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Abstract – In this paper, a detailed sensitivity and feasibility analysis of the active manipulation scheme for
scalar Helmholtz fields proposed in our previous works, in both free space and constant-depth homogeneous
ocean environments, is presented. We apply the method of moments (MoM) together with Tikhonov regular-
ization with the Morozov discrepancy principle to investigate the effects of varying the problem parameters to
the accuracy and feasibility of the proposed active field control strategy. We discuss the feasibility of the active
scheme (with respect to power budget, control accuracy and process error) as a function of the frequency, the
distance between the control region and the source, the mutual distance between the control regions, and the
size of the control region. Process error is considered as well to investigate the possibility of an accurate active
control in the presence of manufacturing or feeding noise. The numerical simulations show the accuracy of the
active field control scheme and indicate some challenges and limitations for its physical implementation.

Keywords: Active field control, Feasibility analysis, Inverse source problem, Integral equation method

1 Introduction

The active control of acoustic fields has been extensively
explored in the past decades and is an emerging research
area in modern acoustics. Compared with passive control
schemes, active control techniques are more suited for low
frequencies, as the barriers used in passive control schemes
are relatively large and ineffective at low frequencies [1].
Instead of using the interaction between sound and specific
materials to control the acoustic field, active control strate-
gies characterize a source so that it is capable of approximat-
ing given field patterns in prescribed exterior regions. The
current literature has significantly addressed the idea of
the active control of Helmholtz scalar fields in broad applica-
tions. These include, but are not limited to, active noise
control [2–4], personal sound zones or multizone sound
reproduction [5–7], active acoustic cloaking [2, 8–10], remote
sensing [11, 12] and metamaterial design [13–15]. Active
sound control techniques are becoming increasingly ubiqui-
tous to enhance sound-based systems [16–21]. Forward
and inverse problems for sound in underwater environ-
ments have been widely studied in the literature (see
monographs [22–24] and references therein). Several com-
prehensive reviews are available in [1, 25, 26], discussing

the technicalities and recent advances in various active
control schemes.

Directional far-field control can potentially play an
important role in some applications with far-field manipula-
tion involved. In this context, in [27, 28], the authors investi-
gated the directional acoustic manipulation via multi-phase
forehead structure of the porpoises to realize beamforming.
In the same paradigm, the works [29–31] made use of loud-
speaker arrays to achieve a directional source.

The majority of the active control strategies have been
focused on the method of pressure matching (PM) [25].
The PM approach aims to match the target field pattern
in the given region with minimum error. In this approach,
the active control problem is cast as an inverse source
problem (ISP).

Unlike in free space, the active sound control in underwa-
ter environments is more challenging. It makes use of addi-
tional boundary conditions and the approximated Green’s
function, which adds a layer of complexity than free space
scenario. We mention here the works [32, 33] where the
authors develop a single-mode excitation with a feedback
control algorithm to realize both near and far-field sound
control.

A general ocean environment can be modeled as a
horizontally stratified waveguide [23, 24, 34]. In general, it
is fairly difficult to find the analytical fundamental solution*Corresponding author: jchen82@central.uh.edu

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Acta Acustica 2021, 5, 39

Available online at:

�C. Qi et al., Published by EDP Sciences, 2021

https://acta-acustica.edpsciences.org

https://doi.org/10.1051/aacus/2021030

SCIENTIFIC ARTICLE

http://orcid.org/0000-0002-6741-2945
http://orcid.org/0000-0002-6741-2945
http://orcid.org/0000-0002-6741-2945
http://orcid.org/0000-0003-4902-6431
http://orcid.org/0000-0003-4902-6431
http://orcid.org/0000-0003-4902-6431
http://orcid.org/0000-0001-5981-9852
http://orcid.org/0000-0001-5981-9852
http://orcid.org/0000-0001-5981-9852
http://orcid.org/0000-0001-9940-7043
http://orcid.org/0000-0001-9940-7043
http://orcid.org/0000-0001-9940-7043
https://creativecommons.org/licenses/by/4.0/
https://www.edpsciences.org/
https://actacustica.edpsciences.org
https://actacustica.edpsciences.org
https://doi.org/10.1051/aacus/2021030


and thus, in this paper we follow the paradigm proposed in
[22] and consider a simpler marine environment modeled as
a shallow water or a homogeneous finite-depth ocean. Our
sensitivity analysis builds up on the numerical framework
developed in [20, 21, 35]. We use the associated Green’s
function to represent the solution of the Helmholtz equation
and employ the integral equation (IE) method to formulate
the forward propagator. The method of moments (MoM)
approach [36] is used to reduce the original integral
equation to a discrete linear system. Then a Tikhonov reg-
ularization scheme with the Morozov discrepancy principle
is applied to solve the resulting system of equations. In the
underwater environment, additional boundary conditions,
including pressure release boundary on air-water interface
and sound hard boundary on the sea floor, were imposed.
Consequently, the Green’s function was modified in the
formulation of the forward propagator. We used the normal
mode representation to formulate the Green’s function in
the homogeneous finite-depth ocean [22, 23].

