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a b s t r a c t

The central question addressed in this paper is whether we can introduce an antenna
array into a circular cylindrical waveguide to accurately control or determine the local field
around the arraywith vanishingly small reflection from the boundary of thewaveguide.We
ask this question since we perceive the answer to be important to the applied community
through its relevance for applications to electromagnetic shielding or slot antennas. We
make use of the results presented in Onofrei (2014) for the scalar Helmholtz equation and
show, by using the Debye representation in waveguides, how they apply to the current EM
waveguide model. We prove the existence of a class of solutions and include a feasibility
discussion for the antenna synthesis problem together with relevant simulations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Main question and motivation

The general area of this effort concerns control of scalar or vector fields. There are several aspects of field control. On one
hand, design of radiators can be addressed to provide specified beam structures in air or some other homogeneous material
with particular regard, for example, for forming a prescribed spot on a target object or material. Or, the desire might be to
illuminate a specific volume. This set of problems, spot size control or volume control, become far more difficult when the
medium is heterogeneous with respect to propagation properties. Pioneering work concerning localization of field within
compact structures by controlling tangential electric currents around the penetrable structure was done in [1–3]. Localizing
fields, whether acoustic or electromagnetic, for volume energy deposition is addressed for medical applications [4–6].
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A second pattern of field control involves use of a field to combine with the field from a second source to modify the
second source field. Military jamming may be an example of this second pattern of field control. Active control of incoming
waves by a designed source for the purpose of obscuring a defended object (active cloaking) is another example of this
second pattern.

Our goal in this report is to show how small antennas may be placed within waveguides so that internal waveguide
fields may be locally manipulated while maintaining arbitrary small reflections from the waveguide walls. We will show
this theoretically and then discuss the feasibility of our results by focusing on the problem of locally nulling a transverse
magnetic mode within a cylindrical waveguide using a small array of dipoles. Our feasibility discussion will suggest how, in
principle, such field control strategy could be applied to steering beam formation by slot arrays. In more general terms we
are studying how to control fields in local areas using proximate electromagnetic sources.

1.2. Related work

As far as we are aware, active designs for the manipulation of fields appear to have occurred initially in the context of
low-frequency acoustics (or active noise cancellation). We perceive the works of Leug [7] (feed-forward control of sound)
and Olson andMay [8] (feedback control of sound) as pioneering in this field of acoustic control. The reviews [9–14] provide
detailed accounts of past and recent developments in acoustic active control. In awaveguide geometry, acoustic noise control
was considered in [15] for a finite length duct, and suppression of unwanted electromagnetic modes was studied in [16] for
a rectangular waveguide and respectively in [17] for slotted waveguides.

In a very interesting article, in [18] the author has outlined a shielding strategy that hides a compact object in three
dimensional space using sensors and active emitters on the surface of the body. It is stated in [18] that the proposed
method does not require knowledge of the incident field although we perceive that, in the electromagnetic regime,
causality will imply substantial delay for shielding of larger areas. The work in [18] is computationally supported through
a scalar (acoustic) example. In [19,20], with the assumption of foreknowledge of the interrogating field, the authors have
experimentally demonstrated that a cylinder can be protected from unwanted interrogation by using a surface array of
antennas. Further experimental results on this type of active protection are presented in [21] for quasistatic regime and
in [22] for finite frequency regime.

A parallel effort on the problem of active protection from unwanted interrogation is presented in [23–27] (see also [28,
29] for further numerical explorations). This scheme uses exterior active sources (antennas) to manipulate the fields. This
approach for 2D quasistatics was introduced in [23] and mathematically analyzed in [27]. The high frequency scalar case
was studied in the last section of [23] and in [24,25] (see also [26] for a recent review) and three active sources (antennas)
were sufficient to create a zero field region in the interior of their convex hull while producing a vanishingly small field in
the far field. The broadband character of the proposed schemewas numerically observed in [24]. In [28], the authors provide
evidence that increasing the number of antennas to null the field around an object will reduce the overall power used by
the total system. In the limit when infinitely many sources are used one obtains the interior active scheme proposed in [18].

One of the authors of the present paper (Onofrei) has developed a general approach, based on the theory of boundary layer
potentials [30], for the active manipulation of quasi-static fields with just one active source (antenna) in three dimensions.
This approach provides a compact quiet zone exterior to the active source. These ideas were later extended to the scalar
Helmholtz equation in [31].

1.3. Paper organization

In this paper, we extend the scalar results in [31] to the (vector) electromagnetic case to locally control TM or TE modes
in an open circular waveguide. We conclude the paper with a feasibility study using computation to illustrate the effects of
a small array in a perfectly conductive circular wave guide.

The paper is organized as follows: In Section 2 we introduce the main problem of local nulling a waveguide TM or TE
mode (Question1) and theprove the existence of a class of solutions forQuestion1. Ourmathematical development indicates
that local control of fields within circular cylindrical waveguides can be achieved by a combination of electric and magnetic
currents. Section 3 presents a feasibility discussion for a twenty four element array which seems to successfully control the
longitudinal component of TM fields near its structure. An indication of possible applications to slot antennas and slot arrays
is presented in the last part of this section. The final section provides summary and conclusions.

2. Theoretical results

2.1. Problem formulation

We consider a circular cylindrical waveguide of radius R filled with air and with perfectly conducting walls. Thus we
consider the waveguide D = (−∞,+∞)× BR(0), where, in what follows, BR(p) is the disk centered in p situated in a plane
perpendicular to the Ox axis (the axis of the waveguide).



D. Onofrei, R. Albanese / Wave Motion 69 (2017) 91–107 93

Fig. 1. The geometrical setting of the problem where, for simplification, the antenna and control regions appear with straight edges.

Consider a finite length, electromagnetically transparent support structure in the center of the waveguide on which a
vanishingly thin antenna is etched (Fig. 1 presents a sketch for the geometry for an antenna with straight edges). Let Da b D,
(for some sufficiently small constant ζ ), smooth compact domain ofR3, denote the support of this thin antenna etched on the
axially symmetric transparent shell. The region of interest (control region) will be denoted by Dc , and it will be assumed to
be a bounded smooth open connected set withDc b D\ D̄a where here and inwhat followsb denotes a compact embedding.
We denote by (Ei, Bi) an arbitrary TM or TE field propagating in the waveguide. We denote by (Es, Bs) the electromagnetic
field produced by the antenna.

