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a b s t r a c t

In this paper we present a strategy for the synthesis of acoustic sources with controllable
near fields in free space and constant depth homogeneous ocean environments. We first
present the theoretical results at the basis of our discussion and then, to illustrate our
findings we focus on the following three particular examples:

1. acoustic source approximating a prescribed field pattern in a given bounded sub-
region of its near field.

2. acoustic source approximating different prescribed field patterns in given disjoint
bounded near field sub-regions.

3. acoustic source approximating a prescribed back-propagating field in a given
bounded near field sub-region while maintaining a very low far field signature.

For each of these three examples, we discuss the optimization scheme used to approximate
their solutions and support our claims through relevant numerical simulations.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and main results

The problem of active control of acoustic fields is well studied in the literature with a multitude of ideas and techniques
presented (see monographs [1,2]). The main strategies for active sound control are based on the use of boundary controls or
secondary sources.

Applications of sound field control ideas are very important and they include: active noise control [3] (see also the pioneer
works [4,5]), acoustic field reproduction [6–10] and active control of scattered sound fields [11–19]. A rigorous comparative
analysis of the theoretical similarities and respective challenges for these three areas of applications is done in [20].

In a recent development in [21] (see also [22] for the low frequency approximation), a general analytical approach
based on the theory of boundary layer potentials was proposed for the active acoustic control problem in homogeneous
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environments.Then, in [23], building up on [21], the authors presented a thorough two dimensional sensitivity analysis
for the synthesis of time-harmonic weak radiators with controllable patterns in some exterior region and, as indicated by
their numerical results, postulated that such acoustic sources will be feasible only if the region of control is in the reactive
near-field of the source.

The work presented in this paper uses ideas from, and is relevant to, a wide array of important research areas: acoustic
wave field synthesis, inverse source problems, optimization, personal audio techniques, acoustic near field control. We are
making use of the theoretical results developed in [21] and, through a Tikhonov regularization procedure (with Morozov
discrepancy principle for the choice of the regularization parameter), we synthesize acoustic sources in one of the following
scenarios:

1. Sources approximating a given pattern in a prescribed exterior near field sub-region.
2. Sources approximating a given pattern in a prescribed sub-region of their near field while having a null in a different

given sub-region of their near field.
3. Sources which have a very weak field in a given (sufficiently far) exterior annuli while approximating a given pattern

in a prescribed sub-region of their near field.
The first type of sources are relevant for the problem of acoustic rendering [24,6]. The second type of sources above

present an interest for the problem of personal audio studied in [8–11] where we assume that by superposition our strategy
will imply the possibility to approximate, with such sources, different given sound patterns in disjoint regions of space. For
the third type of sources above, although our theoretical results apply to the general question of synthesis of weak acoustic
radiators approximating any given pattern in the near field control region, we focused on the problem of characterizing the
necessary inputs (normal velocity or pressure) on the boundary of the source so that it approximates a backward propagating
plane wave in the region of control while maintaining a very weak field in the given exterior annuli. This problem is relevant
for the question of acoustic shielding or cloaking since by using a similar strategywe believewe can synthesize a planar array
with similar properties: having a very weak field in an exterior annuli (where enemy detection measurements are taken)
while approximating a given backward propagating plane wave in a near field region in front of it. Thus, by superposition,
such an array could, when paired with a time control loop for the detection of interrogating signals, annihilate through
destructive interference any incoming signal in its near field region without a large signature in its far field (i.e., shielding an
object located behind the array). Then, a compact volume surrounded by a similar conformal array would lead to an active
cloaking device for any object located inside.

The results presented in the literature regarding pattern synthesis use arrays of secondary sources (usually approximated
by point sources) to control the field in interior regions (i.e., located in the interior of the geometric convex hull of the
point sources), or focus on planar rendering (i.e. control in a horizontal plane) or assume that the field to be approximated
propagate away from the source to be synthesized.

In the present paper we propose a theoretical optimization strategy for the synthesis of acoustic sources which approx-
imate different prescribed field patterns in given disjoint exterior regions in free space and constant depth homogeneous
ocean environments. To simplify the exposition, in the numerical support section, Section 3, we consider only the case of
sources in free space and focus on the three particular cases listed above.

The paper is organized as follows: In Section 2wepresent the theoretical results in twoparts: first, in Section 2.1webriefly
recall the theoretical results of [21] for acoustic control in free space and then, in Section 2.2 we discuss their extension
to the problem of underwater acoustic control in the context of a constant depth homogeneous ocean environments. In
Section 3, we build up on our previous results in [23] and discuss the L2 - Tikhonov regularization withMorozov discrepancy
numerical approximation for the acoustic control problem in 3D and (assuming the superposition principle) without losing
the generality present numerical simulations in the three important situations listed above: first, in Section 3.1 we present
the synthesis of an acoustic source approximating a prescribed plane wave in a given near field sub-region; then in Section
3.2 we present the synthesis of an acoustic source with a null in a given sub-region of its near field and approximating
an outgoing plane wave in a disjoint near field sub-region; and finally, in Section 3.3 we synthesize a very weak acoustic
radiator (almost non-radiating source (ANR)) approximating, in a sub-region of its near field, a given backward propagating
(propagating towards the source) plane wave. Finally, in Section 4 we present the conclusions of the paper with particular
highlights for several possible applications of this work together with important future challenges.