In this paper, we present a detailed sensitivity study for
the problem of controlling three-dimensional scalar
Helmholtz fields in several prescribed exterior regions while
maintaining desired far-field pattern values in given fixed
directions. Moreover, we also look at the process error,
i.e., small noise that may be present in the feeding current
when the source is physically implemented. We discuss the
feasibility of the active scheme (in terms of power budget,
control accuracy and process error) with respect to varia-
tions in frequency, the distance between the control region
and the source, the mutual distance between the control
regions, and the control region size. By a feasible source,
we mean a source that requires low power (within the dB
levels of common sound sources such as loudspeakers),
achieves the control effects with high accuracy (errors of less
than 10%) and with high tolerance to feeding noise.

The rest of this paper is organized as follows. In
Section 2, we formally describe the problem and provide rel-
evant theoretical results obtained in [35]. Section 3 shows
the numerical results and sensitivity analysis in free space.
In Section 4, the numerical results and sensitivity analysis
in the shallow water environment are presented. Finally,
we conclude the paper with some remarks in Section 5.

2 Theory
2.1 Problem formulation

In this section, we present a general description of the
active manipulation scheme for Helmholtz fields proposed
in our previous works. The unified functional and numerical
framework have already been discussed in [20, 21, 35]. We
shall briefly recall several essential theoretical results and
describe some geometric configurations of interest.

The problem is to characterize a source (modeled as
surface pressure or surface normal velocity) so that its
generated field approximate some prescribed fields in
several exterior regions of interest while maintaining desired

patterns in several given far field directions. In this paper,
the active field manipulation scheme is explored in both free
space and homogeneous ocean with a constant depth. The
problem geometry in these two environments are sketched
in Figures 1 and 2. Although the theoretical discussion in
[20, 21, 35] indicates that an arbitrary number of source
regions, exterior control regions, and far-field directions
can be considered in the active control scheme, here we shall
only consider a single source Da, two control regions D1, D2,
and two far-field directions x1, x2 for illustrative purposes.
A single source Da b R3 is modeled as a compact region in
both free space and homogeneous ocean. The control
regions D1 and D2 are mutually disjoint smooth domains,
i.e., D1 \ D2 = ;. We also assume that the control regions
are well-separated from the source region, i.e.,
(D1 [ D2) \ Da = ;. Furthermore, we consider two distinct
directions x1 and x2 representing the far-field directions of
interest, which can be arbitrary.

Mathematically the problem is to find the boundary
input on the source, either a Dirichlet input data p (pres-
sure) or a Neumann input data vn (normal velocity)
such that for any desired field f = (f1, f2) on the control
regions D1, D2 and prescribed far field pattern values
f1 = (f1,1, f1,2), the solution u of the following exterior
Helmholtz problem:

r2uþ k2u ¼ 0 inR3nDa;

ru � n ¼ vn; ðor u ¼ pÞ on oDa;

corresponding boundary conditions;

suitable radiation condition;

8>>><
>>>:

ð1Þ

satisfies the control constraints,

u� flk kc2ðDlÞ � l for l ¼ 1; 2;

u1 bxj

� �� f1;j

�� �� � l for j ¼ 1; 2;

(
ð2Þ

where 0 < l << 1 is the desired control accuracy thresh-
old and u1 denotes the the far field pattern of u. In
(1) and (2), n denotes the outward-pointing normal vector
to oDa and bx ¼ x

jxj is the unit vector along the direction x.

The subscript C 2 denotes that the norm is defined in the
space of smooth functions with continuous derivatives up

Figure 1. Sketch of the problem geometry showing the near
controls D1, D2 and the far field directions x1 and x2 in free
space.
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to the second order and is computed as a sum of the L2

norms of all the partial derivatives up to the second order.
Recall that the L2 norm on the space of square integrable
functions on a given domain D is defined as fk kL2ðDÞ ¼R

D jf ðxÞj2dx� �1=2
. The boundary and radiation conditions

in (1) depend on the medium (environment) and will be
given in Sections 2.2 and 2.3.

In [20, 21], it was demonstrated that problem (1)
together with (2) admits a solution if the wavenumber k
is not a resonance, i.e.,�k2 is neither a Neumann eigenvalue
for the Laplacian in the source region nor a Dirichlet eigen-
value in the control regions. In order to ease the analysis
and integral computations, our scheme makes use of a
“fictitious source”, i.e., an arbitrary sphere D 0

a compactly
embedded in the actual source region Da. In general, the
physical source Da can have any shape as long as it has a
Lipschitz boundary, compactly includes the fictitious source
D 0

