The 60th William Lowell Putnam Mathematical Competition Saturday, December 4, 1999

A-1 Find polynomials $f(x), g(x)$, and $h(x)$, if they exist, such that for all x,

$$
|f(x)|-|g(x)|+h(x)= \begin{cases}-1 & \text { if } x<-1 \\ 3 x+2 & \text { if }-1 \leq x \leq 0 \\ -2 x+2 & \text { if } x>0\end{cases}
$$

A-2 Let $p(x)$ be a polynomial that is nonnegative for all real x. Prove that for some k, there are polynomials $f_{1}(x), \ldots, f_{k}(x)$ such that

$$
p(x)=\sum_{j=1}^{k}\left(f_{j}(x)\right)^{2} .
$$

A-3 Consider the power series expansion

$$
\frac{1}{1-2 x-x^{2}}=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

Prove that, for each integer $n \geq 0$, there is an integer m such that

$$
a_{n}^{2}+a_{n+1}^{2}=a_{m} .
$$

A-4 Sum the series

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^{2} n}{3^{m}\left(n 3^{m}+m 3^{n}\right)}
$$

A-5 Prove that there is a constant C such that, if $p(x)$ is a polynomial of degree 1999, then

$$
|p(0)| \leq C \int_{-1}^{1}|p(x)| d x
$$

A-6 The sequence $\left(a_{n}\right)_{n \geq 1}$ is defined by $a_{1}=1, a_{2}=$ $2, a_{3}=24$, and, for $n \geq 4$,

$$
a_{n}=\frac{6 a_{n-1}^{2} a_{n-3}-8 a_{n-1} a_{n-2}^{2}}{a_{n-2} a_{n-3}} .
$$

Show that, for all n, a_{n} is an integer multiple of n.

B-1 Right triangle $A B C$ has right angle at C and $\angle B A C=$ θ; the point D is chosen on $A B$ so that $|A C|=|A D|=$ 1; the point E is chosen on $B C$ so that $\angle C D E=\theta$. The perpendicular to $B C$ at E meets $A B$ at F. Evaluate $\lim _{\theta \rightarrow 0}|E F|$.

B-2 Let $P(x)$ be a polynomial of degree n such that $P(x)=$ $Q(x) P^{\prime \prime}(x)$, where $Q(x)$ is a quadratic polynomial and $P^{\prime \prime}(x)$ is the second derivative of $P(x)$. Show that if $P(x)$ has at least two distinct roots then it must have n distinct roots.

B-3 Let $A=\{(x, y): 0 \leq x, y<1\}$. For $(x, y) \in A$, let

$$
S(x, y)=\sum_{\frac{1}{2} \leq \frac{m}{n} \leq 2} x^{m} y^{n}
$$

where the sum ranges over all pairs (m, n) of positive integers satisfying the indicated inequalities. Evaluate

$$
\lim _{(x, y) \rightarrow(1,1),(x, y) \in A}\left(1-x y^{2}\right)\left(1-x^{2} y\right) S(x, y)
$$

B-4 Let f be a real function with a continuous third derivative such that $f(x), f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x)$ are positive for all x. Suppose that $f^{\prime \prime \prime}(x) \leq f(x)$ for all x. Show that $f^{\prime}(x)<2 f(x)$ for all x.

B-5 For an integer $n \geq 3$, let $\theta=2 \pi / n$. Evaluate the determinant of the $n \times n$ matrix $I+A$, where I is the $n \times n$ identity matrix and $A=\left(a_{j k}\right)$ has entries $a_{j k}=\cos (j \theta+k \theta)$ for all j, k.

B-6 Let S be a finite set of integers, each greater than 1. Suppose that for each integer n there is some $s \in S$ such that $\operatorname{gcd}(s, n)=1 \operatorname{or} \operatorname{gcd}(s, n)=s$. Show that there exist $s, t \in S$ such that $\operatorname{gcd}(s, t)$ is prime.