2. Theoretical results

In this section we present the theoretical results behind our optimization scheme described below. In Section 2.1 we
will recall the results of [21] developed for the free space environments (i.e., homogeneous media with no boundaries
and radiating condition at infinity) and then in Section 2.2 we will present their extension to the case of constant depth
homogeneous ocean environments as introduced in [25,26] (i.e., infinite rectangular waveguide with constant depth along
z direction, z ∈ [h, 0] for some h < 0, and pressure release boundary at the water–air interface z = 0, total reflecting
boundary at the ocean bottom interface z = h together with radiation condition at infinity).

We consider the source support represented by Da, a compact region of space with Lipschitz continuous boundary, and
as in [21] we assume that D1 ⋐ R3 and D2 ⋐ R3, with D1 ∩ D2 = ∅ and {D1 ∪ D2} ∩ Da = ∅. We also assume that u1 is a
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solution of the Helmholtz equation in a neighbourhood of D1 and without losing the generality focus only on the case when
u2 = 0. With these general hypotheses, in what follows the following three geometrical situations will be considered:

(i) D1 bounded,D2 = ∅,

(ii) D1 bounded,D2 bounded, (2.1)
(iii) D1 bounded,D2 unbounded with D1⋐R3

\D2.

At this point we mention that the theoretical results of [21] hold true for any finite number of mutually disjoint regions
Di, i ∈ {1, . . . , n} satisfying {∪iDi} ∩ Da = ∅ and n scalar acoustic fields ui each satisfying the Helmholtz equation in a
neighbourhood of Di, respectively.

In the case of free space environments themain problem is to characterize boundary inputs (normal velocity or pressure)
on the surface of the source Da such that the acoustic field radiated by it has the property that it approximates u1 in D1 and
u2 = 0 in region D2 respectively (the condition on D2 is not needed in case (2.1)(i) above).

2.1. Acoustic control in free space

In this section we will recall the result obtained in [21] in the geometrical setting described at (2.1): A source
approximating prescribed acoustic patterns u1 and u2 = 0 in two given disjoint exterior regions, D1 and respectively D2.
Mathematically this can be written as follows:

Problem 1.
Find normal velocity vn (or pressure pb) on the boundary of the antenna ∂Da so that,⎧⎪⎪⎨⎪⎪⎩

∆u + k2u = 0 in R3
\Da,

∇u · n = vn, ( or u = pb) on ∂Da,(
x
|x|
,∇u(x)

)
−iku(x)=o

(
1
|x|

)
, as |x| → ∞ uniformly for all

x
|x|

,
(2.2)

(where ∆ denotes the 3D Laplace operator, ∇ denotes the 3D gradient, q = o(a) means lima→0q = 0, ∂S denotes the
boundary of the set S ⋐ R3 and here n denotes the exterior normal to ∂Da) and the following approximations hold true,

u ≈ u1, in D1, and u ≈ 0, in D2, (2.3)

where the approximation in (2.3) is in the sense of smooth norms (e.g., twice differentiable functions)

As a consequence of results in [21]we have that Problem 1 above can be answered in the affirmative in all the geometrical
configurations described at (2.1). Indeed, if k is not a resonance (i.e., for all wave numbers k except a discrete set [21]) we
have that there exists an infinite class of smooth functions w (i.e., infinitely differentiable) so that normal velocity vn (or
pressure pb ) given by,

vn(x) =
−i
ρck

∂

∂nx

∫
∂Da′

w(y)
∂Φ(x, y)
∂ny

dsy, for x ∈ ∂Da, (2.4)

pb(x) =

∫
∂Da′

w(y)
∂Φ(x, y)
∂ny

dsy, for x ∈ ∂Da, (2.5)

(where ρ denotes the density of the surrounding medium, D′
a ⋐ Da is a fictitious compact smooth domain (i.e. with C2

boundary), ny denotes the exterior normal to ∂D′
a computed in y ∈ ∂D′

a andΦ is the free space fundamental solution of the
Helmholtz equation), will generate the required acoustic field u satisfying (2.2) and (2.3).

Remark 2.1. An important remark is that the actual physical source surface ∂Da encloses the fictitious set Da′ and needs
to be Lipschitz but otherwise it can have any shape as long as 0 < dist(Ds,D1 ∪ D2) (where dist here denotes the distance
between the two sets, i.e., (infx∈Ds,y∈D1∪D2 |x − y| with |·| denoting the euclidean norm).

Remark 2.2. Note also that the fact that D′
a is smooth with D′

a ⋐ Da in (2.4) or (2.5) implies that the boundary input vn or pb
is smooth on ∂Da. Moreover, this permits us to assume minimal smoothness for the boundary of the actual physical source
∂Da (i.e., just enough to have the exterior problem well posed and thus Lipschitz will suffice) which may be very important
for some applications, such as field synthesis, shielding, and cloaking.

Remark 2.3. We also point out that the normal velocity vn (or pressure pb) defined at (2.4), (or (2.5)) generate a solution u
of (2.2), (2.3) represented as a double layer potential defined by

u(x) =

∫
∂Da′

w(y)
∂Φ(x, y)
∂ny

dsy, for x ∈ R3
\Da,
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but, it is elementary to see how the results of [21] can be extended to obtain solutions of (2.2), (2.3) represented as a
linear combination over C between double layer and single layer potentials. This last formalism of representing a solution
is efficient when dealing with real wave numbers k (see [27] for example).

2.2. Acoustic control in homogeneous oceans of constant depth

For the case of constant depth homogeneous ocean environments we follow the approach in [25,26] and model the
surrounding homogeneous media as an infinite rectangular wave-guide, with constant depth h, i.e, z ∈ [h, 0] (where z
denotes the vertical coordinate in a rectangular coordinate system and h < 0), and assume a pressure release condition at
the water–air interface, i.e., zero pressure at z = 0, and total pressure reflection at the bottom ocean interface, zero normal
pressure at z = h interface.