a and is well separated from the control regions. Mean-
while, our scheme uses slightly larger mutually disjoint
regions W1 and W2 such that D1 b W1, D2 b W2,
W 1 \ W 2 ¼ ; and ðW 1 [ W 2Þ \ Da ¼ ; because, as shown
in [20], an accurate control in the sense of the L2-norm on
oW1 and oW2 implies, via regularity and uniqueness results
for the solution of the interior Helmholtz equation, the
smooth control required in (2). As pointed out in [21, 35],
within the framework mentioned above, the boundary
input data, either normal velocity vn or pressure p on the
surface of the source can be characterized using a smooth
density function w 2 L2ðoD 0

aÞ such that,

vn xð Þ ¼ �i
pck

@

@n

Z
@D 0

a

w yð Þ/ x;yð ÞdSy and; ð3Þ

p xð Þ ¼
Z
@D 0

a

w yð Þ/ x;yð ÞdSy; ð4Þ

for x 2 oDa and where q is the density of the surrounding
environment, c is the speed of sound in the given medium
and /(x, y) is the fundamental solution of the 3D
Helmholtz equation. In general, the solution of problem
(1) can be represented by a linear combination of a single
and a double layer potential illustrated in [37, 38]. For
simplicity of the computations, we only use the single-
layer potential operator throughout this paper.

2.2 Free space environment

In this section, the active manipulation of Helmholtz
fields in a free-space environment is investigated. In this
medium, problem (1) reads,

r2uþ k2u ¼ 0 inR3nDa;

ru � n ¼ vn; ðor u ¼ pÞ on oDa;

bx;ruðxÞh i � ikuðxÞ ¼ o
1
jxj
� �

; as jxj ! 1:

8>>>><
>>>>:

ð5Þ

The fundamental solution in this case is given by
/ðx;yÞ ¼ eikjx�yj

4pjx�yj. Then, the control problem is to character-
ize p or vn such that the solution u of (5) satisfies (2). In free
space, the solution u can be written as the image of a den-
sity function w under a forward propagator operator D. To
define D, we make use of the near field operator Kl on the
control region oWl defined as,

Klw zlð Þ ¼
Z
@D 0

a

w yð Þ/ zl;yð ÞdSy; ð6Þ

where for each l ¼ 1; 2, zl 2 oWl and y 2 oD 0
a. Moreover,

following the derivation in [38], the far field pattern oper-
ator K1;j can be defined as,

K1;1wðbxjÞ ¼ 1
4p

Z
@D 0

a

w yð Þe�ikbxj�ydSy; ð7Þ

where bxj , j ¼ 1; 2 is the unit vector pointing in the far-
field direction of interest. Hence, the overall propagator
operator D in free space is defined as,

Dw z1; z2; bx1; bx2ð Þ ¼ ðK1wðz1Þ;K2wðz2Þ;K1;1wðbx1Þ;K1;2wðbx2ÞÞ:
ð8Þ

2.3 Homogeneous ocean environment

Compared with the free space regime, the active control
scheme in the homogeneous ocean with a constant depth is
much more complicated. As shown in Figure 2, two addi-
tional boundary conditions must be specified. More explic-
itly, problem (1) now reads,

r2uþ k2u ¼ 0 inR3nDa;

ru � n ¼ vn; ðor u ¼ pÞ on oDa;

u ¼ 0 at the ocean surface z ¼ 0;

ou
oz

¼ 0 at the ocean floor z ¼ h;

lim
r!1

r1=2
oup
or

� ikapup

� �
¼ 0; for h 2 ½0; 2pÞ:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð9Þ

where following the framework proposed in [22], we
employ cylindrical coordinates in our analysis and the
functions up’s represent the normal modes in the represen-
tation of u. The main control problem is then to charac-
terize vn or p such that the solution u of (9) satisfies (2).
We employ the following Green’s representation for u,

Figure 2. Sketch of the problem geometry showing the near
controls D1, D2 and the far field directions x1 and x2 in
homogeneous ocean with constant depth.
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u xð Þ ¼
Z
@D 0

a

w yð ÞG x;yð ÞdSy; ð10Þ

where w is the density function defined on the fictitious
surface source oD 0

a and G is the associated Green’s
function in the medium. For any observation point
x = (r, h, z) = (n, z) and source point y = (r 0, h 0, z 0) =
(n0, z 0), the Green’s function has the following normal
mode representation [24]:

Gðx;yÞ ¼ i
2h

Xþ1

p¼0

/pðzÞ/pðz0ÞH ð1Þ
0 ðkapjn� n0jÞ; ð11Þ

where H ð1Þ
0 is the zero order Hankel function of the first

kind, /p is the pth modal solution with associated eigen-
value ap [22–24]. These eigenvalues are,

ap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð2p þ 1Þ2p2

4k2h2

s
; ð12Þ

while the separated modal solutions /p are given by,

/pðzÞ ¼ sin k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2p

q
z

h i
: ð13Þ

In the far-field region, the field u has an asymptotic form
given by [22],

u xð Þ ¼
XN
p¼0

1ffiffiffiffiffiffiffiffiffi
kapr

p eikaprgp h; zð Þ þO
1
r
3
2

� �
;

as r ! þ1;