The general question we want to study is:

Question 1. Can we synthesize an active source (antenna) Da placed inside the waveguide D such that the field of this antenna
(Es, Bs), has the property that in the region of interest Dc , (Es, Bs) almost cancels (Ei, Bi) for TM or TE respectively while producing
vanishingly small reflected fields from the waveguide walls?

We will show that antenna currents can be defined so that the waveguide field is nulled near the antenna, and, the
antenna fields will vanishingly perturb the field at or near the wall of the waveguide thus producing very small reflected
fields. We will suggest that this result may pave the way for internal antenna control of slot antenna steering.

Assume a fixed wavenumber k =
ω
c where c denotes the speed of light and ω represents the angular frequency. In

this discussion we treat fields that are time-harmonic of the form e−iωt . In the case of a circular waveguide the time-
independent part of the normal modes with frequency ω = ck is represented by the vector wave functions as follows (see
[32, Section 8.7]):

TE ln mode − Eln = ∇ × (iψln), Bln = −
i
ck

∇ × Eln (2.1)

TM ln mode − Bln = ∇ × (iψln), Eln =
ic
k

∇ × Bln (2.2)

where i denotes the unit vector in the positive Ox direction, i =
√

−1,

ψln(r) = AlnJl
χln

R
r

cos(lϕ)e−iβlnx, and k2 =

χ2
ln

R2
+ β2

ln (2.3)

with Aln—the amplitude of the ln mode, Jl—the lth Bessel function of the first kind and χln—the nth root of: Jl for TM modes
and J ′l for TE modes, respectively. Note that ψln is a solution of the Helmholtz equation in D with ψln = 0 on ∂BR(0) and
BR(0) is the disk cross section of the wave guide as defined before.

We address Question 1 in two steps:

• Step 1. For every given TM ln or TE ln mode show that boundary data vln exists, such that uln, the unique radiating solution
of the free space exterior Dirichlet problem for the Helmholtz equation with vln specified on the antenna ∂Da, has the
property that it almost cancels ψln (defined at (2.3)) in the control region Dc while itself and its first and second order
partial derivatives will have vanishingly small values on the wall of the guide ∂D.

• Step 2. Based on the result of Step 1, we synthesize an antenna Da, modeled as a surface tangential field M(x) = E × ν
where ν denotes the exterior normal to ∂Da, such that the radiated electric or magnetic field will be very close to,
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−
ic
k


l,n

∇ × ∇ × (iψln) for TM, or to

i
ck


l,n

∇ × ∇ × (iψln) for TE respectively,

and thus, as implied by (2.1) and (2.2), we will obtain the desired control properties.

Our approach to this problem then starts with a question in electromagnetic theory, namely, can a waveguide mode be
influenced by an interior antenna in a controlled manner, moves to a question concerning exterior scalar fields, and then
returns to the original electromagnetic control issue. Thus, in the next section we show the existence of boundary data
that provides the control of the needed scalar guide mode in the vicinity of the antenna with small field reflected from the
waveguide walls.

2.2. Existence results

We note that, by using the superposition principle, it is enough to analyze only one normal mode. We will focus on TM
modes and show the result for TE modes in Corollary 2.4.

For arbitrarily fixed indexes p, q, consider the TMpq mode of an incoming TM wave (Bi, Ei) given by,

Bi = ∇ × (iψpq) and Ei =
ic
k

∇ × Bi (2.4)

where ψpq is given at (2.3). Mathematical formulation of the existence issue Step 1 of Question 1 follows:
Mathematical equivalent of Step 1.

Let 0 < ε ≪ 1 and ψpq described at (2.3).
Find vpq ∈ C(∂Da) such that there exists u ∈ C2(R3

\ D̄a) ∩ C(R3
\ Da) satisfying,

1u + k2u = 0 in R3
\ Da,

u = vpq on ∂Da,
x
|x|
,∇u(x)


− iku(x) = o


1
|x|


, as |x| → ∞, uniformly for all

x
|x|

(2.5)

and

∥u∥L2(∂D) +

 ∂u∂xj

L2(∂D)

+

 ∂2u
∂xi∂xj


L2(∂D)

≤ ε, ∥u + ψpq∥C2(Dc )
≤ ε (2.6)

for all i, j = 1, 3.
It is known that, (see [33]), given vb ∈ C(∂Da), problem (2.5) has a unique solution in C2(R3

\ D̄a) ∩ C(R3
\ Da). Thus,

it remains to be proved that one can find boundary data vpq ∈ C(∂Da) so that the solution of (2.5) satisfies the estimates
(2.6) which implies that the local field control has occurred without the generation of significant fields reflected from the
waveguide walls.

Let ξ ≪ 1, L ≫ 1 fixed and consider a smooth compact domain DL ⊂ R3 satisfying

(−L, L)× BR−2ξ (0) b DL b (−2L, 2L)× BR−ξ (0) = VL. (2.7)

In what follows we make the assumption that the antenna, the regions of control and the boundary of the waveguide are
sufficiently well separated, i.e., there exist D1 and Da′ sub-domains of R3 so that

Dc b D1 b DL \ Da b VL \ Da b D \ Da (2.8)
Da′ b Da. (2.9)

Observe that by construction, from L ≫ 1 and the fact that the solution u ∈ C2(R3
\ D̄a) of (2.5) satisfies the outgoing

radiation condition the first inequality in (2.6) is satisfied in L2(∂D \ {|x| < L}) and (2.6) will be implied if we show,

∥u∥L2(∂D∩{|x|<L}) +

 ∂u∂xj

L2(∂D∩{|x|<L})

+

 ∂2u
∂xi∂xj


L2(∂D∩{|x|<L})

≤ ε,

∥u + ψpq∥C2(Dc )
≤ ε (2.10)

for all i, j = 1, 3, where {|x| < L} = {x = (x, y, z) ∈ R3, |x| < L}. We also make the following additional assumptions:

−k2 is not a Neumann eigenvalue for the Laplacian in Da′ or DL, (2.11)

−k2 is not a Dirichlet eigenvalue for the Laplacian in D1. (2.12)
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Note that, for given k, the sets D1, Da′ and DL can be chosen so that (2.12) and (2.11) are satisfied. As in [31] let us introduce
the following spaceΞ ,

