem 3.6 ([13]). Let D � R
3 be a bounded open connected domain. Then,

1. If (E,H) ∈ C1(R3 \ D) ∩ C(R3 \D) is a solution of Maxwell’s equations (2.3) in

R
3 \D satisfying the Silver-Muller radiation condition at infinity we have

∇×
∫
∂D

(n(y)×E(y))Φ(x,y)

−
√
μ

ik
√
ε
∇×∇×

∫
∂D

(n(y)×H(y))Φ(x,y) =

{
0, x ∈ D,

E(x), x ∈ R
3 \D,

(3.13)

and

∇×
∫
∂D

(n(y)×H(y))Φ(x,y)ds(y)

+

√
ε

ik
√
μ
∇×∇×

∫
∂D

(n(y)×E(y))Φ(x,y)ds(y) =

{
0, x ∈ D,

H(x), x ∈ R
3 \D.

(3.14)

2. If (E,H) ∈ C1(D) ∩ C(D) is a solution of Maxwell’s equations (2.3) in D, then

∇×
∫
∂D

(n(y)×E(y))Φ(x,y)ds(y)

−
√
μ

ik
√
ε
∇×∇×

∫
∂D

(n(y)×H(y))Φ(x,y)ds(y) =

{
−E(x), x ∈ D,

0, x ∈ R
3 \D,

(3.15)

Licensed to Univ of Houston. Prepared on Thu Mar  5 20:55:14 EST 2020 for download from IP 129.7.128.204.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



10 DANIEL ONOFREI, ERIC PLATT, AND NEIL JEROME A. EGARGUIN

and

∇×
∫
∂D

(n(y)×H(y))Φ(x,y)ds(y)

+

√
ε

ik
√
μ
∇×∇×

∫
∂D

(n(y)×E(y))Φ(x,y)ds(y) =

{
−H(x), x ∈ D,

0, x ∈ R
3 \D.

(3.16)

Theorem 2.1, implies that the electromagnetic fields (E,H) given by

E(x) =
1√
−iεω

(∇× (∇× ux) + k∇× vx),

H(x) =
1√
iμω

(∇× (∇× vx) + k∇× ux), (3.17)

with Helmholtz potentials u, v defined at (3.6), has the property that (E,H) ∈
C1(R3 \ D) ∩ C(R3 \ D) and is a radiating solution of Maxwell’s equation in R

3 \ D

satisfying inequalities (2.7). Then, for general source domains Ds not necessarily PMC

or PEC, (3.11) and (3.12) used in (3.13), (3.14) of Theorem 3.6 with D = Ds imply that,

in principle, one can characterize a layer of electric and magnetic tangential dipoles with

dipole density proportional to n(y)×H(y) and, respectively, n(y)×E(y) distributed on

∂Ds so that the field generated by it will be zero in Ds while being equal (E,H) in R
3\D

thus having the desired properties as in (2.7). In particular, if Ds is a PMC material,

then Theorem 3.6 gives

∇×
∫
∂D

(n(y)×Eg(y))Φ(x,y) =

{
0, x ∈ Ds,

Eg(x), x ∈ R
3 \Ds,

(3.18)
√
ε

ik
√
μ∇×∇×

∫
∂Ds

(n(y)×Eg(y))Φ(x,y)ds(y) =

{
0, x ∈ Ds,

Hg(x), x ∈ R
3 \Ds,

and a similar simplification will hold for the case when Ds is a PEC. This result theoret-

ically validates a second alternative scheme for the computation of the surface currents

predicted in Theorem 2.1 which will be based on solving a system of ill-posed associated

integral equations of the first kind as suggested by (3.18). That is, in the particular case

for instance of a PMC material in Ds, for given (E0,H0) and (Ei,Hi), with 1 ≤ i ≤ M as

in Theorem 2.1, the scheme requires us to solve for the smooth tangential vector densities

we in the following ill posed system:

∇×
∫
∂D

we(y)Φ(x,y) = Ei(x) in Di,

∇×
∫
∂D

we(y)Φ(x,y) = E0(x) on ∂D0, (3.19)

where the well posedness of the exterior Maxwell problem was used to justify the suffi-

ciency of the second equation. We remark that multiple discretization approaches either

in the spirit of [22] or employing various local basis approximations can be used for this

scheme so that a matrix of moments can be feasibly computed and the resulting linear

system efficiently solved.
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ACTIVE MANIPULATION OF EXTERIOR ELECTROMAGNETIC FIELDS 11

Note that due to analytic continuation there exists no exact solution for the system

(3.19) but an infinity of approximate solutions with asymptotically small residuals exist as

guaranteed by (3.18). By using the fact that (E0,H0) and (Ei,Hi), with 1 ≤ i ≤ M are

solutions of the Maxwell system in regions R3 \D0, Di, respectively, a good approximate

solution of (3.19) should imply the accurate approximations of the magnetic fields,

1

iωμ
∇×∇×

∫
∂D

we(y)Φ(x,y)ds(y) = H0(x) in R
3 \D0,

1

iωμ
∇×∇×

∫
∂D

we(y)Φ(x,y)ds(y) = Hi(x) in Di for i ∈ {1,M}. (3.20)

4. Numerical framework. In this section, we will focus on the first solution strat-

egy for Theorem 2.1 discussed above and present the framework for the design of a com-

putationally feasible numerical scheme implementing the theoretical results presented in

this approach. As discussed above this scheme involves three major steps. First, the pre-

scribed electric and magnetic fields will be expressed in terms of Debye potentials. Thus,

the original vectorial Maxwell system will be “replaced” by a pair of scalar Helmholtz

problems. Then the second step of this scheme requires the solution of the two associated

scalar Helmholtz inverse problems using the method proposed in [52], [53], and [25]. The

last component represents the computation of the radiated electric and magnetic fields

corresponding to the pair of Debye potentials obtained in the second component. These

potentials also give the required boundary current solving the main problems (2.6)-(2.7).

One major challenge in this strategy is the calculation of the curls and curl-curls in (3.7).

Numerical approximations of curls and curl-curls are very unstable and may introduce

errors that will be propagated along the process. To avoid this situation, we will use

global basis functions for the expansion of our unknown scalar densities such that the

curl and curl-curls of the moments can be a priori explicitly computed.

4.1. Debye potential representation of the EM field. Recall that the problem of finding

a boundary current M such that the electric and magnetic fields E and H satisfy (2.6)

and (2.7) can be reformulated in the Wilcox paradigm as{
∇×A = kB,

∇×B = kA.
(4.1)

Then the vector fields in (4.1) can be expressed as{
A(r) = ∇× (∇× ur) + k∇× vr and

B(r) = ∇× (∇× vr) + k∇× ur
(4.2)

for some scalar fields u and v satisfying (3.6). Further, given the prescribed fields Ap

and Bp, the corresponding scalar fields up and vp can be computed as the integrals

up(rr̂) = − r

2π

∫
B1

(
log(sin

γ

2
)
)
r̂ ·Ap(rr̂′)dσ

′ and

vp(rr̂) = − r

2π

∫
B1

(
log(sin

γ

2
)
)
r̂ ·Bp(rr̂′)dσ

′. (4.3)
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12 DANIEL ONOFREI, ERIC PLATT, AND NEIL JEROME A. EGARGUIN

Let Br0 = D′
a � Ds as in Section 2. As shown in [25], there exists fields u and v such

that ⎧⎨
⎩

Δu+ k2u = 0, Δv + k2v = 0 in R
d \Ds,

u, v satisfy the Sommerfeld radiation condition at infinity,

‖u− up‖C2(D) ≤ δ, ‖v − vp‖C2(D) ≤ δ

(4.4)

for any collection of control regions D and preset accuracy threshold δ. Moreover, the

fields u and v can be approximated using densities wu and wv on D′
a given by the

truncated series

wu(y) =

L∑
l=0

l∑
p=−l

αplY
p
l (ŷ) and (4.5)

wv(y) =
L∑

l=0

l∑
p=−l

βplY
p
l (ŷ), (4.6)

where Y p
l is the orthonormal family of spherical harmonics as considered in ([14, Chapter