ð14Þ

where N is the number of propagating modes (i.e., the
largest integer so that ap 2 R), gp is given by,

gpðh; zÞ ¼
ffiffiffi
2
p

r Z
@D0

a

wðyÞ:
X1
q¼0

e�iðqþ1
2Þp2 aqpðz; h; r0; z0; h0Þ

 !
dSy ;

ð15Þ
and,

aqpðz; h; r0; z0; h0Þ ¼ i�q
2h

/pðzÞ � cosðqhÞbqpðyÞ þ sinðqhÞcqpðyÞ
� 	

;

ð16Þ

where �0 = 1, and �q = 2 for q � 1 with,

bqpðyÞ ¼ Jqðkapr0Þ/pðz0Þ cosðqh0Þ; ð17Þ

cqpðyÞ ¼ Jqðkapr0Þ/pðz0Þ sinðqh0Þ; ð18Þ

where Jp(x) is the Bessel function of the first kind of
order p. Therefore, the far-field pattern in a given direc-
tion x = (1, h, z) can be defined as [22],

u1ðbxÞ ¼XN
p¼0

gpðh; zÞ: ð19Þ

Remark 2.1 In (5) and (9), we assume that the free space
and homogeneous environment are idealized. In free space,
there is no additional boundary condition considered. In the
shallow water environment, only air-water surface and the
sea floor are applied as two boundary conditions. These
boundary conditions are used to demonstrate the sensitivity
study. Adaptive or random boundary conditions and the
corresponding Green’s function have to be imposed when
a practical environment is considered.

Similar to the free space regime, we define a propagator
operatorD that calculates the generated field on the control
regions and the far-field pattern in the given directions. For
each l ¼ 1; 2 and j ¼ 1; 2, define,

Klw zlð Þ ¼
Z
@D 0

a

w yð ÞGðzl;yÞdSy and; ð20Þ

K1;jwðbxjÞ ¼
XN
p¼0

gpðhj; zjÞ: ð21Þ

Then the overall propagator operator D is given by,

Dwðz1; z2; bx1; bx2Þ ¼ ðK1wðz1Þ;K2wðz2Þ;K1;1wðbx1Þ;K1;2wðbx2ÞÞ:
ð22Þ

2.4 Optimization scheme

In Sections 2.2 and 2.3, we already defined the propaga-
tor operator D that evaluates the field in the exterior con-
trol regions and the far-field pattern values. The problem
(1), (2), formulated in the respective context of free space
model (5) or constant-depth homogeneous ocean model
(9) can be summarized as,

Dw � f : ð23Þ
where the operator D is defined in (8) and (12), w is the
unknown density function defined on the fictitious source
and f denotes the prescribed fields in the control regions.
Following the approach in [17] the density function w in
(23) is determined using the method of moments (MoM)
by discretizing the control regions into a discrete mesh
of collocation points and w being expressed as a linear
combination (with unknown coefficients) of local basis
functions spanning the space of square integrable func-
tions on oD 0

a. Thus, the integral equation in (23) is
reduced to a linear system,

Awd ¼ b; ð24Þ
where wd represents the vector of unknown coefficients in
the local basis representation of w, A represents the
matrix of moments computed from the propagator D
and b is the vector of values of f in the mesh of evaluation
points distributed within the control regions together with
the prescribed two far field directions. The matrixA is not
invertible in most cases, thus the linear system (24) is
solved using a regularization routine to minimize
the sum of squared residuals. Following the strategy in

C. Qi et al.: Acta Acustica 2021, 5, 394



[16, 20, 21], the unknown coefficients in wd are obtained
by using Tikhonov regularization, and can be compactly
written as

bwd ¼ arg min
wd2oD 0

a

gl Awd � bk k2L2ðoW lÞ þ aktwdk2L2ðoD 0
aÞ

h i
;

ð25Þ
where l = 1 or 2 denoting the index of the control region. a
is the regularization parameter representing the penalty
weight for the power required by the solution. The opti-
mal a is determined by the Morozov discrepancy principle
[39, 40]. The unknown discrete coefficients in wd are taken
to be the Tikhonov solution,

wd ¼ ðaIþA�AÞ�1A�b; ð26Þ
where I is the identity matrix and A� is the complex
conjugate transpose of A.

Remark 2.2 In (25), the weighting coefficient gl can be
applied to change the contributions of two data misfit in
near region and far direction. The weighting coefficient
determines the control effort made by the source in each
region. For example, if g1 ? 1, the data misfit in the near
region 1 will be minimized to approach 0 such that the total
misfit is less than a desired threshold. Note that the weight-
ing coefficient also plays an important role to the complexity
of the boundary input.

To estimate the power on the actual source Da, the
average radiated power Pave and the stored energy Pstor

are computed as,

Pave ¼ 1
2

Z
@BR

Re½u�ðru � nÞ� dS and ð27Þ

Pstor ¼ 1
2

Z
@BR

Im½u�ðru � nÞ� dS; ð28Þ

where u� denotes the complex conjugate and BR is some
sphere of radius R containing the actual source Da. In
our analyses, the calculated power is expressed in dB
relative to a reference level of 10�12 W. Finally, the sought
boundary input: either normal velocity vn or pressure p
on the actual source is obtained from (3) and (4),
respectively.