Let R3
h = {x = (x̃, z) ∈ R3, x̃ = (x1, x2) ∈ R2, h ≤ z ≤ 0} and consider domains D1, D2 and functions u1 and u2 = 0 as in

Section 2.1. Assuming cylindrical coordinates and using the same notations as in (2.2), (2.3) the problem can be formulated
mathematically as follows:

Problem 2.
Find normal velocity vn (or the pressure pb) on the boundary of the source ∂Da so that u, the solution of,⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆u + k2u = 0 in R3
h\Da,

∇u · n = vn, ( or u = pb), on ∂Da,

u = 0 on z = 0,
∂u
∂z

= 0 on z = h,
Radiation condition at infinity uniformly when |x̃| → ∞,

(2.6)

satisfies

u ≈ u1, in D1, and u ≈ 0, in D2, (2.7)

where as above in Section 2.1 the condition on D2 is not needed in the case when D2 = ∅. We mention that, the radiation
condition at infinity in problem (2.6) is understood as in [25,26], i.e., for the solution u represented in normalmode expansion

u(x̃, z) =

∞∑
n=0

φn(z)ψn(x̃), for r = |x̃| > R,

we have that

φn = sin[k(1 − a2n)
1
2 z], with an =

[
1 −

(2n + 1)2π2

4k2h2

] 1
2

, (2.8)

and each of the ψn satisfy the following radiation condition when r → ∞

lim
r→∞

r
1
2

(
∂ψn

∂r
− ikanψn

)
= 0,

uniformly for θ ∈ [0, 2π ] where θ = tan−1( x2x1 ). Next, we will describe how the results in [21] can be extended for this case.
Indeed, assuming that k is not a resonant frequency (see Remark 2.4 for a precise statement), we have that there exists an
infinite class of smooth functions w (infinitely differentiable) so that normal velocity vn (or pressure pb) given by,

vn(x) =
−i
ρck

∂

∂nx

∫
∂Da′

w(y)
∂G(x, y)
∂ny

dsy, for x ∈ ∂Da, (2.9)

pb(x) =

∫
∂Da′

w(y)
∂G(x, y)
∂ny

dsy, for x ∈ ∂Da, (2.10)

(where ρ denotes the density of the surrounding media, D′
a ⋐ Da is a smooth region, ny denotes the exterior normal to ∂D′

a
computed in y ∈ ∂D′

a and G is the Green’s function associated to problem (2.6)), will generate the required acoustic field u
satisfying (2.6) and (2.7). Indeed, it is observed in [26] that for y = (ζ , ỹ), with ỹ = (y1, y2), the Green’s function G associated
to problem (2.6) is given by,

G(z, ζ , |x̃ − ỹ|) = Φ(x, y) +Φ1(z, ζ , |x̃ − ỹ|),

whereΦ is the fundamental free space solution of the Helmholtz equation andΦ1 above is bounded and continuous at z = ζ

and x̃ = ỹ. Based on these considerations one can conclude that the double layer and the single layer operators associated
with the Green’s function G have the same compactness properties and satisfy the same jump relations as the classical layer
potentials associated to Φ (see [26]). Thus, by using this together with a few elementary technical adjustments it can be
proved that the results presented in [21]will extend to this case, i.e., normal velocities (or pressures) given by (2.9) (or (2.10))



16 D. Onofrei, E. Platt / Wave Motion 77 (2018) 12–27

will generate acoustic fields described by double layer potentials associated to G and satisfying (2.6) and (2.7). Moreover, the
observation that expressions (2.9) and (2.10) can be used in computations since the Green’s functionG is computed explicitly
in [26].

The following remark brings some clarifications regarding the assumption that k is not a resonance for the present case.

Remark 2.4. Similar restrictions on k as for the free space discussion will apply for problem (2.6) and (2.7). Moreover,
it is known in the literature [26,28] that the Dirichlet and Neumann exterior problems for the case of constant depth
homogeneous oceans modelled as above is well posed for all values of k except a discrete set of values accumulating at
+∞. Thus, an extra restriction in this case should be that k is not an element of this discrete set. As an observation, for
the Dirichlet problem, it is shown in [28] that by considering certain geometrical assumptions on ∂Da the exterior Dirichlet
problem is well posed for all wave numbers k.

We mention that the statement of Remark 2.2 applies to the case of finite depth homogeneous oceans as well. The
following remark is similar in spirit along with Remark 2.3 but is presented here for the sake of completeness.

Remark 2.5. The normal velocity vn (or the pressure pb) given at (2.9) (or (2.10)) generates a solution u of (2.6), (2.7)
represented as a double layer potential defined by

u(x) =

∫
∂Da′

w(y)
∂G(x, y)
∂ny

dsy, for x ∈ R3
\Da,

but, in a similar manner as above, the results of [21] could be easily extended to obtain solutions of (2.6), (2.7) represented
as a linear combination over C between double layer and single layer potentials (see [26] for example).

3. Optimization schemes and numerical simulations

In this section we describe the mathematical ideas behind the optimization scheme used towards the approximation of
solutions to (2.2), (2.3) and respectively (2.6), (2.7).

The L2- optimization and sensitivity analysis for the 2D formulation of the problem (2.2), (2.3) in the case (2.1)(iii) (with
{D1 ∪ D2} ∩ Da = ∅ as above), was performed in [23] where it was numerically observed that a good approximation of a
stable solutionwithminimal power budget is achieved in the reactive near field of the source, i.e., whenD1 in (2.2) is located
very close to the source Da.