2], [1]). Then using the addition theorem and the orthogonality of spherical harmonics in

(3.5), u and v can be approximated by the following truncated series of spherical Hankel

functions h
(1)
n of the first kind and spherical Bessel functions jn of order n:

u(r, θ, φ) ≈ ug(r, θ, φ) = ikr20

L∑
l=0

l∑
p=−l

αpl jl(kr0) h
(1)
l (kr) Y p

l (θ, φ) and (4.7)

v(r, θ, φ) ≈ vg(r, θ, φ) = ikr20

L∑
l=0

l∑
p=−l

βpl jl(kr0) h
(1)
l (kr) Y p

l (θ, φ), (4.8)

where r0 is again the radius of the spherical fictitious source. The set of coefficients αpl

and βpl are then computed following the numerical scheme in [53] and [25] which uses

Tikhonov regularization with the Morozov discrepancy principle.

4.2. Calculating the surface current and the generated EM fields. The use of spherical

harmonics in solving the scalar problems (4.4) provided a truncated series representation

for the generated fields ug and vg. These representations are better suited for a numerical

implementation instead of the integral operator forms suggested in (3.5). Moreover, we

shall see in the following discussions that the spherical harmonic decomposition will

provide an analytic expression for the curls and curl-curls required in (4.2).

Let w be a scalar Debye potential. In spherical coordinates, it can be shown that

∇× wr =

〈
0,

1

sin θ

∂w

∂φ
,−∂w

∂θ

〉
(4.9)

and that ∇×∇× wr has r, θ and φ components given by

(∇×∇× wr)r =
1

r sin θ

(
−∂2w

∂θ2
sin θ − ∂w

∂θ
cos θ − 1

sin θ

∂2w

∂φ2

)
,

(∇×∇× wr)θ =
1

r

(
∂w

∂θ
+ r

∂2w

∂r∂θ

)
,

(∇×∇× wr)φ =
1

r sin θ

(
∂w

∂φ
+ r

∂2w

∂r∂φ

)
, (4.10)
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ACTIVE MANIPULATION OF EXTERIOR ELECTROMAGNETIC FIELDS 13

respectively. Then to compute the generated fields Ag and Bg via the relations in (4.2),

we can use the series representation of ug and vg given at (4.7), (4.8) in the curl and

curl-curl formulas (4.9), (4.10). To avoid numerical errors and computational instability,

the curl and curl-curl of ug and vg will be calculated exactly. Calculating the derivatives

of the spherical harmonics Y p
l is straightforward, while the derivative of the spherical

Hankel and spherical Bessel functions are given by the recurrence relations:

∂h
(1)
n

∂r
(r) =

⎧⎨
⎩
−h

(1)
1 (r), n = 0,

1

2

[
h
(1)
n−1(r)−

1

r
h
(1)
n (r)− h

(1)
n+1(r)

]
, n > 0,

(4.11)

and

∂jn
∂r

(r) =

⎧⎨
⎩
−j1(r), n = 0,
1

2

[
jn−1(r)−

1

r
jn(r)− jn+1(r)

]
, n > 0.

(4.12)

With these identities and the series expansions (4.7) and (4.8) plugged in (4.2), the

generated fields (Ag,Bg) can be obtained analytically, thereby avoiding the instability

of numerical approximations to the curl operator. This leads to an accurate calculation

of the required magnetic surface current M on ∂Ds:

M(r) = Ag(r)× n = (∇× (∇× ugr) + k∇× vgr)× n. (4.13)

Then with the appropriate conversion between the two equivalent forms of the Maxwell

system (2.3) and (3.2), E and H can be obtained.