3 Numerical results in free space

In this section, we present several relevant numerical
simulations to support the above mentioned theoretical
framework. We start from a simplified geometric configura-
tion as shown in Figure 3a with one near control region D1

and one far-field direction x1 which is exactly behind the
near control. Then, we extend our numerical study into a
multiple-region regime with two near field control regions
D1 and D2 and two far field directions x1 behind D1 and
x2 behind D2 as sketched in Figure 3b. The source and

control regions are in free space (with medium parameters
c = 343 m/s and q = 1.225 kg/m3). Throughout this
section, the fictitious source region is the sphere of radius
0.2 m centered at the origin. In general, the actual source
Da can be arbitrarily shaped as long as it is Lipschitz and
compactly embeds D 0

a. In our simulations, for exemplifica-
tion, we assume the actual source to be the sphere of radius
0.22 m centered at the origin. In the spirit of [35], the section
starts with Sections 3.1 and 3.2 discussing the performance
of our strategy, which is quantified by the relative or abso-
lute error in control regions, in each of the above mentioned
configurations and then continues with Section 3.3 where we
present a detailed sensitivity analysis for free space.

3.1 A null in the near control region and a non-zero
far field pattern

In this subsection we show the performance of our
scheme in creating a null in D1 and a given pattern f1,1
in the prescribed far field direction x1 (see Fig. 3a for one
possible configuration). In our simulation, we set the
wavenumber to k = 10 and consider D1 b W1 where W1

is an annular sector given in the spherical coordinates (with
respect to the origin) by,

W 1 ¼ ðr; h;/Þ : r 2 ½0:4; 0:7�; h 2 p
4
;
3p
4


 �
; / 2 3p

4
;
5p
4


 �� 

:

ð29Þ
The far-field direction is exactly behind the near control,
i.e., x1 ¼ ðr; h;/Þ ¼ ðr; p2 ; pÞ, for large r. The desired field
in region D1 is f1 = 0 while the desired far field pattern in
direction x1 is given by f1,1 = 0.01 + i � 0.02 and
i ¼ ffiffiffiffiffiffiffi�1

p
. The simulation results are shown in Figures 4

and 5.
The generated field on a 2D cross section through z = 0

around the control region is shown in Figure 4. This shows
that the field inside the control region has amplitude not
exceeding �120 dB. In the linear scale, the generated field’s
maximum pointwise absolute value is less than 1.6 	 10�8

while its L2 norm is just about 6.69 	 10�8. As a numerical

Figure 3. Sketch of the top view of the problem geometry
showing the near control(s) and the far field direction(s). (a) One
near control and one far field direction. (b) Two near controls
and two far field directions.
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stability check, these values are computed using points
slightly off from the mesh points used in the collocation
scheme. To describe the accuracy of the scheme, we use
the pointwise measure of error ei defined as,

ei ¼
jui�fi j
jfij if fi 6¼ 0;

jui � fij if fi ¼ 0;

(
ð30Þ

where u = Awd is the generated field and fi is the pre-
scribed value in the ith evaluation point. In the far field
direction x1, the maximum pointwise error of the real
and imaginary parts are 4.79 	 10�8 and 1.68 	 10�8,
respectively suggesting good control accuracy.

Remark 3.1 In Figure 4, once a scatterer besides its reflec-
tion appears in the energy radiation direction, two
approaches can be applied to treat the reflections. The first
method modifies the surface input of the source accounting
for nulls around the scatterer, i.e., creating nulls around the
scatterer such that the energy would be by design radiated
away from the scatterer. Theoretically, it is possible in far
field or for small scaterrers in near field. If the scatterer is

large or there is a scattering boundary, the second method
which incorporates the scattered field in the total propagator
has to be used. This requires a different mathematical
formulation and is not considered in this paper.

Figure 5 shows the normal velocity vn on the source oDa

in a rectangular (h, /)-plot. The pointwise amplitudes of vn
are quite small and within order 10�2. The average power
and stored energy in the actual source are 7.1 dB and
7.8 dB, respectively, which implies that it is feasible for
physical implementation, insofar as power budget is
concerned.

Remark 3.2 The boundary input data shown in Figure 5
can approximate the field patterns in the exterior regions
and far directions. In further numerical simulations [41],
our continuous sources are proven to be able to achieve con-
trols at regions that are much (10 wavelengths) further away
from the source and that are much (15 times) larger than
the source. This suggests that our approach may be useful
to push the current understanding about the physical limits.