Similarly as in the 2D case treated in [23], the 3D L2- optimization scheme for problem (2.2), (2.3) is based on Tikhonov
regularization with Morozov discrepancy principle. In this context, as in [21,23] regularity results and the well posedness of
the interior and exterior acoustic boundary value problem (recall that kwas chosen to be non-resonant) imply that in order
to achieve approximate smooth controls in D1 and D2 it will be sufficient to have approximate L2 controls on the boundaries
of two slightly larger sets,W1 ⋐ R3 andW2 ⋐ R3, i.e., with D1 ⋐ W1 and D2 ⋐ W2. From (2.4) and Remark 2.3 it follows that
solutions of (2.2), (2.3) can be approximated by a linear combination of double and single layer potentials, i.e.

Dwα(x) = η1

∫
∂Da′

wα(y)
∂Φ(x, y)
∂νy

dSy + iη2

∫
∂Da′

wα(y)Φ(x, y) dSy, (3.11)

where η1, η2 ∈ R are fixed parameters andwherewα is the Tikhonov regularization solution, i.e., minimizer of the following
discrepancy functional,

F (w) =
1

∥f ∥2
L2(∂Dc )

∥Dw − u1∥
2
L2(∂W1)

+ µ∥Dw∥
2
L2(∂W2)

+ α∥w∥
2
L2(∂Da′ )

, (3.12)

with the regularization parameter α chosen according to the Morozov Discrepancy principle (see [23] for a 2D implementa-
tion in the case (2.1)(iii) and [29,30] for the general theoretical discussion) and the weight µ above given by

µ =

⎧⎪⎪⎨⎪⎪⎩
0, if D2 = ∅,

1, if D2 is bounded ,
1

4πR2 , if D2 = R3
\ BR(0),

(3.13)

with BR(0) denoting the ball centred on the origin with a radius R such that Da ∪ D1 ⋐ BR(0).
For the numerical simulations we make use of the spherical harmonic decomposition for wα (the density of the layer

potential operators used to represent the solution (3.11)) and through the method of moments and Tikhonov regularization
we approximate a solution of the problem (2.2) and (2.3) in all the geometrical situations described above at (2.1). In this
regard in all of the numerical simulations belowwe assumed 30 spherical harmonic orders (total of 961 spherical harmonics)
in the spherical harmonic decomposition of wα .
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Fig. 1. Planar sketch of the geometry representing the source Da and the region of control D1 .

Fig. 2. Cross-section z = 0 plot of the generated field, showing outgoing character.

In all the simulations the fictitious domain Da′ appearing in our strategy is the ball centred in the origin and radius 0.01m
and we use for its discretionary a total of 20,000 points, 200 equidistant azimuthal increments by 100 equidistant polar
increments respectively. Also, for all the cases considered at (2.1) the left side control region D1 is given by

D1 = {(r, θ, φ), r ∈ [0.011, 0.015], θ ∈ [−
π

4
,
π

4
], φ ∈ [

3π
4
,
5π
4

]}. (3.14)

(where r is measured in metres) and is represented in the numerical simulations by 6400 points, 40 equidistant azimuthal
increments by 16 equidistant polar increments by 10 equidistant radial increments respectively.

We also note that in all the plots and animations presented the axis denote distances expressed in metres while the
numbersmarked on the colour bars represent actual values (and not dB). For dB translation one can always apply the 20log10
convention to these actual values.

In the remainder of the paper we present numerical simulations of our strategy and, to simplify the exposition, we focus
only on problem (2.2) and (2.3). Thus, the next three sections showour numerical simulations for the Tikhonov regularization
solution corresponding to problem (2.2) and (2.3) as follows: Section 3.1 for the case (2.1)(i), Section 3.2 for the case (2.1)(ii)
while Section 3.3 for the case (2.1)(iii).

3.1. Synthesis of a prescribed pattern in a subregion of the source near-field

In this section we present the Tikhonov regularization solution for the problem (2.2), (2.3) introduced in Section 2.1
describing the applications to the synthesis of acoustic sources approximating a given field patterns in a near field bounded
region D1, see Fig. 1.

Thus, we will show the performance of the Tikhonov solution described in (3.11)–(3.13) in the case (2.1)(i). Without loss
of generality we consider the case when the source to be synthesized approximates in region D1, described at (3.14), an
outgoing plane wave propagating along the negative x-axis, u1 = e−ixk with wave number k = 10.

First, in Fig. 2 we present a cross-sectional view of the generated field along z = 0 in a region characterized by
(x, y) ∈ [−5, 5]2. This plot indicates the synthesized source causality (i.e., the fact that the source field is outgoing), the
generated field is outgoing satisfying the Sommerfeld radiation condition at infinity. This fact can also be observed in the
time domain simulation presented in animation 1 [31] where the outgoing propagating time-harmonic field generated by
the synthesized source is shown.

In Fig. 3 we present the quality of our control results in the region of interest D1 as required in (2.3). The left and centre
plots in the figure describe respectively the field generated by the source, and the plane wave to be approximated u1 = e−ixk

in region D1. The accuracy of our approximation O(10−3) can be observed in the right picture of Fig. 3 where the relative

https://drive.google.com/open%3Fid%3D0B7nf-pdU3Z4DZklDRGpfWEtEWlU
https://drive.google.com/open%3Fid%3D0B7nf-pdU3Z4DZklDRGpfWEtEWlU
https://drive.google.com/open%3Fid%3D0B7nf-pdU3Z4DZklDRGpfWEtEWlU
https://drive.google.com/open%3Fid%3D0B7nf-pdU3Z4DZklDRGpfWEtEWlU
https://drive.google.com/open%3Fid%3D0B7nf-pdU3Z4DZklDRGpfWEtEWlU
https://drive.google.com/open%3Fid%3D0B7nf-pdU3Z4DZklDRGpfWEtEWlU
https://drive.google.com/open%3Fid%3D0B7nf-pdU3Z4DZklDRGpfWEtEWlU
https://drive.google.com/open%3Fid%3D0B7nf-pdU3Z4DZklDRGpfWEtEWlU
https://drive.google.com/open%3Fid%3D0B7nf-pdU3Z4DZklDRGpfWEtEWlU
https://drive.google.com/open%3Fid%3D0B7nf-pdU3Z4DZklDRGpfWEtEWlU
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(a) Generated field. (b) Field to match. (c) Pointwise relative error.