Ξ ≡ L2(∂D1)× L2(∂DL). (2.13)

ThenΞ is a Hilbert space with respect to the scalar product given by

(ϕ, ψ)Ξ =


∂D1

ϕ1(y)ψ1(y)dsy +


∂DL

ϕ2(y)ψ2(y)dsy, (2.14)

for all ϕ ≡ (ϕ1, ϕ2) and ψ = (ψ1, ψ2) in Ξ where (·) above, denotes the complex conjugate. By using results in [31] we
obtain,

Proposition 2.1. Let k satisfying (2.11) and (2.12) and assume L is large enough. Consider the following integral operator,
K : L2(∂Da′) → Ξ , defined as

Kz(x, z) = (K1z(x), K2z(z)), (2.15)

for any z ∈ L2(∂Da′), where

K1z(x) =


∂Da′

z(y)
∂Φ(x, y)
∂νy

dsy, for x ∈ ∂D1,

K2z(z) =


∂Da′

z(y)
∂Φ(z, y)
∂νy

dsy, for z ∈ ∂DL, (2.16)

with νy denoting the normal exterior to ∂Da′ and where Φ(x, y) represents the fundamental solution of the relevant Helmholtz
operator, i.e.,

Φ(x, y) =
eik|x−y|

4π |x − y|
. (2.17)

The operator K is compact and has a dense range. Moreover, for αn → 0 (i.e., Tikhonov regularizers) the functions vn ∈ C(∂Da)
defined by

vn = (αnI + K ∗K)−1K ∗v, with v = (−ψpq, 0), (2.18)

have the property that, for any δ ≪ 1, there exists an Nε ∈ N such that for any n > Nε the functions un given by,

un =


∂Da′

vn(y)
∂Φ(x, y)
∂νy

dsy (2.19)

is such that un ∈ C2(R3
\ Da′) and satisfies,1un + k2un = 0, in R3

\ D̄a
∥un∥C2(R3\VL) ≤ ε,

∥un + ψpq∥C2(Dc ) ≤ ε

(2.20)

where VL, with DL b VL b D, was introduced at (2.7).

Proof. The proof follows directly from Theorem2.1, Corollary 2.2, and Remark 2.3 in [31] for the case of n = 1 andGeometry
II (see (2.2) page 555 in [31]).

Indeed, consider the linear compact integral operator K defined at (2.15), (2.16). It is implied by [31] that, with the
hypothesis of the Proposition, this operator is injective and has a dense range. Following [31] we conclude that this implies
that, in theory, there exists a sequence of solutions of (2.20). In fact, as showed in [31], the problem can be formulated
as a Fredholm equation of the first kind for K in Ξ whose Tikhonov regularization minimal energy solution [34,35] is un
defined at (2.19) and (2.18). This, together with classical regularity results shows that the unique radiating solution of
(2.20) (i.e., satisfying the Sommerfeld radiation condition) with boundary data given by


∂Da′

vn(y) ∂Φ(x,y)∂νy
dsy on ∂Da (with

vn defined at (2.18)) is un.
Then, the conclusion follows by observing that from the smoothness of un, the fact that DL b VL b D and (2.20) we obtain

(2.10) which in turn implies (2.6). �

The following result shows the existence of a minimal energy solution for (2.20) and follows immediately from
Proposition 2.1 by using similar ideas as in [31] or [30].



96 D. Onofrei, R. Albanese / Wave Motion 69 (2017) 91–107

Corollary 2.1. Let v = (−ψpq, 0) ∈ Ξ as in Proposition 2.1 and consider 0 < ϵ ≪ 1 arbitrary. Then there exists u0 ∈ C(∂Da′)
such that,

∥u0∥L2(∂Da′ )
= min

∥Ku−v∥Ξ≤ϵ
∥u∥L2(∂Da′ )

.

Remark 2.2. Note that by construction, since Da′ b Da, it can be observed that un will be infinitely differentiable on ∂Da.

The next remark finalizes the proof of the Step 1 of Question 1.

Remark 2.3. Proposition 2.1 (definition given at (2.19)) and uniqueness for the scalar exterior problem imply that un is the
unique solution of (2.5) for vpq = un on ∂Da. Choosing n > Nε , where Nε is introduced in Proposition 2.1, it follows from
(2.7) and (2.20) that un will also satisfy estimates (2.6).

We thus have completed Step 1 of our study of whether an antenna can be placedwithin a circular cylindrical waveguide
to null a waveguide mode near the antenna without generating significant reflection from the inner wall of the waveguide.
We have thus far shown that the scalar potential associated with the waveguide mode can be approximated by a solution of
the Helmholtz equation with an infinitesimally small residual scalar field at the waveguide wall. Now we transition to the
electromagnetic field and present the argument for the proof for Step 2 of Question 1.

Let {un}n be the sequence introduced at (2.19). For arbitrary fixed n > Nε , consider the following exterior Maxwell
boundary-value problem (see Section 4.3. in [33]),

∇ × Ẽ − ikH̃ = 0, ∇ × H̃ + ikẼ = 0 in R3
\ D̄a

Ẽ × ν =
i
√
ϵ0c
k

(∇ × ∇ × (iun))× ν, on ∂Da
H̃,

x
|x|


− Ẽ = o


1
|x|


, as |x| → ∞

Ẽ,
x
|x|


+ H̃ = o


1
|x|


, as |x| → ∞,

(2.21)

where ν is the unit exterior normal to Da, Ẽ =
√
ϵ0 E and H̃ =

√
µ0 H, with E and H = µ−1

0 B representing the time
independent part of the physical electric andmagnetic fields generated by E× ν =

ic
k (∇ ×∇ × (iun))× ν, on ∂Da and with

ϵ0, µ0 denoting the electric permittivity and respectively themagnetic permeability of air. Is shown in [33] (see Section 4.3)
that problem (2.21) has a unique solution Ẽ, H̃ ∈ C1(R3

\ Da) ∩ C(R3
\ Da). Let Ẽi =

√
ϵ0 Ei and H̃i =

√
µ0 Hi with Ei and

Hi = µ−1
0 Bi representing the incident electromagnetic field introduced in (2.4). To complete Step 2 of Question 1 it remains

to be proved that the unique solution of (2.21) satisfies

∥Ẽ + Ẽi∥C(Dc )
≤ Cϵ, ∥H̃ + H̃i∥C(Dc )

