
The Quadratic Function

The **quadratic function** is another parent function. The equation for the quadratic function is $y = x^2$ and its graph is a bowl-shaped curve called a **parabola**. The point (0,0) is called the vertex.

The **vertex form** for all quadratics is $y = a(x - h)^2 + k$, and follows all the same rules for determining translations on the parent function except the slope. Notice the coefficient is in front of the squared term.

If a=1, the parabola is standard size and 2 points are graphed up 1 and over 1 on each side of the vertex.

If a > 1, the parabola is skinnier which represents a vertical stretch. The graph is drawn between the basic points.

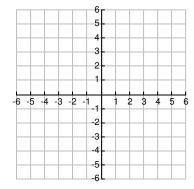
If 0 < a < 1, the parabola is wider which represents a vertical compression. The graph is drawn outside of the basic points.

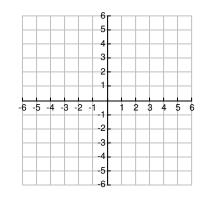
Example 1. For each problem, write the equation in the vertex form $y = a(x - h)^2 + k$.

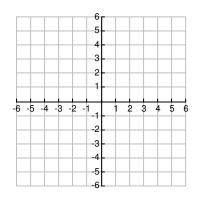
- a) state the parent function
- d) state the vertical stretch or compression

b) name the function

e) state the phase (or horizontal) shift

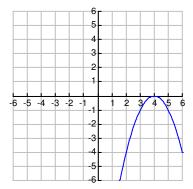

c) is there a reflection

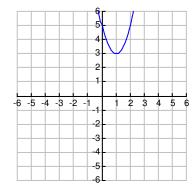

f) state the vertical shift

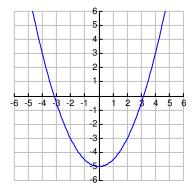

a.
$$y = (x - 2)^2$$

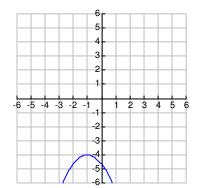
b.
$$y = x^2 + 4$$

c.
$$y = -\frac{1}{4}(x+1)^2 - 2$$

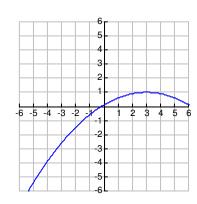


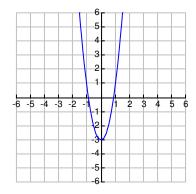



Example 2. Write the equation of each parabola from the graph and the given information.


$$a=2 \text{ or } a=\frac{1}{2}$$

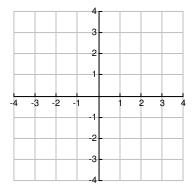
$$a = \frac{2}{3}$$
 or $a = 3$





a=10 or a=
$$\frac{1}{10}$$

The Square Root Function


The **square root function** is another parent function. The equation of the square root function is $y = \sqrt{x}$. Fill in the chart of ordered pairs and look at the graph.

X	0	1	4
У			

The graph should be a smooth curve that looks like half of a parabola.

What is the domain? _____

What is the range? _____

To determine the domain of a square root function without graphing, set the expression under the radical sign greater than or equal to zero. (The number under the square root must be 0 or a positive value.)

Example 1: Find the domain for the function $y = \sqrt{2x + 3}$.

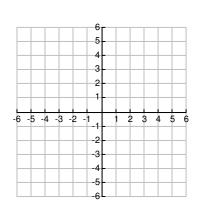
Write the answer in interval notation.

$$2x + 3 \ge 0$$

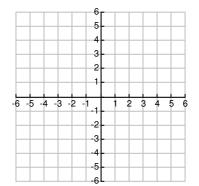
 $2x \ge -3$ Answer: $\left[-\frac{3}{2}, \infty\right]$
 $x \ge -\frac{3}{2}$

Example 2: Find the domain for the function $y = 3\sqrt{4x - 5} - 1$.