Fig. 3. Control accuracy in region D1 .

(a) 15
50π . (b) 16

50π . (c) 17
50π . (d) 18

50π .

(e) 19
50π . (f) 20

50π .

Fig. 4. Cross-sectional (z = 0) time snapshots of the propagating generated acoustic field for different values of kct . Control region D1 to the left of the
source. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

pointwise error between u (the solution of (2.2)) and u1 = e−ixk (the field to be approximated) is presented. Fig. 4 shows six
cross-sectional views of the generated field along z = 0 in a near-field region characterized by (x, y) ∈ [−0.02, 0.02]2. More
explicitly, in order left to right from top left to bottom right plot, we present six cross-sectional (z = 0) time-snapshots
( for kct = {

15
50π,

16
50π,

17
50π,

18
50π,

19
50π,

20
50π}) of the time-harmonic field generated by the synthesized source in the near

field region, including the region of interest D1 (where c here was used as the speed of sound in air). The colour scheme
in the plots is (truncated to 1 light yellow and −1 dark blue) with the antenna region (coloured cyan) not included in the
numerical simulations and with the black and white stripes representing field amplitudes approximately equal to 0.6 and
−0.6 respectively. Following the plots in order (left to right) from top left to bottom right plot it can be observed how the
source works to approximate an outgoing plane wave u1 = e−ixke−ikct in region D1 (e.g., corresponding rectilinear black
strip outgoing propagating through the control region). Indeed, the plots of Fig. 4 show the propagation of the generated
field by focusing on the portion of the field with amplitude approximately equal to 0.6 marked as a dark stripe. It can be
observed how this portion of the field enters region D1 at time kct =

17
50π in a nearly rectilinear shape and continues to keep

the same rectilinear form (indicating plane wave character of the approximated field in the control region) throughout the
neighbourhood of region D1.

The time domain animation 2 [32] presents the cross-sectional view along z = 0 of the time-harmonic evolution of the
field generated by the synthesized source and respectively the propagating plane wave u1 = e−ixke−ikct in a near field region
given by (x, y) ∈ [−0.05, 0.05]2. The multimedia file shows two animations: the top one describing the time propagation
of the generated field and the bottom one describing the time propagation of the plane wave u1 = e−ixke−ikct . The colour
scheme in the movies is (truncated to 1 light yellow and −1 dark blue) with the region Da′ removed from the simulations
(coloured cyan) and with the black stripe representing amplitude values approximately equal to 0.6, and the white stripe
representing amplitude values approximately equal to −0.6 respectively. Observing that there will be two black stripes and
respectively two white stripes per period for the approximated plane wave one can see in the animation the accuracy of the
approximation of the plane wave u1 = e−ixke−ikct (rectilinear stripes) in region D1.
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(a) Side. (b) Front. (c) Back.

Fig. 5. Input density wα with various colour maps highlighting the local oscillations.

Fig. 6. Planar sketch of the geometry showing the source Da , the control region D1 and the null region D2 .

Fig. 5 describes the density wα (see (3.11)) on the boundary of the fictitious domain Da′ (recall Remark 2.1 for the shape
and location of the boundary of the actual physical source Da) as an indication of the underlying complexity of the required
source inputs vn or pb resulting from the present L2 optimization procedure and described at (2.4) or (2.5). In the left plot of
the figure we present the density values on the surface of Da′ viewed in a side 3D perspective and for better visualization we
show twomore plots in the figure: the centre plot shows the density values on the part of the surface facing region D1 while
the right plot of the figure presents the density values on the opposite part of the surface.

3.2. Synthesis of different prescribed patterns in disjoint subregions of the source near-field

In this section we present the Tikhonov regularization solution for the problem (2.2), (2.3) described in Section 2.1
describing the applications to the synthesis of acoustic sources approximating two different field patterns in two prescribed
disjoint near field regions. Thus, we show next the performance of the Tikhonov solution described in (3.11)–(3.13) in the
case (2.1)(ii).

As in Section 3.1, we consider the case when the synthesized source approximates in region D1, described at (3.14), an
outgoing plane wave propagating along the negative x1-axis, u1 = e−ixk with wave number k = 10 while having a null in
region D2 = {(r, θ, φ), r ∈ [0.011, 0.015], θ ∈ [−

π
4 ,

π
4 ], φ ∈ [−

π
4 ,

π
4 ]} + (0.018, 0, 0), (i.e. region D2 is the same as region

D1 but shifted to the right along x1 axis 0.018 units). We mention that, similar as for region D1, in the simulations presented
in this section the control set D2 is discretized with 6400 points, 40 equidistant azimuthal increments by 16 equidistant
polar increments by 10 equidistant radial increments respectively. A sketch of the geometries are shown in Fig. 6. In Fig.
7 we present a cross-sectional view of the generated field along z = 0 in a region characterized by (x, y) ∈ [−5, 5]2. As
above, this plot supports the claim about the source causality (i.e., the fact that the source field is outgoing). This fact can be
better observed in the time domain simulation presented in animation 3 [33] where the propagating time-harmonic field
generated by the synthesized source is shown.