≤ Cϵ

∥Ẽ∥C(∂D) ≤ Cϵ, ∥H̃∥C(∂D) ≤ Cϵ
(2.22)

for some constant C . Indeed, from Proposition 2.1, Problem 2.3 and the above characterization for the solutions of (2.21) we
obtain:

Theorem 2.1. Let Nε be as in Proposition 2.1. For arbitrary fixed n > Nε , the tangential field given by E × ν =
ic
k (∇ × ∇ ×

(iun)) × ν on ∂Da, where the sequence {un}n is defined at (2.19) (with ψpq as in (2.3) for TM), generates a field, (B, E) in the
exterior of the antenna Da, with E =

ic
k (∇ × ∇ × (iun)) and B = ∇ × (iun). Moreover we have

∥E + Ei∥C(Dc )
≤ Cϵ, ∥B + Bi∥C(Dc )

≤ Cϵ,

∥E∥C(∂D) ≤ Cϵ, ∥B∥C(∂D) ≤ Cϵ,
(2.23)

where C is a constant depending only on c, k and (Ei, Bi) are defined at (2.4) with ψpq as in at (2.3) for TM.

Proof. From (2.4) we have that

Bi = ∇ × (iψpq), H̃i =
1

√
µ0

Bi, Ei =
icµ0

k
∇ × Hi and Ẽi =

√
ϵ0Ei. (2.24)

By using the Sommerfeld radiation condition satisfied by un and careful asymptotic estimates for |x| → ∞ one can show
that Ẽ =

i
√
ϵ0c
k (∇ × ∇ × (iun)) and H̃ = c

√
ϵ0 ∇ × (iun) satisfy (2.21) and by uniqueness (see Section 4.3. in [33]) it follows

that they are the unique solutions of (2.21).



D. Onofrei, R. Albanese / Wave Motion 69 (2017) 91–107 97

On the other hand we showed above in Proposition 2.1 and Problem 2.3 that un are a class of solutions for Step 1 of
Question 1 and thus satisfy Eq. (2.5) and estimates (2.6). This will imply the fact that the unique solutions of (2.21), (Ẽ, H̃),
also satisfy estimate (2.22). The conclusion of the theorem follows by recalling that Ẽ =

√
ϵ0 E and H̃ =

√
µ0 H, Ẽi =

√
ϵ0 Ei

and H̃i =
√
µ0 Hi, Hi = µ−1

0 Bi and H̃i = µ−1
0 B̃i. �

As we mentioned in the beginning of the section, by using the above ideas adapted to the TE context we obtain a similar
result for TE modes. Indeed we have,

Corollary 2.4. For arbitrary fixed n > Nε (where Nε is introduced above), the tangential field given by E × ν = (∇ × (iun))×

ν on ∂Da, where the sequence {un}n is defined at (2.19) (withψpq as in (2.3) for TE), generates a field, (B, E) in the exterior of the
antenna Da, with E = ∇ × (iun) and B = −

i
ck∇ × ∇ × (iun). Moreover we have

∥E + Ei∥C(Dc )
≤ Cϵ, ∥B + Bi∥C(Dc )

≤ Cϵ

∥E∥C(∂D) ≤ Cϵ, ∥B∥C(∂D) ≤ Cϵ
(2.25)

where again C is a constant depending only on c, k and now, in the TE case, (Ei, Bi) are defined by

Ei = ∇ × (iψpq), Bi = −
i
ck

∇ × Ei (2.26)

with ψpq as in (2.3) for TE.

3. Feasibility discussion

Remark 3.1. The discussion in this section is not a numerical analysis of the ill-posed problem proposed in Question 1. This
is an interesting investigation and we will consider it in a forthcoming paper. Instead we develop a feasibility discussion for
the theoretical results obtained in Section 2 to show that:

1. The surface currents predicted in Theorem 2.1 (which in general is not divergence free) can in principle be approximated
with a layer of physical dipoles (each of particular orientation, current amplitude and phase), Lemma 3.1.

2. In the case of the radially symmetric TM modes, we show how in principle a simple small cylindrical array of angularly
equi-distributed dipoles, each parallel with the waveguide axis, can in principle null the longitudinal component of the
electrical field in a prescribed volume near the array support.

3. Such control results could in principle be used to enhance the versatility of slotted waveguide arrays.

We next ask whether the electric and magnetic fields generated by the scalar function un as described in Theorem 2.1
can be realized using realistic current carrying structures. Wewill focus on the TM regime at fixed wavenumber λ satisfying
the condition (2.11) and (2.12).

We approach the feasibility issue by first considering whether the solution proposed in Theorem 2.1, i.e., tangential
vectors given by E × ν =

ic
k (∇ × ∇ × (iun))× ν, on ∂Da, can be understood as a continuum of physical currents. Then we

explore approximating these currents by a local discrete set of antennas.
Inwhat followswewill study the principal TMmode, i.e., TM01 mode. It is a directmatter to determine that the tangential

field given by E × ν =
ic
k (∇ × ∇ × (iun)) × ν, on ∂Da is not a physical surface magnetic current since their surfacic

divergence does not vanish in general (see [36], page 158). Nevertheless they can be physically approximated as shown
in [33, Theorem 2.26, Theorem 4.19]. Thus we conclude,

Lemma 3.1. Assume k is not an interior Maxwell eigenvalue for Da (as defined in [33]). Then any smooth enough tangential field
on ∂Da can be approximated with a layer of dipoles.