5. Numerical results. In this section, we present several numerical results sup-

porting the analysis presented in the preceding sections. We consider three geometric

configurations namely, single region synthesis, double region synthesis, and the case of

an almost non-radiating source. In all these cases the wave number is k = 1. The elec-

tromagnetic fields are approximated using 70 harmonic orders resulting to a total of 5041

unknown coefficients. The physical source is the sphere B0.0105(0) while the fictitious

source is the smaller sphere B0.01(0) modeled by a 200 × 100 θφ-mesh. However, note

that the physical source may assume any shape with Lipschitz continuous boundary as

long as it contains the fictitious source and satisfies the separation properties introduced

at (2.1). The near control region D1 is always the annular sector

D1 =

{
(r, θ, φ) : r ∈ [0.012, 0.016], θ ∈

[
π

4
,
3π

4

]
, φ ∈

[
3π

4
,
5π

4

]}
. (5.1)

For the numerics, D1 is discretized into 37800 collocation points. In all of the three

simulations below, we prescribe on D1 the electric field E(r) = E0e
ik·r where E0 =

〈0, 1, 0〉 and k = k 〈−1, 0, 0〉 in Cartesian coordinates and its corresponding magnetic

field H(r) = k×E(r). The control region D2 is either the annular sector

D2 =

{
(r, θ, φ) : r ∈ [0.012, 0.016], θ ∈

[
π

4
,
3π

4

]
, φ ∈

[
0,

π

4

]
∪
[
7π

4
, 2π

]}
+ (0.1, 0, 0)

(5.2)

for the double region synthesis or the unbounded region D2 = R
3 \ B10(0) for the case

of an almost non-radiating source.
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14 DANIEL ONOFREI, ERIC PLATT, AND NEIL JEROME A. EGARGUIN

We measure the accuracy of our solution by looking at several indicators. In each

experiment, we present a visual comparison between the three components (r, θ, and φ)

of the prescribed and generated electric and magnetic fields. Whenever a component of

the prescribed field is non-zero everywhere on the control region(s), we calculate and plot

the relative error at each point on the control. We also calculate the L2 relative error

as a global measure of accuracy. For the radial component, we compute the L2 relative

error as
‖Ep,r −Eg,r‖2

‖Ep,r‖2
for the electric field and

‖Hp,r −Hg,r‖2
‖Hp,r‖2

for the magnetic field

provided ‖Ep,r‖2 �= 0, ‖Hp,r‖2 �= 0 and where Ep,r and Eg,r are the radial components

of the prescribed and generated electric fields, respectively. Analogous formulas for the

fields’ θ and φ components are used.

5.1. Single region field synthesis. In this simulation, we consider a single control re-

gion: the annular sector

D1 =

{
(r, θ, φ) : r ∈ [0.012, 0.016], θ ∈

[
π

4
,
3π

4

]
, φ ∈

[
3π

4
,
5π

4

]}
.

In this region we prescribe the electromagnetic wave traveling in the direction of the

negative x-axis as described above. The top view of the problem geometry is sketched

in Figure 2.

Fig. 2. Sketch of the problem geometry for the case of a single region field synthesis

Figure 3 shows a visual comparison between the three components of the prescribed

electric field (top row) and the corresponding components of the generated electric field

(bottom row). The plots indicate a good approximation of all three components of the

prescribed field. The good visual match is confirmed in Figure 4 where the pointwise

relative errors for all of the field’s components are shown. Note that at some points

in the control region, the values to be matched, specifically for the radial and the θ-

components are close to zero, causing the relative error to show very large values. This

can be observed as the bright stripes in plots (A) and (B) of Figure 4. However, the

overall L2-relative errors are small, with values of about 1.59 × 10−2, 1.84 × 10−2, and

5.56× 10−3 for the r-, θ-, and φ-components, respectively.

Similar good results are also obtained for the magnetic fields. The components of

the prescribed and generated fields are shown in Figure 5. Note that the prescribed

magnetic field has a zero φ-component everywhere. It can be observed from the plots

that the radial and θ-components are matched very well, except for some spots near
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(a) r (b) θ (c) φ

(d) r (e) θ (f) φ

Fig. 3. Results of the electric field synthesis on D1

(a) r (b) θ (c) φ

Fig. 4. Plots of the pointwise relative errors of the electric field on D1

the top edge of the region. The generated magnetic field’s φ-components are small with

values of order 10−5.