In Fig. 8 we present the quality of our control results in the two regions of interest D1,D2 as required in (2.3). The left
and centre plots on the top row in the figure describe respectively the field generated by the source, and the outgoing plane
wave to be approximated u1 = e−ixk. The accuracy of our approximation O(10−3) can be observed in the right picture on
the top row of Fig. 8 where the relative pointwise error between u (the field generated solution of (2.2)) and u1 = e−ixk (the
field to be approximated) is presented. The fourth picture in Fig. 8 (bottom row of the figure) presents a scattered plot with
the values of the generated field in region D2 where very small values of the field (associated with the null effect as required
from the optimization procedure) can be observed.

Fig. 9, shows six cross-sectional views of the generated field along z = 0 in a near-field region characterized by
(x, y) ∈ [−0.05, 0.05]2. More explicitly, in order left to right and from top left to bottom right plot, we present six cross-
sectional (z = 0) time-snapshots (kct = {

83
50π,

84
50π,

85
50π,

86
50π,

87
50π,

88
50π}) of the time-harmonic field generated by the

synthesized source in the near field region, including the two regions of interest D1,D2. The colour scheme in the plots is
(truncated to 1 light yellow and −1 dark blue) with the antenna region not included in the numerical simulations and thus
corresponding to zero values field (cyan colour) and with the black stripe and white strip representing field amplitudes
approximately equal to 0.6 and −0.6 respectively. Following the plots in order left to right and from top left to bottom
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Fig. 7. Cross-section z = 0 plot of the generated field, showing outgoing character.

(a) Generated field in D1 . (b) Field to match in D1 . (c) Pointwise relative error.

(d) Generated field in D2 .

Fig. 8. Demonstration of control accuracy in D1 and D2 .

right plot it can be observed how the source works to approximate a plane wave corresponding to a straight black strip in
region D1 to its left while maintaining a null in region D2 to its right. Indeed, the plots of Fig. 9 show the time propagation
of the generated field by focusing on the portion of the field with amplitude approximately equal to 0.6 marked as a
dark stripe. It can be observed how this portion of the field enters region D1 at time kct =

85
50π in a nearly rectilinear

shape and continues to keep the same form outgoing throughout a neighbourhood of region D1 (thus indicating the plane
wave structure of the approximated field in the control region) while in all the plots the field is approximately zero in
region D2.

The time domain animation 4 [34] enhances the message of Fig. 9. The multimedia file presents the cross-sectional
view along z = 0 of the time-harmonic evolution of the field generated by the synthesized source and respectively the
propagating plane wave u1 = e−ixke−ikct in a near field region given by (x, y) ∈ [−0.05, 0.05]2 in two simultaneous
animations: the top one describing the time propagation of the generated field and the bottom one describing the time
propagation of the plane wave u1 = e−ixke−ikct . The colour scheme in the movies is (truncated to 1 light yellow and
−1 dark blue) with region Da′ removed from the simulations (coloured cyan) and with the black stripe representing
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(a) 83
50π . (b) 84

50π . (c) 85
50π .

(d) 86
50π . (e) 87

50π . (f) 88
50π .

Fig. 9. Cross-sectional (z = 0) time snapshots of the propagating generated acoustic field for different values of kct . Control region D1 to the left of the
source, with the null region D2 to the right. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

(a) Side. (b) Front. (c) Back.

Fig. 10. Input density wα with various colour maps highlighting the local oscillations.

amplitude values approximately equal to 0.6, and the white stripe representing amplitude values approximately equal to
−0.6 respectively. As above,wepoint out that there are twoblack stripes and respectively twowhite stripes per period for the
approximated plane wave. The animation clearly shows the accuracy of the approximation in region D1 as well as the null in
region D2.

Fig. 10 describes the densitywα (see (3.11)) on the boundary of the fictitious domainDa′ (recall Remark 2.1 for the location
and shape of the actual physical source Da) as an indication of the possible complexity of the required source inputs vn or pb
described at (2.4) or (2.5). In the left plot in the figure we present the density values on the surface of Da′ viewed from a 3D
side perspective and for better visualization we show twomore plots in the figure; the centre plot shows the density values
on the part of the surface facing region D1; the right plot of the figure presents the density values on the part of the surface
facing D2. We observe an overall larger norm of the density with larger amplitude and faster pace of the oscillations when
compared with the case studied in Section 3.1 fact which is somehow not surprising due to the extra requirement that the
antenna maintains a null in region D2.
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Fig. 11. Planar sketch of the geometry showing the source Da , the control region D1 and the far field region D2 .

Fig. 12. Cross-section z = 0 plot of the generated field, showing outgoing character, with fast radiation decay.

3.3. Almost non-radiating acoustic sources with controllable near fields

In this section we present a third application of the results discussed in Section 2.1 and study the problem in the case
(2.1)(iii). As an extreme example, we showhow the source synthesized by our scheme approximates an incoming planewave
u1 = eixk (propagating towards the source in the positive x direction as observed from within region D1) with wave number
k = 10 in region D1 (described at (3.14)) while having a very small field in region D2 = R3

\B10(0) where B10(0) denotes the
ball centred at the origin with radius 10). A sketch of the geometry is presented in Fig. 11.