3.2 Two near control regions and two far field directions

In this subsection we show the performance of our
scheme in creating null fields in D1 and D2 while approxi-
mating two distinct prescribed patterns f1,1, f1,2 in far-field
directions x1 and x2, respectively (see Fig. 3b for one possi-
ble configuration). One possible application of this configu-
ration would be in developing a strategy to establish and
maintain communication in several given far-field directions
while avoiding near field interference located in D1 and D2.
In this test, k = 10, D1 b W1 with W1 defined in (29) while
D2 b W2 with W2 given in spherical coordinates as,

W 2 ¼ ðr; h;/Þ : r 2 ½1; 1:2�; h 2 p
4
;
3p
4


 �
; / 2 �p

4
;
p
4

h i� 

:

ð31Þ
In this geometry, x1 ¼ ðr; h;/Þ ¼ ðr; p2 ; pÞ and x2 ¼
ðr; h;/Þ ¼ ðr; p2 ; 0Þ, r 
 1 while the prescribed far-field
pattern values are, f1,1 = 0.01 + i � 0.02 in direction x1
and f1,2 = 0.05 + i � 0.03 in direction x2. The simulation
results are shown in Figures 6 and 7. In Figure 6, we see
that the absolute errors in the two near controls are within
order 10�7. In the far directions x1 and x2, the supremum
relative errors of the real parts are 3.29 	 10�7 and
6.39 	 10�8 while for the imaginary parts, the supremum
errors are 8.02 	 10�8 and 1.61 	 10�7, respectively. In
Figure 7 we present the normal velocity required on the
actual physical source Da. The average radiated power is
8.4 dB and the stored energy is 9.7 dB. The power budget
is slightly larger than that in Section 3.1 as the source is
projecting two non-zero far-field patterns in two directions.

3.3 Sensitivity analysis

The aforementioned results support the analysis of [35]
and show that our strategy works for each of the two con-
figurations depicted in Figure 3. In the following tests, we

Figure 5. Boundary input vn on the actual source oDa.

Figure 4. Generated field on the plane z = 0.
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aim to study the sensitivity of our strategy with respect to
variations in several physically relevant parameters, such as
wavenumber k, the distance between the control region and
the source, the control region size and, mutual distance
between the control regions (in the case of more control
regions and far field directions Fig. 3b). The feasibility of
the active control scheme is also discussed by looking at
the overall control accuracy, power budget and its perfor-
mance against process error. The geometry in the sensitivity
analysis is depicted in Figure 8. To distinguish the original
region (dark), the regions with modified parameters are
shown in a light color. For instance, D�2

1 denotes the near
control which is shifted away from the source, in which
the superscript ‘2’ corresponds to the experiment number
in Section 3.3.2.

3.3.1 Varying the wavenumber k

We start with the initial geometry in Figure 3a, i.e., only
one near control and a far-field direction. The prescribed
field in D1 is zero and the far-field pattern is a given non-
zero complex number. In this simulation we let the

wavenumber vary from 1 to 31. In every single simulation,
we keep the geometry fixed and only change the wavenum-
ber. The simulation results are shown in Figure 9. The
first plot in Figure 9 shows the supremum pointwise
absolute error in D1 and the relative error in the far field
direction x1. The behavior is less optimal in the low fre-
quency case since the condition number of the associated
matrix grows large with decrease in frequency while our
numerics suggest the performance of the strategy gets worse
for larger wavenumbers (k > 200). The second plot is the
process error, which is the supremum pointwise error when
the computed feeding current wd is contaminated with small
noise. Mathematically, the process error can be obtained by
replacing u with ud in (30), where ud = Awdd and d= 0.0001
is the noise threshold. In this paper, we consider a random
Gaussian noise such that wdd = wd � (1 + d �kwdk2 �R) and
R � N (0,1). The plot of the process error in Figure 9 indi-
cates that the system is capable of overcoming feeding-
current noise of a certain level. The power budget and L2

norm of vn show that the control effort decreases as the
operating frequency increases.

3.3.2 Varying the distance between the near control
region and the source

The following results show the effect of variations in the
distance between the near control region and the source.
We still use the initial model in Figure 3a. The near control
D1 is shifted further away from the source (D�2

1 in Fig. 8a)
while all other parameters are fixed. The results are
depicted in Figure 10. We notice that the control accuracy
in the near region keeps on improving when the near control
is moved further away from the source, while the control
accuracy in the far direction is converging to a certain
value. This indicates that the generated field onD1 becomes
closer to the null field as it is moved further away from the
source. This may be desired for scenarios when D1 is an
acoustic scatterer. The power budget on the source follows
a similar trend as the control accuracy.

Figure 8. Sketch of the geometry in sensitivity analysis. D1, D2

and x1, x2 are original near controls and far field directions,
respectively. They are shown in dark color. The light-colored
regions with D�n

1 , where n = 2, 3 and 4, are corresponding to the
experiments in Sections 3.3.2 to 3.3.4.

Figure 7. Normal velocity vn on the actual source oDa.

Figure 6. Pointwise magnitudes of the generated fields on
(a) D1 and (b) D2, both approximating a null field.
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3.3.3 Varying the near control region size

Now we consider the behavior of the control accuracy
and the power budget with respect to incremental increase
in the outer radius of the near control region D1 (D�3

1 in
Fig. 8a) with all the other parameters kept fixed. The
results are shown in Figure 11. Notice that the control accu-
racy and power budget are slightly oscillating in the entire
range of near control size. The results indicate a good
performance for larger obstacles.