The pointwise relative errors for the r- and θ-components of the generated magnetic

fields are shown in Figure 6. The pointwise relative errors for both components are within

desirable levels, except for some isolated points where the errors exceed 20. The overall

L2 relative errors are about 1.70 × 10−2 and 7.66 × 10−3 for the r- and θ-components,

respectively. The L2 norm of the generated magnetic field’s φ-component is just around

7.48× 10−6.
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16 DANIEL ONOFREI, ERIC PLATT, AND NEIL JEROME A. EGARGUIN

The complex current used to generate the results above is described in the plots shown

in Figure 7. This figure includes three two-dimensional plots in the θ-φ plane: (A) a color

map of the current’s magnitude and the quiver plots of the current’s (B) real and (C)

imaginary parts. It can be noted that there are points on the source where the current

has magnitude above 3.5× 104.

(a) r (b) θ

(c) r (d) θ (e) φ

Fig. 5. Results of the magnetic field synthesis on D1

(a) r-component (b) θ-component

Fig. 6. Plots of the pointwise relative errors of the magnetic field on D1
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(a) Magnitude

(b) Real part (c) Imaginary part

Fig. 7. Plot of the calculated complex current’s magnitude and
quiver plots of its real and imaginary parts

5.2. Double region field synthesis. In the following simulation, we consider two annular

sectors as control regions, the near control

D1 =

{
(r, θ, φ) : r ∈ [0.012, 0.016], θ ∈

[
π

4
,
3π

4

]
, φ ∈

[
3π

4
,
5π

4

]}
and the far control

D2 =

{
(r, θ, φ) : r ∈ [0.012, 0.016], θ ∈

[
π

4
,
3π

4

]
, φ ∈

[
0,

π

4

]
∪
[
7π

4
, 2π

]}
+ (0.1, 0, 0).

The near control is discretized into 37800 collocation points while the far control is

modeled by a mesh of 25600 points. In D1 we prescribe the left traveling electromagnetic

plane wave described above while in D2 we approximate a null field. The problem

geometry is sketched in Figure 8.

A visual comparison of the prescribed (top row) and generated (bottom row) electric

fields is given in Figure 9. The plots suggest a good match for the radial component

all throughout D1. The θ-component is also matched well except for some patch near

the control’s upper left edge. Meanwhile, there are some noticeable differences in the φ-

component in some patches near the region’s left and right edges. The pointwise relative
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18 DANIEL ONOFREI, ERIC PLATT, AND NEIL JEROME A. EGARGUIN

errors for each component of the generated electric field is shown in Figure 10. Again,

there are some points where the relative error may seem to blow up. These are the points

where the field component is exactly or is close to zero. The overall L2 relative error

for each component suggests a good approximation of the prescribed fields. The values

are about 3.52 × 10−2, 5.34 × 10−2, and 1.13 × 10−2 for the r, θ, and φ components,

respectively.

Fig. 8. Sketch of the problem geometry for the case of a double
region field synthesis

(a) r (b) θ (c) φ

(d) r (e) θ (f) φ

Fig. 9. Results of the electric field synthesis on D1

The results of the simulation for the magnetic field on the near control D1 are shown

in Figure 11. In the said figure, the three components of the prescribed and generated

fields are shown. Again note that the φ-component of the magnetic field is zero in D1.

From these plots, it can be inferred that the synthesis of the prescribed pattern generally

went well, though there were patches near the top edge of the region where there are

Licensed to Univ of Houston. Prepared on Thu Mar  5 20:55:14 EST 2020 for download from IP 129.7.128.204.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



ACTIVE MANIPULATION OF EXTERIOR ELECTROMAGNETIC FIELDS 19

(a) r (b) θ (c) φ

Fig. 10. Plots of the pointwise relative errors of the electric field on D1

(a) r (b) θ

(c) r (d) θ (e) φ

Fig. 11. Results of the magnetic field synthesis on D1

noticeable differences in the r- and θ-components of the two fields. The generated field

has a very low φ-component as desired: with values of order 10−5.

The pointwise relative error for the r- and θ-components of the magnetic field are

shown in Figure 12. Indeed, the relative errors are highest on the top of the region.

However, the L2 relative error for both components are within desired levels, with values

of around 5.58 × 10−2 and 1.44 × 10−2 for the r- and θ-components, respectively. The

L2 norm of the field’s φ-component is very small at about 4.87× 10−6.