We mention that in this section numerical simulations region D1 is discretized as in Section 3.1 while the far field
boundary, i.e., the sphere R = 10, is discretized with a total of 3200 points as follows: 80 equidistant azimuthal increments
by 40 equidistant polar increments respectively. Fig. 12 shows a cross-sectional view of the generated field along z = 0 in
a region characterized by (x, y) ∈ [−5, 5]2. This plot demonstrates the source causality (i.e., the fact that the synthesized
source field is outgoing). This fact can also be observed in the time domain simulation presented in animation 5[35] where
the propagating time-harmonic field generated by the synthesized source is shown.

In Fig. 13we show the quality of our control results in regionD1 as required by (2.3). The left and centre plots in the figure
describe respectively the field generated by the source u, and the plane wave to be approximated u1 = eixk. The accuracy
of our approximation (O(10−3)) can be observed in the right plot of Fig. 13 where the relative pointwise error between the
synthesized field u and u1 = eixk is presented.

Fig. 14 shows the fast decay in region D2 as required by (2.3). Indeed, the left plot of the figure describes the very small
values of the generated field computed on the sphere of radius 10 (≈ −60 dB). On the other hand, the right plot of the figure
describes the absolute values of r · supBr (0)|u| as a function of r ∈ (101000). The asymptotic limit of this function, O(10−2), is
the supremum value of far field pattern and this once more confirms the fact that the source synthesized by our scheme is a
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(a) Generated field. (b) Incident field. (c) Pointwise relative error.

Fig. 13. Accuracy of control in region D1 .

(a) Generated field on far field boundary R = 10. (b) Supremum of Far-field pattern.

Fig. 14. Evidence of almost non-radiating character.

weak radiator. In fact, we also computed the actual power radiated by this source, i.e., P = Re(
∫
S u

∗v ·n) where u represents
the pressure field solution of (2.2), (2.3) , A∗ denotes the complex conjugate of complex quantity A, and v · n denotes the
normal velocity on a sphere S surrounding the source Da, and we found that it is of order O(10−7), (or −140 dB), once more
indicating a very weak radiator.

Fig. 15 shows nine a cross-sectional views of the generated field along z = 0 in a near-field region characterized by
(x, y) ∈ [−0.05, 0.05]2. The figure describes in order left to right from top left to bottom right plot, nine cross-sectional
(z = 0) time-snapshots (kct = {

79
50π,

80
50π,

81
50π,

81.5
50 π,

81.7
50 π,

82
50π,

82.1
50 π,

83
50π,

84
50π}) of the time-harmonic field generated

by the synthesized source in the near field region. The colour scheme in the plots is (truncated to 1 light yellow and −1 dark
blue) with the region Da′ (coloured cyan) not included in the numerical simulations and with the black stripe representing
field amplitudes approximately equal to 0.6.

Following the plots in order from top left to bottom right plot it can be observed how the source works to approximate
the incoming plane wave u1 = eixke−ikct in D1. Indeed, the (a), (b) plots show how the source works on creating a plane
wave in region D1. The (c), (d), (e), (f ) plots are zoomed in closer to the antenna in a region (x, y) ∈ [−0.02, 0.02]2 so
that the approximation of the incoming plane wave is better observed. It can be seen in these plots how the portion of the
fields with values approximately equal to 0.6 (black stripe) enters region D1 at time kct =

81.5
50 π in a nearly rectilinear

shape (i.e. corresponding to plane wave character) and propagates towards the source while continuing to keep the same
rectilinear form throughout the neighbourhood of regionD1. In the last two plots we see how the generated field looses form
near the source and propagates away from it in the far field (i.e., corresponding to a causal source).

The time domain animation 6 [36] presents the cross-sectional view along z = 0 of the time-harmonic evolution of the
field generated by the synthesized source and respectively the incoming plane wave u1 = eixke−ikct in a near field region
given by (x, y) ∈ [−0.05, 0.05]2. The multimedia file shows two animations: the top one describing the time propagation of
the generated field and the bottom one describing the time propagation of the plane wave u1 = eixke−ikct . The colour scheme
in the movies is (truncated to 1 light yellow and −1 dark blue) with the region Da′ removed from the simulations and with
the black stripe representing amplitude values approximately equal to 0.6, and the white stripe representing amplitude
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(a) 79
50π . (b) 80

50π . (c) 81
50π .

(d) 81.5
50 π . (e) 81.7

50 π . (f) 82
50π .

(g) 82.1
50 π . (h) 83

50π . (i) 84
50π .

Fig. 15. Cross-sectional (z = 0) time snapshots of the propagating generated field for different values of kct . Control region D1 to the left of the source,
where an incoming wave is approximated. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

values approximately equal to −0.6 respectively. As above note that there will be two black stripes and respectively two
white stripes per period for the approximated plane wave. The animations show the accuracy of the approximation of the
outgoing plane wave u1 = e−ixke−ikct in region D1.

Fig. 16 shows the density wα (see (3.11)) on the boundary of the synthesized source. In the left plot in the figure we
present the density values on the surface of the source viewed from a 3D side perspective and for better visualization we
show two more plots in the figure; the centre plot shows the density values on the part of the surface facing region D1; the
right plot of the figure presents the density values on the opposite pole of the source. We observe a large norm of wα with
complex small and respectively large scale oscillatory patterns on the two poles.

4. Conclusions and future work

In the time-harmonic regime we described a unified framework where the possibility to characterize boundary source
inputs for the control of acoustic fields in homogeneous infinite media (Section 2.1) or finite depth homogeneous ocean
environments (Section 2.2) was theoretically established. We then presented a 3D optimization scheme (Section 3)
based on the Method of Moments and Tikhonov regularization with Morozov discrepancy principle for the numerical
characterization of boundary inputs (normal velocity or pressures) necessary on the boundary of the source to obtain the
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(a) Side. (b) Front. (c) Back.