Proof. Wewill consider only the case ofmagnetic dipoles the other case following similarly. The proof of Lemma 3.1 follows
from standard jump conditions for vector potentials (see [33]). Indeed, recall that the electromagnetic field due to a layer of
magnetic dipoles distributed on ∂Da with tangential density b ∈ C0,α(∂Da) for some 0 < α < 1 is given by,

Ẽ(x) = ∇ ×


∂Da

b(y)Φ(x, y)dsy, H̃(x) =
1
ik

∇ × Ẽ(x) (3.27)

where as before Ẽ =
√
ϵ0 E and H̃ =

√
µ0 H. Following [33] we have that for any tangential field d : ∂Da → C3 with

(d, ν) = 0 (where ν denotes the exterior normal to ∂Da), d ∈ C0,α(∂Da) and Div d ∈ C0,α(∂Da) (where Div denotes the
surfacic divergence as defined in [33]), there exists b ∈ C0,α(∂Da) such that

lim
h→0+


ν(x)×


∇ ×


∂Da

b(y)Φ(x + hν(x), y)dsy


= d(x), uniformly on ∂Da, (3.28)
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Fig. 2. The TM01 field amplitude along a length of the cylindrical waveguide to the left and right of its center point x = 0.025.

where h → 0+ denote h → 0 with h > 0. This follows from Theorem 2.26, Theorem 4.19 and Theorem 4.23 in [33].
Observing that in our case d =

ic
k (∇ × ∇ × (iun)) × ν satisfies the above smoothness assumption since un are smooth on

∂Da (recall that Da′ ⊂⊂ Da), from (3.28) and (3.27) we obtain the statement of the Lemma 3.1. �

The relation (3.28) means that the electromagnetic field generated by the surface current introduced in Theorem 2.1, can
be approximated by the field corresponding to a layer of dipoles (having divergence free surface current) by small alteration
of the boundary data. Thus, from the stability results of the exterior Maxwell problemwith respect to small perturbations in
the boundary data, we are assured that the physically meaningful dipole layer current on the antenna surface will produce
the desired control effects. Nowwe are ready to face the issue ofwhether this continuum current can be adequately replaced
by a discrete array of current carrying elements.

The above discussion provides impetus for an attempt to locally null a transverse magnetic mode within a cylindrical
waveguide using a small array of dipoles. In the following discussion we will show how, in principle, such an array could be
built to obtain the desired effect in the case of radially symmetric TM modes. To do so we will focus on the TM01 mode and
in Remark 3.3 we will note how our discussion extends to all TM0n modes defined at (2.3). In the following we discuss the
array structure and the mode it is designed to control.

We,will consider a small array of electric dipoles. The array is 5 centimeters long and 12 centimeters in diameter centered
on the long axis, in the center, of an infinitely long perfectly conducting cylinder of radius 50 centimeters. We apply this
array to the TM01 mode of the cylinder. Thismode is 1 volt permeter at the center of thewaveguide and zero at the boundary
of the cylindrical wall.

Working at 2.5 times the waveguide cutoff frequency (573.7187 MHz), the field peak voltage around the interior small
array due to the TM01 mode in the waveguide (with the antenna unpowered) is provided in Fig. 2. The numerical values in
this figure were computed according to the TM ln mode equation

Ex = −iBln
β2
ρ,ln

ωµϵ
Jl(ρβρ,ln)[C cos(lϕ)]e−izβz,ln (3.29)

with βρ,ln =
χln
a and βz,ln =


w
c

2
− β2

ρ,mn and where χln was defined at (2.3).
In these equationswe have slightly adapted the symbol use of in [37, page 478]. The radius of the cylinder is a, and the nth

zero of Jl isχln. The coefficients Bln and C abovewere chosen so that the field has unity amplitude at the center of the cylinder.
Referring to Fig. 2, recall that the interior array is 12 cm in diameter or six centimeters in radius. Peak field amplitude

is constant with longitudinal distance as expected. The field phase is constant with radius as expected, but varies with x
distance along the cylindrical waveguide as shown in Fig. 3.

Figs. 2 and 3 describe the field that the emplaced array structure will have to null to provide evidence to support the
above theory development. Thus, especially from Fig. 3, we see that the array, if successful, will have to cope with a time
and space varying signal.

Can we put an antenna structure within the cylinder which can, at least on a thin local surface, quench or null
(destructively interfere) with the TM01 mode pictured in Figs. 2 and 3?

We have started with a single infinitesimal current element placed eccentrically in the infinite cylindrical waveguide.
The equation we have used to compute the field of this eccentrically placed dipole whose axis is parallel to the long axis of
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Fig. 3. TM01 field phase along a length of the cylindrical waveguide to the left and right of its center point. The phase of this mode is constant with radial
distance in the waveguide.

the cylinder, is: [38], (see also [39,40]):

Ex(r, r0) = α

∞
j=1

1
J ′0(χ0j)2

χ2
0j

aγ0j
J0

 r
a
χ0j


eiγ0j|x−x0|

+α

∞
n=1

∞
j=1

1
J ′n(χnj)2

χ2
nj

aγnj
Jn

 r0
a
χnj


Jn

 r
a
χnj


cos[n(ϕ − ϕ0)]eiγnj|x−x0|. (3.30)

This equation is an adaptation of one derived in [38] where the formula is for a dipole within a circular cylindrical
waveguide with perfectly conductive walls wherein the dipole has a fully arbitrary orientation within the waveguide. We
have simplified the equation to the case of a dipole whose orientation is parallel to the long axis of the waveguide.

In this equation r = (x, y, z) = (x, r, ϕ), r0 = (x0, y0, z0) = (x0, r0, ϕ0);χnj is the jth root of the nth order Bessel function

Jn; a is the diameter of the circular cylindrical waveguide; and γnj =


ω
c

2
−

 χnj
a

2
. The applicability of this equation is

for r > r0 (where r0 is the radial distance of the dipole from the center of the cylinder), and x > x0 or x < x0 (where x0 is
the x-coordinate of the dipole).

In [38], the author derived this result starting with Debye potentials and ensured that the radiated and reflected fields
were such that they summed to exactly zero on the wall of the waveguide. Then, having derived an infinite integral with
singular integrand, the residues were located and thus the needed solution was obtained.

In [39], a similar series is derived using residue calculus addressing what seem to be identical integral equations. The
series obtained in [39] are such that, in our hands, convergence was not achieved despite the computation of 500 roots for
each Bessel function up to order 500. We have also benefited from an earlier Ref. [40].

Thus we have used (3.30) and performed checks using 4NEC2 (open source MoM electromagnetic software), as will be
discussed further. The series in (3.30) does converge but as one computes closer to the radiating element, more terms are
needed in the mode and root expansion.

Fig. 4 shows our computed field around the infinitesimal array element placed at (x, y, z) = (0, 0, 0.06). The dipole
element is parallel to the cylindrical waveguide central axis. In this figure we show computations of the dipole radiation
pattern in the planes perpendicular to the cylinder axis at x = 0.005, x = 0.01 and x = 0.015 m. The pattern in Fig. 4 is
computed and drawn with origin at (0, 0, 0) using a radial distance of r = 0.07 from the cylindrical waveguide axis. We
have computed and shown the pattern centered on the axis of the cylindrical waveguide since this is the pattern that is used
in the subsequent development of sub-array rings and the complete array to be described. It is interesting to see the pattern
shaping occurring so quickly as a function of distance from the source.