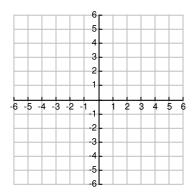
The graphing form for all square root functions is $y = a\sqrt{x - h} + k$. If a < 0, the graph is reflected across the x-axis. (a flip) The **value** of **a** will determine the vertical stretch or compression. The translations are determined by h and k. Each point on the parent function moves horizontally h units and vertically k units.

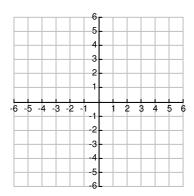

Example 3: Graph $y = 3\sqrt{x+2} - 1$

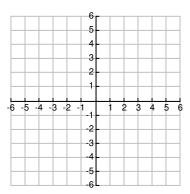
Graph the parent function.


Each point on the parent function is moved horizontally to the left 2 units and vertically down 1 unit. The graph stays above the translated horizontal axis since a > 0.

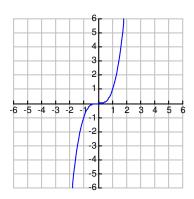
Since the value of a is 3, each point on the parent function is **3 times as far** from the translated horizontal axis.


Graph the new function. State the domain and range in interval notation.


Example 4:
$$y = \frac{1}{2}\sqrt{x-1} + 3$$


Example 5:
$$y = -4\sqrt{x} + 5$$

Example 6:
$$y = -\frac{1}{4}\sqrt{x+1}$$



Example 7:
$$y = 3\sqrt{x+5} - 6$$

The Cubic Function

The **cubic function** is a parent function with the equation $y = x^3$. The graph is shown below.

The translations are performed the same way as the other functions using the equation $y = m(x - h)^3 + k$.

For each example explain the translations on the parent function to obtain the following graph.

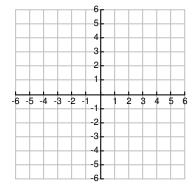
Example 1.
$$y = 2(x-3)^3 + 1$$

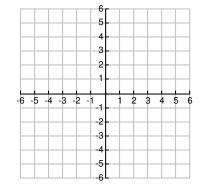
Example 2.
$$y = -\frac{1}{3}(x+2)^3 - 4$$

Reflection _____

Reflection _____

Stretch or compression_____

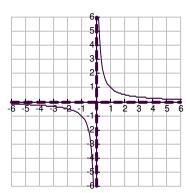

Stretch or compression_____


Phase shift _____

Phase shift _____

Vertical shift _____

Vertical shift _____



The Rational Function

Another parent function is called the **rational function**. Its equation is $y = \frac{1}{x}$.

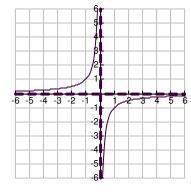
Here is its graph:

There is a vertical asymptote at x = 0 and a horizontal asymptote at y = 0.

Instead of graphing rational functions using vertical and horizontal asymptotes, we will look at the rational functions as a family of the parent function. We will use reflections, phase shifts and vertical shifts to graph the family of rational functions.

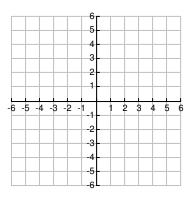
The general equation for all rational functions is:

$$y = \frac{a}{x - h} + k$$


where the sign of **a** determines a **reflection**, **h** determines the **phase shift** for the **vertical asymptote** and **k** determines the **vertical shift** for the **horizontal asymptote**. In this lesson we will not be concerned with finding exact values for the x and y intercepts. Our graph will be a rough sketch of the function.

Example 1:
$$y = \frac{-1}{x}$$

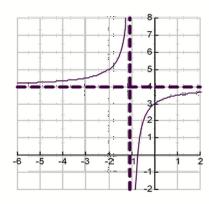
a = -1 represents a reflection (the graph starts below the x-axis, starting with the positive side)


phase shift = 0vertical shift = 0

Graph:

Example 2:
$$y = -\frac{1}{x+3} - 2$$

Graph:



Example 3: Write the equation from the graph in the form $y = \frac{a}{x-h} + k$

reflection ? _____

phase shift _____

vertical shift _____