Fig. 16. Input density wα with various colour maps highlighting the local oscillations.

desired control effects. We then numerically discussed the performance of our scheme for the problem in homogeneous
infinite environments in the three distinct geometrical situations described at (2.1). We did not show any explicit numerical
simulations for the case of finite depth homogeneous ocean environments but, as shown in Section 2.2, in this case the
associated Green’s function is computed explicitly in [26] and is a continuous perturbation of the free space Helmholtz
fundamental solution, hence the optimization scheme presented in the paper can be adapted to this case as well and this
will be a part of our forthcoming report.

Our work discusses a novel strategy for 3D sound field synthesis. This area of research presents a multitude of possible
applications of interest to the acoustic community (see [24] section 5 for a list of possible applications). We believe that the
results presented in this report may be in particular relevant to:

1. Strategies for synthesis of virtual sound fields or for acoustic focusing (Section 3.1). Indeed, the numerical observations
suggest that the results of Section 3.1 hold true for control regions D1 located in the near field of the source Da with the
condition that ka′ is larger then a give threshold. In this context the synthesis of virtual arbitrary sound fields in region D1
becomes possible through a Fourier synthesis procedure and we could imagine an application where a single source or an
array of such sources will be synthesized to approximate a focused signal in a region D1 (exterior to the array or interior to
the convex hull of the array).

2. Strategies for generating personal audio spots, null placement or covert communications (Section 3.2); Indeed, we
performed a sensitivity analysis for the case considered in Section 3.2 and discovered that in principle (with associated
increases in source input complexity) the results remain valid for various locations of the null region D2 relative to region
D1 even in the case when the are coaxial both centred on the negative x axis for example. This together with a superposition
principle indicate the possibility to characterize single sources or arrays to generate personalized sound signals in disjoint
exterior regions, or obtain desired null regions or approximate a given signal in a region while maintaining a null in another
prescribed area thus achieving a covert communicationwith respect to the null region. For example, another way to imagine
a covert communicationdevice is by noting that the theoretical results presented in [21] imply the possibility to create almost
non-radiating sources which are approximating any desired acoustic field in sub-regionD1. In fact our numerics suggest that
the case presented in Section 3.3 is an extreme example where the signal to be approximated in region D1 is propagating
towards the source and other outgoing signalswill bemuch easier to approximate. In this context, one can imagine an almost
non-radiating array which is thus covertly transmitting in region D1 a desired prescribed signal.

3. Strategies for acoustic protection from active interrogation. In this setup, one envisions a planar array in front of (or
a conformal array surrounding) the protected area paired with exterior sensors for the detection of interrogating signals
(through an associated time control feedback loop). The array (planar or conformal) of source elements similar to the
element described in Section 3.3 is then synthesized (through appropriate Fourier synthesis) as a very weak radiator (thus
unobservable to a far fieldmeasurement device) with a controllable near-field such that it nulls (by destructive interference)
an interrogating field thus creating a protected shadow region behind (the case of planar array), or a protected region within
the convex hull (the case of conformal array).

4. Strategies for acoustic noise cancellation. Indeed we can imagine a conformal array of elements surrounding (at some
distance) a noise source and where each element in the array is attached to a sensor located in the interior of the elements
convex hull. Using a Fourier synthesis procedure and based on our theoretical results [21] this array can be synthesized to
generate a null in an interior region containing the sensors (thus guaranteeing accurate measurements) while (using feed
forward information from the sensors about the signal to be cancelled) the total field exterior to the array convex hull can
be made vanishingly small.

As pointed out before, our preliminary numerical investigations show that, assuming more harmonics in the expansion
of the density wα we could achieve the same degree of control with the near field regions D1 and D2 located further away
from the source (giving thus more freedom in the choice of an actual physical boundary ∂Da) or when one considers more
then two regions of control. In this regard, in the spirit of [23], a detailed study of the sensitivity of the optimization scheme
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with respect to parameters such as, relative position of the control regions D1 and D2 and their distance from the source Da,
power budget and oscillatory character of the source input as well as acoustic intensity of the source is currently undergoing
and will be presented in future reports.

The study of arrays where one considers coupling effects as well as realistic possibilities for the instantiation of the
theoretically predicted inputs is also an important part of our future research programme

Additionally, we observed throughout our numerical simulations (see Figs. 5, 10 and 16) that the synthesized sourcemay
require a very complex input on its boundarywith possibly large amplitude, i.e., with sub-areas characterized by small values
and fast oscillations (e.g. , the part facing D1 ) and other sub-areas characterized by very large values and slower oscillations
(e.g., the pole opposite to D1).

In the context of linear approximation where everything can be scaled down appropriately, the results presented above
in Figs. 8, 10, 13 and 16 corroborated with the superposition principle suggest the possibility of approximating arbitrary
given patterns (with small amplitudes) in each of the regions of interest. We also remark that the high possible norm of the
L2 boundary input can be mitigated by considering arrays of such elements in achieving the desired control effect.

On the other hand, the undesirable small scale and large scale fast oscillations observed at the above L2 solution could
be addressed by allowing the regularization parameter to be smaller or by considering different penalties (other than
∥w∥L2(∂Da′ )

) in the Tikhonov regularization discrepancy functional defined at (3.12) such as, the total variation norm of the
velocity (or pressure) ((2.4) or (2.5) for free space and (2.9) or (2.10) for homogeneous ocean environments respectively).

Last but not least, we believe that by using a Fourier synthesis technique our strategy can be extended to the time-domain
synthesis of band-limited signals where different prescribed signals could in principle be synthesized in disjoint near field
regions. This, and, if needed, a direct time-domain analysis will be another important part of our future work.
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