3.3.4 Varying the mutual distance between the near
control regions

In this sensitivity test, we consider two near control
regions and vary the mutual distance between them. In
Figure 8b, D1 is fixed and we rotate D2 around Da to obtain
a new secondary control region D�4

2 . For a fair comparison,
the far-field directions are kept exactly behind the controls,
i.e., the second far field direction is also rotated (see x�4

2 ).
The mutual distance between the two near controls is

Figure 10. Results showing the control accuracy and the power budget varying with mutual distance between D1 and D 0
a. From left

to right, (1) Supremum error. (2) Process error. (3) Power budget on Da. L
2 norm of normal velocity vn on Da.

Figure 11. Results showing the control accuracy and the power budget varying with the size of the near control D1. The size of D1 is
the difference between the outer and inner radii, i.e., the thickness of the sectorial region. From left to right, (1) Supremum error. (2)
Process error. (3) Power budget on Da. (4) L

2 norm of normal velocity vn on Da.

Figure 9. Results showing the control accuracy and the power budget varying with k. From left to right, (1) Supremum error. (2)
Process error. (3) Power budget on Da. (4) L

2 norm of normal velocity vn on Da.
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determined by the mutual angle / shown in Figure 8b. The
control accuracy and power budget are recorded as the
angle / is varied from 3.6� to 356.4�.The results are shown
in Figure 12. We find that the relative error is less than 10�5

and the power budget are within 12 dB if / is in the range
of [30�, 330�]. If / is out of this range, i.e., the near controls
are too close to each other, the relative error and source
power become excessive. In the lower and upper bounds
of the /-range, the relative error in the far-field patterns
can be as high as 15%. This indicates that the control
regions cannot be too close, otherwise the accurate control
effects are not guaranteed. This makes sense as it is hard
to generate two very different patterns in two far field direc-
tion which are very close due to the continuity of Helmholtz
fields.

4 Numerical results in the homogeneous ocean

In this section, we extend our sensitivity analysis to the
homogeneous ocean regime. We follow a similar procedure
as in the previous section that deals with the problem in free
space. We only show part of the numerical results due to
the page limitation. The rest of the numerical examples
are available in the supplementary document [41]. In the
entire section, the fictitious source D 0

a is the sphere of radius

0.2 m with center at (0, 0, �50) while, for exemplification,
the physical source is chosen to be the concentric sphere of
radius 0.22 m. The control region D1 and the far-field direc-
tion x1 are given by the control region and far-field direc-
tion described in the free space simulations but this time
shifted 50 m downward (see Fig. 2). The depth of the ocean
environment is |h| = 100 m, the speed of sound c is assumed
to be 1515 m/s and the density q is 1020 kg/m3.

Figure 13. Generated fields on cut planes: (a) z = �50 and (b) y = 0

Figure 12. Results showing the control accuracy and the power budget varying with the mutual distance between near controls
D1 and D2 (given as a function of the angle / between them). From left to right, (1) Supremum error. (2) Process error. (3) Power
budget on Da. (4) L

2 norm of normal velocity vn on Da.

Figure 14. Normal velocity vn on the actual source oDa.
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4.1 A null in the near control region and a non-zero
far field pattern

We start from the initial geometry in Figure 3a but with
k = 1 and recall, in the spirit of [35], the performance of our
strategy. In D1, we prescribe a null field, and the desired
far-field pattern value is f1,1 = 0.01 + i�0.02. The results
are shown in Figures 13 and 14. Figure 13 shows the gener-
ated fields on two cross sections of the ocean. The left plot
(a) shows that the generated field on W1 has pointwise
amplitude less than −60 dB. In the linear scale, this corre-
sponds to a maximum magnitude of the generated field
within order 10�5. The right plot (b) shows the field on
the plane y = 0, where the reflections from the ocean’s
surface and bottom are observable.

In the exact direction x1, the relative errors of the
real part and imaginary part are 5.24 	 10�4 and
1.83 	 10�4, respectively. In Figure 9, we show the bound-
ary input vn on the actual source oDa. The average power
and stored energy on the actual source are 11.2 dB and
11.6 dB, respectively. This low power budget suggests the
possibility of physically instantiating this source.

4.2 Sensitivity analysis

In this subsection we repeat the same experiments
performed in the free space environment to explore the
limitations or challenges of the active control in the homo-
geneous ocean environment. We only present here the effect

of frequency and of the mutual distance between the near
control and the source on the control accuracy and power
budget. Some other experiment results are available online
via the clickable https://drive.google.com/file/d/1E1ApC
AUwBokeGuqiumu1GKzUIKR3u3N1/view?usp=sharing;
Google Drive link [41].

