PROBLEM: Show that the only integer values in the set

$$
\left\{\left.\frac{a^{2}+b^{2}}{a b+1} \right\rvert\, a, b \in \mathbb{Z}, a, b \geq 0\right\}
$$

are the perfect squares.

SOLUTION:

We can assume without loss of generality that $0 \leq b \leq a$.
To simplify notation, let us introduce

$$
x(a, b)=\frac{a^{2}+b^{2}}{a b+1}
$$

We do long computations, based on the idea that we should write $a=b k+r$ where $k, r \in \mathbb{Z}, 0 \leq r<b$. At the end, we observe that if (a, b) is a pair with $x(a, b) \in \mathbb{Z}$ then $x(a, b)=x(b, b-r)$, that is, $(b, b-r)$ is another solution. Computing r explicitely gives

$$
b-r=b-\left[a-b\left(\frac{a^{2}+b^{2}}{a b+1}-1\right)\right]=\frac{b^{3}-a}{a b+1}
$$

Thus, we can forget about the computation and use only the following fact:
Given a pair of real numbers (a, b) with $0 \leq b \leq a$, consider the pair (b, c), where

$$
c=\frac{b^{3}-a}{a b+1} .
$$

Then:
(1) $x(a, b)=x(b, c)$
(2) $c \leq b$, with equality only if $a=b=0$.
(3) if $a, b, x(a, b) \in \mathbb{Z}$ and $b>0$ then $c \geq 0$.

Once we know this (to be checked later), the proof is short.
Assume that $0 \leq b \leq a$ are integers for which $x(a, b) \in \mathbb{Z}$. Then, provided $b \neq 0$, we can construct another integer solution, $\left(a^{\prime}, b^{\prime}\right)=(b, c)$, with $0 \leq b^{\prime}<a^{\prime}=b \leq a$ (use (2) and (3)). That is, we obtain a smaller solution, without changing $x(a, b)$.

This process must end in finitely many steps. We cannot continue it when $b=0 \leq a$, which gives $x(a, b)=a^{2}$. Therefore, for the whole sequence of solutions that led to $(a, 0)$, the value of the quotient x is equal to a^{2}, a perfect square, as desired.

The reverse operation is

$$
(b, c) \mapsto(a, b), \quad a=\frac{b^{3}-c}{b c+1}
$$

and we can reconstruct the (increasing) sequence of solutions:

$$
(a, 0) \rightarrow\left(a^{3}, a\right) \rightarrow\left(a^{5}-a, a^{3}\right) \rightarrow \ldots
$$

It remains to check conditions (1)-(3).
The first one is just a direct computation.
The inequality $c \leq b$ is equivalent to $b\left(b^{2}-1\right) \leq a\left(b^{2}+1\right)$, which explains (2).
Finally, notice that if $a b+1$ divides $a^{2}+b^{2}$, then it also divides $b^{4}+1=\left(a^{2}+b^{2}\right) b^{2}-(a b+1)(a b-1)$. Hence, $a b+1 \leq b^{4}+1$. If $b>0$, this implies that $a \leq b^{3}$, hence that $c \geq 0$.

OPEN QUESTION: What is the theory behind this?
Note that the result is not true if a and b can have opposite signs: $x(2,-1)=-5$.

