Department of Mathematics

University of Houston

Analysis Seminar

Thursday, December 1, 2016

11:00-12:00 – Room 646 PGH

Speaker: N. Christopher Phillips (University of Oregon)

Title: Relating the mean dimension of a homeomorphism and the radius of comparison of its C*-algebra

Abstract: Let X be a compact metric space, and let $h: X \to X$ be a homeomorphism which is minimal, that is, there are no nontrivial *h*-invariant closed subsets. Interpreting *h* as the generator of an action of \mathbb{Z} on X, from (X, h) one can construct a simple unital C*-algebra $C^*(\mathbb{Z}, X, h)$ (a special case of crossed product C*-algebras). It is the C*-algebra generated by a copy of C(X) and a unitary *u* such that $ufu^* = f \circ h^{-1}$ for $f \in C(X)$. A general problem in operator algebras is to relate properties of *h* to properties of $C^*(\mathbb{Z}, X, h)$.

The mean dimension $\operatorname{mdim}(h)$ of a homeomorphism h is a dynamical invariant, designed so that the mean dimension of the Bernoulli shift on $([0,1]^d)^{\mathbb{Z}}$ is d. The radius of comparison $\operatorname{rc}(A)$ of a simple unital C*-algebra A quantifies the failure of traces on A to properly measure the "size" of positive elements of A. (If A is separable and nuclear, $\operatorname{rc}(A) = 0$ is conjecturally equivalent to classifiability in the sense of the Elliott program.)

It has been conjectured that $\operatorname{rc}(C^*(\mathbb{Z}, X, h)) = \frac{1}{2}\operatorname{mdim}(h)$ for any minimal h. In this talk, I will explain the terms above, and give some partial results towards the conjecture, including the bound $\operatorname{rc}(C^*(\mathbb{Z}, X, h)) \leq 1 + 2 \operatorname{mdim}(h)$ for any minimal homeomorphism h.

(This material is based upon work supported by the US National Science Foundation under Grants DMS-1101742 and DMS-1501144.)