As seen in the Fig. 5, the pattern becomes stable for larger values of x, (x = 0.035, x = 0.04 and x = 0.045).
As our next step, we combined eight dipoles in a single plane with placement at 0, 45, 90, 135, 180, 225, 270, and 315°

with each dipole at 0.06 off the central waveguide axis (that is, r0 = 0.06): all dipoles are oriented parallel to the central
axis of the waveguide and are in the plane defined by x = 0. The resulting pattern for this ring of eight dipoles (a sub-array)
is shown below in Fig. 6; in this figure black refers to the pattern at r = 0.07 and x = 0.005, magenta refers to r = 0.07 and
x = 0.01, and blue refers to r = 0.07 and x = 0.015.
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Fig. 4. Computations of the dipole radiation pattern in the planes perpendicular to the cylinder axis at x = 0.005, x = 0.01 and x = 0.015 m. The pattern
is centered on the axis and represents the field amplitude in dB at the radial distance of r = 0.07 from the cylindrical waveguide axis.

Fig. 5. Computations of the dipole radiation pattern in the planes perpendicular to the cylinder axis at x = 0.035, x = 0.04 and x = 0.045 m. The pattern
is centered on the axis and represents the field amplitude in dB at the radial distance of r = 0.07 from the waveguide axis.

Fig. 6. Radiation pattern of a ring of dipoles. Eight dipoles, oriented parallel to the long axis of the cylinder, comprise the ring, evenly spaced at 45°. The
dipoles are in the plane defined by x = 0 and are at a radial distance of 0.060m from thewaveguide axis. The pattern shown is of the electric field expressed
in dB at r = 0.07 m or on a cylindrical surface whose radius is one centimeter greater than the radius of the dipole ring. The values shown are for r = 0.07
and x = 0.005 (black), to r = 0.07 and x = 0.01 (magenta), and r = 0.07 and x = 0.015 (blue). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 7. Radiation pattern of a ring of eight dipoles, each dipole oriented parallel to the long axis of the cylinder, evenly spaced at 45°. The dipoles are in
the plane defined by x = 0 and are at a radial distance of 0.060 m from the waveguide axis. The pattern shown is of the electric field expressed in dB at
r = 0.070 m or in an cylindrical surface whose radius is one centimeter greater than the radius of the dipole ring. The patterns shown are for r = 0.070
and x = 0.035 (black), to r = 0.07 and x = 0.04 (magenta), and r = 0.07 and x = 0.045 (blue). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

We have computed the fields in planes orthogonal to the waveguide axis and further from the plane of the ring array.
The radiation pattern seems to stabilize. This is seen in Fig. 7 where black refers to the pattern at r = 0.07 and x = 0.035,
magenta refers to r = 0.07 and x = 0.04, and blue refers to r = 0.07 and x = 0.045. As we have studied the computation
we perceive that the engendered field is a combination of evanescent fields that are not propagating and waveguide modes
that are propagating.

3.1. Computation of the array currents to null the TM01 mode

Having computationally put together a ring of small (infinitesimal) dipoleswe are now in a position to compute the effect
of multiple rings combined. Recall that the field of small dipoles are comparable when the length of the dipole is less than
approximately 2% of a wavelength. We have computed the field of three rings (subarrays) together with the rings spaced
0.025 m (2.5 cm) apart using superposition concepts as were used in the formation of the individual subarrays.

Since each array is driven by the same current to each element in each array, we now have three variables which we can
use to adjust the fields of each ring in the array to provide a desired local field value.

The three ring array spans a longitudinal distance of 0.050 m. We choose to control the field between ring 1 (located at
x = 0 m) and ring 2 (at x = 0.025 m). We choose to work between 19 and 21° as seen on the polar graphs above and at
radii between 0.068 and 0.070. We sampled the waveguide field at thirty six points in the selected spatial volume using Eq.
(3.30), and, using linear regression analysis, we determined the ring currents that provided ring fields that best matched the
fields of the TM01 mode of the wave guide in that volume [41].

The linear regression analysis was performed using the longitudinal component of TM01 field described at (3.29) as the
data to be fitted using the 24 element array. At each of thirty six points we computed the complex valued TM01 field, for
which we use the symbol Ez(xi, yi, zi). Using superposition we defined a regression model such that each TM01 field point is
approximated as the weighted sum of the fields from each of the three array rings or subarrays of eight dipoles. That is,

Ex(xi, yi, zi) ≈

3
j=1

R(xi, yi, zi, j)wj. (3.31)

In this relationship, j is the index for the sub-array number. This relationship simply says that the TM01 field is being
approximated by the sum of the three fields from the three sub-arrays of the total array. Since the sub-array fields,
R(xi, yi, zi, j), have been computed for an input current of one ampere to each dipole element of the array, the weights wj
that we compute using this relationship by minimizing the sum of the squared errors, are the best approximating currents
in the least squares sense.

Eq. (3.31) can be cast in vector/matrix form. We define E as a column vector of computed array longitudinal field values
Ex(xi, yi, zi) in a set of N prescribed points (xi, yi, zi), i = {1, . . . ,N}. A matrix R is formed with Rij being given by the field
generated at the point (xi, yi, zi) by the jth ring at one ampere and we defineW = (W1,W2,W3)

T as the weight vector such
that

E(i) = RijWj.
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Then we computed the least square solution for the above system through the associated normal equation,

W = (RTR)−1RTE.

Using this linear regression for the N = 36 points given in the table above (coordinates angle, radial position, x-
coordinate) we found the following currents for the best least squares fit, Ring 1 current = 0.00998 + 0.0673i mA;
Ring 2 current = −0.01883 + 0.0480i mA and respectively Ring 3 current = −0.173 − 0.507i mA. The quality of the
statistical fitting process can be examined by review of the table. This table lists the field values (‘‘data’’) at the 36 points
considered versus the values obtained by the regression model shown at the right of the data values.

We immediately notice that there are little or no differences in the field of the TM01 mode between the angles of 19,
20 and 21°. This implies that fitting can be accomplished over a larger volume segment. There are noticeable changes in
the TM01 field with respect to radial distance and with respect to position in the waveguide relative to the entire array as
captured by the variable x (smaller values of x in meters correspond to positions nearer the left-most ring or sub-array of
the full array). The statistical fit appears to track the change in the imaginary component of the actual field better than it
tracks the real part.