4.2.1 Varying the wavenumber k

In this simulation, the wavenumber varies from 1 to 31
while the other parameters are fixed. The simulation results
are shown in Figure 15. In contrast to the free space results
shown in Figure 9, the relative error increases as the
frequency increases. This is due to the complex model
(propagator, boundary condition, and so on) used in the
homogeneous ocean environment. In practical underwater
acoustic applications, the underwater environment poses
serious challenges which are much more complicated than
that in the free space. Hence, the control effort required
on the source to accurately manipulate the near field and
directional far field pattern is more than that in free space.
Furthermore, the active scheme in the underwater environ-
ment is more sensitive to the feeding noise. For the smaller
noise threshold (d = 10�8) the process error in the far direc-
tion is kept smaller than 10%. This implies that even a low
noise level in the feeding network may have a major effect
on the radiated pattern in a far field direction. However,
the system still maintains a good performance in the near

Figure 15. Results showing the control accuracy and the power budget varying with wavenumber k. From left to right,
(1) Supremum error. (2) Process error. (3) Power budget on Da. (4) L

2 norm of normal velocity vn on Da.

Figure 16. Results showing the control accuracy and the power budget varying with the distance between the source and the control
region. From left to right, (1) Supremum error. (2) Process error. (3) Power budget on Da. (4) L

2 norm of normal velocity vn on Da.
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control. The overall trend of the power budget is also
increasing as the wavenumber increases. It is noted that
the spikes on the curves are due to the wavenumber being
close to resonance frequencies.

4.2.2 Varying the distance between the near control
region and the source

In this simulation, we test the sensitivity of our strategy
as D1 is moved away from the source as shown in Figure 8.
The initial near control region is D1 and it is incrementally
pushed away from the source to obtain a new control region
D�2

1 . The results are shown in Figure 16. We observe that
the overall performance of control accuracy and power
budget is better when the near control is further away from
the source, save some spikes due to resonances. The reason
accounting for this trend is that the near control, where we
want a field with low amplitude (as it may be interpreted as
an obstacle or scatterer for some applications), is pushed
away and hence the source effort is eased.

5 Conclusions

In this paper, the feasibility of the active manipulation
of Helmholtz fields both in free space and in a homogeneous
ocean of constant depth is presented. We build up on our
previous works and demonstrated the possibility of of
having a feasible characterization of an active source
(modeled as surface pressure or surface normal velocity)
such that it is capable of approximating a priori given field
some near control regions while simultaneously projecting
desired patterns in several far-field directions. By a feasible
source, we mean a source with low power requirement, for
instance 30 dB, which can radiate the prescribed fields
within some accuracy thresholds. We showed the control
accuracy and the power budget of the proposed active
control mechanism for each environment. Then we explored
the behavior of physically relevant parameters (power
budget and control accuracy) with respect to variations in
the frequency, outward shift, the outer radius of the near
control and the mutual distance between near controls.

In our simulations, we considered the two initial models
shown in Figure 3. The first one contains one near control
and one far-field direction and the second one has two near
control regions and two far-field directions. The far-field
directions are placed exactly behind the near control regions
in each of the two models. In this paper, we only show the
cases in which the near control regions are prescribed to be
have a null field and the given far-field directions to have a
non-zero pattern.

In free space, the control accuracy is within order 10�8

both in the near control and in the far field direction. In
the geometry shown in Figure 3a, the operating frequency
is first varied while all other parameters are fixed. The
frequency is swept from 54.59 Hz to 1.69 kHz (k is from
1 to 31). Moreover, the power requirement is kept at low
levels which suggests the feasibility of a physical implemen-
tation of the calculated source. In the second simulation,
the near control region is moved outward. We noticed that

the control accuracy in the near region is continuously
improving as the near control region is pushed further away
from the active source. However, accuracy converges to a
certain level in the far-field direction. Next, we vary the
outer radius of the near control region to explore the effect
of the near region’s size on the control accuracy and power
budget. The simulation results show that the active control
scheme works in the entire range of values of the outer radii.
We also considered the geometry in Figure 3b. Here, we
rotate the second near control region together with the
far-field direction behind it. We find that the control
accuracy and power budget don’t change significantly if
the two near control regions are separated by an angle
/ 2 [30�, 300�]. However, outside this range the control
performance is gradually degrading.

We then extended our sensitivity analysis into the case
of a homogeneous ocean of constant depth. The Green’s
function, corresponding to a pressure-release surface and a
totally reflecting bottom, is expressed using the normal
mode representation. Accordingly, the far-field pattern
propagator is defined. In this case, the control accuracy is
within orders 10�5 and 10�4 in the near control and in
the far direction, respectively. In the first sensitivity test
we varied the wavenumber from 1 to 31. The results show
that the overall performance of the scheme, with respect to
the control accuracy and the power budget decreases with
increase in frequency. These suggest that the control
scheme is more suitable to low frequencies in the homoge-
neous ocean environment. In the second test, we move the
near control further away from the source. The results are
similar to that in the free space. More sensitivity test results
are available in the supplementary material [41].
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