Now we look at the results for the control region D2. Figure 13 shows the generated

electric field on D2. All three components have low magnitudes, with supremum absolute

values of 8.25× 10−4, 1.03× 10−3, and 8.28× 10−3 for the r-, θ-, φ-components, respec-

tively. The overall L2 norms of the generated field for each component are 4.93× 10−4,

2.86× 10−4, and 7.74× 10−3, in the same order.
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A very low magnetic field on D2 was generated. Figure 14 shows the plot of all

three components of this field. The supremum of the r-, θ- and φ-components on D2 are

3.18×10−6, 9.09×10−6, and 1.22×10−6, and their L2 norms are 1.45×10−6, 8.57×10−6,

and 3.47× 10−7, respectively.

(a) r-component (b) θ-component

Fig. 12. Plots of the pointwise relative errors of the magnetic field on D1

(a) r (b) θ (c) φ

Fig. 13. Components of the generated electric field on D2

(a) r (b) θ (c) φ

Fig. 14. Components of the generated magnetic field on D2
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The calculated current used to generate the fields described above is characterized in

Figure 15 using three θφ-rectangular plots, similar to the previous simulation. It can be

noted that the current’s complex magnitude reaches values of order 104.

(a) Magnitude

(b) Real Part (c) Imaginary Part

Fig. 15. Plot of the calculated complex current’s magnitude and
quiver plots of its real and imaginary parts

5.3. Almost non-radiating source. In the following simulation, we consider the case

of an almost radiating source, that is, generating prescribed fields on a near control D1

while maintaining a near zero field on the far field. Here, D1 is again the annular sector

D1 =

{
(r, θ, φ) : r ∈ [0.012, 0.016], θ ∈

[
π

4
,
3π

4

]
, φ ∈

[
3π

4
,
5π

4

]}

while the far field is D2 = R
3\B10(0), represented by the boundary of the sphere B10(0).

The near control D1 is discretized into 37800 points while D2 is sampled by a mesh of

3200 elements. In D1, the prescribed fields are those of the left traveling electromagnetic

planewave as described at the beginning of the section. The problem geometry is sketched

in Figure 16.

Figure 17 provides a comparison between the prescribed and generated electric fields

on D1. The plots suggest a very good matching in all three components of the electric
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fields. Figure 18 verifies this observation as the pointwise relative errors are shown to

be in desirable levels, except for some points where the relative errors seem to blow up.

It should be noted that those are the points where the fields to be matched are close

to zero. The relative L2 error in the r-, θ-, and φ-components are about 3.20 × 10−2,

1.58× 10−2, and 1.20× 10−2, respectively.

Fig. 16. Sketch of the problem geometry for the case of an almost
non-radiating source

(a) r (b) θ (c) φ

(d) r (e) θ (f) φ

Fig. 17. Results of the electric field synthesis on D1
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The results for the magnetic field on D1 are shown in Figures 19 and 20. Figure

19 shows the prescribed and generated magnetic fields. Note that the φ-component

of the prescribed magnetic field is zero all throughout the near control. The radial

component looks to be matched well while there are patches north of the region where

the θ-component of the generated magnetic field is a bit off. The φ-component is low

throughout the region with values of order 10−4 and overall L2 norm of just about

2.15 × 10−5. The pointwise relative errors for the r- and θ-components are shown in

Figure 20. The plots further indicate a good match between the fields. Note that there

are points where the r- and θ-components are very small, causing the relative error to

appear to be blowing-up. The overall L2 relative error for the r- and θ-components are

nevertheless low with values of 5.96× 10−2 and 2.70× 10−2, respectively.

(a) r (b) θ (c) φ

Fig. 18. Plots of the pointwise relative errors of the electric field on D1

(a) r (b) θ

(c) r (d) θ (e) φ

Fig. 19. Results of the magnetic field synthesis on D1
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In the exterior region D2, we want both the electric and magnetic fields to be very

small. Figure 21 shows the three components of the generated electric field on the

boundary of D2, that is, on ∂B10(0
¯
). It can be noted that the field has components of

order 10−6. The L2 norm of the electric field’s r-, θ-, and φ-components are just about

1.02× 10−6, 3.58× 10−6, and 9.04× 10−6.

