Department of Mathematics University of Houston

Analysis Seminar

Thursday, December 8, 2016

13:00-14:00 - Room 646 PGH

Speaker: N. Christopher Phillips (University of Oregon)

Title: An invitation to operator algebras on L^p -spaces (Lecture 3)

Abstract: The theory of C*-algebras is one of the most successful parts of functional analysis. C*-algebras are exactly the norm closed selfadjoint subalgebras of the algebras of bounded operators on Hilbert spaces, that is, spaces of the form $L^2(X,\mu)$ for a measure space (X,\mathcal{B},μ) . What does one get if one replaces $L^2(X,\mu)$ with $L^p(X,\mu)$? In the last few years, interesting examples of such algebras have been found, corresponding to known standard examples of C*-algebras. However, many of the standard parts of the theory of C*-algebras have no known analogs for operator algebras on L^p spaces. The current state of knowledge is thus that we have a collection of interesting examples but that much work is needed towards constructing a general theory to go with them.

In the first lecture, I will give a general outline of the sort of thing that is known, including overviews of some of the basic theory of C*-algebras, and what is known about counterparts of some of them in L^p -operator algebras. In the other lecture(s), I will describe the small amount of basic theory we have for L^p -operator algebras, including Lamperti's Theorem on isometries on L^p -spaces. This result is very different from what happens for p=2, but it is an essential ingredient in many proofs of properties of examples which are surprisingly like their C*-algebra counterparts. Also, I will give a more detailed look at one or two of the main classes of examples, and state a number of open questions.