The readermight questionwhy our focus in the least squares or linear regressionwork centered on the real and imaginary
parts of the fields rather than using the amplitude and phase. Our reasoning is that when measurements are contaminated
with noise, as is the assumption in least squares or regression analysis, the noise enters into the real and imaginary parts
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Fig. 8. Real part of the impressed field (TM01 mode) within the cylinder labeled with the o symbol. Labeled with the ∗ symbol are the predicted values.
The work was done at 20°, and 0.069 m within the cylinder.

Fig. 9. Imaginary part of the impressed field (TM01 mode) within the cylinder labeled with the o symbol. Labeled with the ∗ symbol are the predicted
values. The work was done at 20°, and 0.069 m within the cylinder.

of the Fourier transform of the spectral estimate as approximately independent components [42] and this is an important
assumption in our least square analysis in the context of our simulation.

We measured the degree of fit using the standard error which is the ratio of the standard derivative of the variable
divided by the mean of the variable. We have found that the standard error of the real part of the regression fit is 3.9% and
the standard error of the imaginary part is 9.3%. In terms of absolute errors of fit in the real and imaginary components, more
variability in the fit of the real part is noted than of the phase as can be understood from the fact that the mean of the real
part of the field points is in the neighborhood of one volt per meter, while the mean of the imaginary part of the field point
is roughly 0.15 volts per meter.

We recognize that a linear regression analysis could fit chosen data points acceptably but fail at field points between
the chosen points. Therefore, we tested our regression equation by computing test or check values at points that were not
necessarily our chosen points in space. As shown in the table above we fit our equation between the radial angles of 19–21°,
radial distance from 0.068 to 0.70 m, and x, the longitudinal distance, ranging from 0.005 to 0.025. In the figures below
(Figs. 8 and 9) we compare the actual field value as computed using the mode equation with the predicted value at points
that are generally different from those we use to fit the regression equation. We show these figures using the radial angle of
20°, and at radius 0.069 m. Fig. 8 is of the real part of the field, and Fig. 9 is of the imaginary part of the field. As in the above
table where the imaginary part of the field seemed better fitted, in this check the regression equation used as a predictive
equation seemed to do a better job on the imaginary part.

Whatwehave demonstratedwith the above simulations is that, as predicted by the theoretical development, it is possible
to approximately establish a predetermined fieldwithin a finite volume in front of an antenna in a cylinder in such amanner
as to match a TM01 mode as it exists in that limited volume. Thus, for example, locally the mode can be nulled or, if needed,
the phase can be shifted by generating a signal with near equivalent amplitude but different phase.
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Fig. 10. Longitudinal component of the field within a circular cylindrical waveguide of length 3m and diameter 0.05m. This plot of the overall pattern is in
dB units. The single dipole was one centimeter in length and was placed eccentrically at (x, ϕ, r) = (1.6, 0, 0.06) and was driven by a 573 MHz sinusoidal
voltage. The general shape of this field profile agrees with that computed using (3.30).

Remark 3.2. Note that in our least square analysis we only considered the case when all the dipoles in a ring are driven by
the same current, (i.e. six degrees of freedom, three amplitudes and three phases). At this point we believe that allowing
more degrees of freedom (individual feed currents for each dipole) will improve our results.

As reflected in the introduction, we intuitively felt that an antenna system (for example, an array) could definitely form a
field that was closely equivalent to an incoming field at one field point at least.We conjectured that an equivalencemight be
achieved on a line and if the incoming and array-produced fields are smooth, theremaybenulling over a small volume sector.
The theoretic development indicates that under the condition of field smoothness, a volumetric equivalence or nulling is
possible, and this has been strongly suggested by the above reported numerical work.

Remark 3.3. Due to the radial symmetry, based on our simulations, wemake the observation that a similar array as the one
considered above will provide the desired control results of the TM0n modes.

3.2. Method of moments checks on the analytical array design

To the best of our knowledge no one has ever used the field representation in [38] (see (3.30)) or any other similar
analytical result to compute fields of dipoles within a cylindrical waveguide with conducting walls. Thus, we sought to
check our work using a well-known wire based method of moments code 4NEC2.

Using 4NEC2, we simulated a 0.01m dipole driven by 573MHzwithin a 3m long circular cylindrical waveguide centered
at x = 1.5 andwith radius 0.5m. Note that the small dipole used in this work is smaller than the 1/50th of thewavelength so
the 4NEC2 work should be comparable to the analytical work. The small dipole was placed, as was the infinitesimal dipole
computed using the analysis in [38], at 0.06 m on the z-axis of the coordinate system with y = 0 and x = 1.6 m.

(Weworked with the dipole at x = 1.6m above the base of the waveguide since placing the dipole exactly on the central
plane, x = 1.5, led to discretization exceeding our computational capability:we computed every 0.2m in x, while computing
every 0.006 m in the y and z axis.)

The longitudinal component of the field of this driven dipole within the waveguide is shown below in Fig. 10 and the
field pattern at 0.07 m radial distance at x = 1.6 m is shown following in Fig. 11. Notice that using 4NEC2 we can compute
a pattern in a plane that included the center of the dipole, something we could not do with Eq. (3.30) due to convergence
issues in this plane resulting from the residue analysis. It is interesting to us that the pattern in the plane of the center of
the short dipole is similar to that computed with (3.30).

These numerical results using 4NEC2 provide some initial supportive results concerning our computations with the
formulation in [38] (described in (3.30)). Themethod of momentmethod also allows us to consider practical issues of dipole
impedance and coupling between dipoles.

The impedance of this small dipole inside the cylinder is computed by 4NEC2 as 2.21−365i. The impedance of this dipole
outside the cylinder (in free space) was computed as 2.58− 363i. As expected, the impedance of these small dipoles is very
low. However, it is important to see that in this case the impedance is not greatly affected by placement into the waveguide.
In practice, the low impedance will lead to mismatch problems with respect to the signal source, however, the antennas
themselves can be loaded to mitigate this issue, we believe.