(a) r-component (b) θ-component

Fig. 20. Plots of the pointwise relative errors of the magnetic field on D1

(a) r (b) θ (c) φ

Fig. 21. Components of the generated electric field on D2

In Figure 22, the components of the generated magnetic field are plotted. We can

observe values that are even smaller than the components of the electric field. The

r-component has values of order 10−9 while the θ- and φ-components have values of

order 10−8. The respective L2 norm of the r-, θ-, and φ-components are 2.47 × 10−9,

2.40× 10−8, and 9.59× 10−9.

The next figure describes the complex current needed to generate the results above.

Figure 23(A) shows a color map of the magnitude of the complex current in the θφ-

plane. The magnitude of the current reaches values of over 7 × 104. Figure 23(B) and

Figure 23(C) show quiver plots of the magnetic surface currents’ real and imaginary

parts, respectively.
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(a) r (b) θ (c) φ

Fig. 22. Components of the generated magnetic field on D2

(a) Magnitude

(b) Real part (c) Imaginary part

Fig. 23. Plot of the calculated complex current’s magnitude and
quiver plots of its real and imaginary parts

6. Conclusion. In this paper, we have established a general way of controlling time

harmonic electromagnetic fields in regions exterior to a compact source by determining

the necessary surface current on the source. We proposed two possible methods for the

computation of the necessary surface currents for the desired control effects: one method
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using Debye decomposition of the electromagnetic fields and the second using the integral

representation of the electromagnetic fields.

The method we decided to explore numerically requires that the prescribed (E,H)

fields be expressed in terms of Debye (scalar) Helmholtz potentials (u, v), which can be

approximated by the methods proposed in [52], [53], and [25]. In turn, u and v were used

to calculate the required magnetic (or the conduction) surface current together with the

electric and magnetic fields approximating the prescribed fields (E,H). Thus, the nu-

merical simulations supporting our theoretical results followed the framework discussed

in Section 4 in the context of the Morozov discrepancy principle-based Tikhonov regular-

ization used in [52], [53], and [25]. Three geometric configurations were considered in the

numerical tests: (1) a single region synthesis where the fields of a prescribed electromag-

netic plane wave were approximated in a bounded exterior region, (2) a double region

synthesis where the plane wave fields were approximated in a near field bounded exte-

rior region while maintaining low-magnitude fields in another exterior bounded control

region, and (3) the case of an almost non-radiating source where fields of an electro-

magnetic plane wave were approximated in a bounded control region while maintaining

very low-magnitude fields in the far field. In all of these configurations, good results

were obtained affirming the possibility of controlling EM fields and the feasibility of the

proposed numerical schemes.

A possible follow-up to this study is the development of strategies to improve the pro-

posed numerical scheme. For instance, as the frequency increases the numerics generally

becomes unstable. This can be mitigated by increasing the harmonic order used in the

representation of the unknown density. However, this will greatly increase the compu-

tation time. Hence, exploring the use of other basis functions may be warranted. This

may also solve the numerical instability caused by the near-singular integrals involved

whenever one of the control regions become very close to the source. The authors also

intend to perform a detailed sensitivity analysis of the proposed schemes to check its

robustness with respect to variations in some of the problem parameters such as the dis-

tance between the control regions and the source, the size of the control region, and the

frequency. A sensitivity analysis for the scalar case with respect to the aforementioned

parameters was performed in [25]. Hence, it will be worthwhile to see if this analysis

extends to the vectorial case.

This work can lead to several interesting applications such as in the fields of remote

sensing, medical and subsurface imaging, and radar systems. In forthcoming reports, the

authors will present related results in the context of sensitivity analysis of the numerical

scheme, scattering analysis, and Fourier synthesis towards field manipulation in the time-

domain for RCS (radar cross section) reduction and decoy applications, applications to

more complex geometric configurations, and the possible use of an array or swarms of

moving sources (possibly by employing the second strategy described in Section 3).
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