We also address the coupling issue in a preliminary or initial fashion. Using 4NEC2 again we simulated two parallel
dipoles 0.01 m long and 0.03 m apart. The 0.03 m distance is relevant to our sub-array ring structures. Impedance of the
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Fig. 11. Longitudinal component of the field at a radial distance of 0.07 m from a single dipole within a circular cylindrical waveguide of length three
meters and diameter 0.05 m. This plot of the radiation pattern is in dB units. The single dipole is one centimeter in length and was placed eccentrically
at (x, ϕ, r) = (1.6, 0, 0.06) axis and was driven by a 573 MHz sinusoidal voltage. The general shape of this field profile agrees with that computed using
(3.30).

dual dipole in free space is computed to be 4.77 − 385i and in the cylinder, with one dipole at 0.03 m and the second at
0.06 m, to be 4.25 − 389i. Thus, there is coupling and the result is an increase in input impedance compared to the single
dipole but, based on our simulations the effect does not strikingly depend on placement within the cylinder. We expect this
change between free space and within the cylinder to increase as we consider smaller diameter cylinders, but we leave this
for future work.

It was recommended that we look still closer at dipole–dipole coupling within the cylinder comparing this coupling
within the cylinder to coupling of the same two dipoles outside in free space. In free space, application of a one volt peak
sinusoidal voltage to the central segment of the dipole at 0.06 m resulted in a current of 2.77e−3 A with phase 89.55° in
the driven dipole. This driven dipole caused 1.78e−4 A on the central segment of the parallel second dipole at 0.03 m with
phase −84.89°. Within the cylinder, current on the central segment of the excited dipole at 0.06 m was 2.05e−3 A (phase
89.62°) and current on the central segment of the parallel coupled dipole at 0.03mwas computed to be 1.91e−4with phase
−85.67°. Thus, we conclude that coupling between the dipoles is enhanced by placement within the cylinder, but at this
time, we do not perceive that coupling between dipoles will be a limiting factor.

In considering the numerical work that has been done, we believe the observation that we can control a small volume in
front of the idealized array is made possible by the fact that we are using small radiating antennas relative to wavelength
and thus while there is a significant near field, there is little radiated field. At this time we believe the greatest part of the
nulling activity in our numerical work is accomplished by fields that remain attached to the antennas (near field).

3.3. Slot antennas and arrays

The mathematical argument of Section 2.2 provides an analytical scheme whereby fields can be controlled within a
circular cylindrical waveguide using electrically active surfaces includedwithin the guide. Section 3 has provided numerical
results on a realization of such a system to provide local control of a TM01 mode.

We now briefly discuss one of the reasons we are interested in this theory and numerical result. We believe there may
be application to slot antennas.

A radiating slot is simply a slit in a conducting surface driven by a voltage across the slit as diagrammed in Fig. 12 obtained
from [43]. For a slot to radiate it must cut current lines in the homogeneous surface (the surface without the slot). In the
circular cylindrical waveguide the currents associated with a TM01 mode are axial and one may use axially placed slots in
the waveguide so that the radiation produced is directly related to the width of the slot. A slot array is comprised of a series
of slots placed along thewaveguide; slots in such a surfacewill couple (share energy) electromagnetically. Slt antennas have
been extensively discussed in the literature, [44–50].

Slot antennas are attractive for use on aircraft or other airborne vehicles since they can be incorporated into structure
surfaces with minimal aerodynamic effects [51]. In [52] the authors report on annular slot antennas driven by waveguide
modes. Non-mechanical pointing of a slot array requires a change in frequency because of the coupling between slots [53].

The concept being pursued by us is to use a local array, as sketched above, to adjust the phase of the field driving a slot
so that the desired pointing can be achieved without change of frequency. We have some support for this concept because
of the successful use of magnetized ferrite materials in slot arrays [54]. We have been most encouraged in this work by the
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Fig. 12. Schematics of a radiating slot: Rectangular slit in a gray conducting surface driven by a voltage across the slit (courtesy of [43]).

Fig. 13. Configuration of a single dipole behind a slot. Computation with 4NEC2 indicates that the dipole, driven at the same frequency as the slot, can
influence the phase of the far field radiation thus potentially assisting in phased array beam steering.

work in [55] which addresses the slot antenna associated with two coupled dipoles. This paper, important to our thinking,
studies the effect of unexcited, parasitic (passive) dipoles on either side of a single slot and effects on radiation pattern
studied.

A slot cutting a surface current, can be qualitatively considered as two short dipoles at each end of the slot parallel to
the current path [55, pp. 143]. Thus, n additional dipoles, parallel to these edges effectively compose an array with n + 2
elements and this facilitates beam control. Fig. 13 shows a diagram illustrating the case of one additional dipole behind the
slot inside the waveguide. Computation with 4NEC2 has indicated that driving the backing dipole influences the phase of
the radiated field and thus may assist in beam steering in a slot array structure. Our investigation on this application will be
continued and results reported in a forthcoming paper.

4. Summary and comments

If an arbitrary field is launched from a source at a second antenna driven by a field of the same frequency with amplitude
and phase randomly chosen, one would not expect that the source and target antenna field would necessarily anywhere
destructively interfere. This is clear by the fact that the source strength can simply be chosen very much higher so that it
dominates the field of the second antenna. However, it seems clear that for an incident plane wave and a suitable array
the two fields can destructively interfere exactly at a point and perhaps along a short tubular segment with small radius,
assuming miniscule difference between the incoming source field and the field of the second antenna. In this paper, a
mathematical argument has been advanced that within a circular cylindrical waveguide with perfectly conducting walls,
a radiating source internal to the waveguide can destructively interfere with a waveguide mode in a finite annular volume
near the radiating source and the destructive interference can occur with small differences noted between the waveguide
mode and the field radiated by the internal antenna. Thismathematical proof is not such that the defined field can be directly
computed at this time, but the proof has been numerical tested using simulation. In the numerical work a small 24 element
circular array composed of three ring subarrays of eight dipoles each has been used tomatch a TM01 mode and thismatching,
while not exact, has shown approximate field matching especially in the complex component of the field. Each dipole in
each subarray received the same current and these currents have been estimated. We believe, at this time, that better field
matching can be accomplished by either usingmore subarrays or driving each dipole in each subarray separately. This study
was motivated by a desire to begin to mathematically understand how antenna currents can be chosen to destructively
interfere with incoming fields with a view, ultimately, to applications such a beam steering in cylindrical slot arrays.
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