THE DYNAMICAL BOREL-CANTELLI LEMMA FOR INTERVAL MAPS

DONG HAN KIM

Department of Mathematics
The University of Suwon
San 2-2, Wau-ri, Bongdam-eup, Hwaseong-si
Gyeonggi-do, 445-743, Korea

(Communicated by Lluis Alseda)

Abstract. The dynamical Borel-Cantelli lemma for some interval maps is considered. For expanding maps whose derivative has bounded variation, any sequence of intervals satisfies the dynamical Borel-Cantelli lemma. If a map has an indifferent fixed point, then the dynamical Borel-Cantelli lemma does not hold even in the case that the map has a finite absolutely continuous invariant measure and summable decay of correlations.

1. Introduction. Let \((X, \mu)\) be a probability space and \(B_n\) be a sequence of subsets of \(X\). There are two kinds of classical Borel-Cantelli lemmas: The first lemma is that if \(\sum \mu(B_n) < \infty\), then for almost every \(x\) there are finitely many \(n\)'s such that \(x \in B_n\). The second one is that if \(\sum \mu(B_i) = \infty\) and \(B_n\)'s are independent, then for almost every \(x\) there are infinitely many \(n\)'s such that \(x \in B_n\). Let \(T\) be a \(\mu\) preserving transformation on \(X\) and \(A_n\) be a sequence of subsets in \(X\) with \(\sum \mu(A_n) = \infty\). If we put \(B_n = T^{-n}A_n\) and \(B_n\)'s are independent, then by the second Borel-Cantelli lemma \(T^n x \in A_n\) for infinitely many \(n\)'s.

Assume that \(A_n\) is a sequence of subsets of \(X\) with \(\sum \mu(A_n) = \infty\). A sequence of subsets \(A_n \subset X\) is called a Borel-Cantelli (BC)\(^1\) sequence if for \(\mu\)-almost every \(x \in X\) there are infinitely many \(n\)'s such that \(T^n x \in A_n\).

Let \(S_N(x)\) be the number of positive integers \(1 \leq n \leq N\) such that \(T^n(x) \in A_n\), i.e.,

\[S_N(x) = \sum_{n=1}^{N} 1_{A_n} \circ T^n(x) = \sum_{n=1}^{N} 1_{T^{-n}A_n}(x), \]

where \(1_{A_n}(x)\) is the indicator of the set \(A_n\). We set

\[E_N = \mu(S_N) = \sum_{n=1}^{N} \mu(A_n). \]

We call a sequence of subsets \(A_n \subset X\) a strongly Borel-Cantelli (SBC) sequence if

\[\lim_{N \to \infty} S_N(x)/E_N = 1 \]

2000 Mathematics Subject Classification. Primary: 37A25, 37E05.

Key words and phrases. the dynamical Borel-Cantelli lemma, maps with an indifferent fixed point.

\(^1\)The notions of BC and SBC are from [3].
for μ-almost every x. Obviously, an SBC sequence is BC.

Note that a measure preserving transformation T is ergodic if and only if every constant sequence $A_n = A$, $\mu(A) > 0$, is BC. See [3] for the relation with weakly mixing property.

The first proof of the dynamical Borel-Cantelli lemma has been given by Philipp. Let $X = [0, 1)$ be the unit interval. Suppose that $T(x) = rx \pmod{1}$, $r > 1$ or $T(x) = \{1/x\}$ and that μ is the unique T-invariant absolutely continuous measure on X. Let A_n be a sequence of intervals in X with $\sum \mu(A_n) = \infty$. Philipp [12] showed that then

$$S_N(x) = \mu(S_N) + O(\mu(S_N)^{1/2} \log^{3/2+\epsilon} \mu(S_N)), \quad \epsilon > 0$$

for almost all $x \in X$.

Chernov and Kleinbock later showed that every sequence of various shapes of balls are SBC for an Anosov diffeomorphism [3]. See [4] for partially hyperbolic systems.

We extend the definition of SBC sequences for sequences of nonnegative functions: for a sequence of nonnegative functions f_n on X, put

$$S_N(x) = \sum_{n=1}^{N} f_n \circ T^n(x)$$

and

$$E_N = \mu(S_N) = \sum_{n=1}^{N} \mu(f_n).$$

We call the sequence of nonnegative functions f_n on X a strongly Borel-Cantelli (SBC) sequence if

$$\lim_{N \to \infty} S_N(x)/E_N = 1,$$

for almost every x. A sequence of subsets A_n is SBC if and only if the indicator function $1_{A_n}(x)$ is SBC. The following lemma is an important tool for the proof.

Lemma 1.1 ([14]). Let (Ω, μ) be a measure space, let $f_k(\omega) \ (k = 1, 2, \ldots)$ be a sequence of nonnegative μ-measurable functions, and let \bar{f}_k, φ_k be sequences of real numbers such that

$$0 \leq \bar{f}_k \leq \varphi_k \leq M \quad (k = 1, 2, \ldots).$$

Suppose that

$$\int_{\Omega} \left(\sum_{m < k \leq n} f_k(\omega) - \sum_{m < k \leq n} \bar{f}_k \right)^2 d\mu \leq C \sum_{m < k \leq n} \varphi_k$$

for arbitrary integers m, $n \ (m < n)$. Then

$$\sum_{1 \leq k \leq n} f_k(\omega) = \sum_{1 \leq k \leq n} \bar{f}_k + O(\Phi^{1/2}(n) \ln^{3/2+\epsilon} \Phi(n))$$

for almost all $\omega \in \Omega$, where $\epsilon > 0$ is arbitrary and $\Phi(n) = \sum_{1 \leq k \leq n} \varphi_k$.

In this paper expanding maps on the interval are considered. For expanding maps whose derivative has bounded variation, every sequence of intervals satisfies the dynamical Borel-Cantelli lemma. When a map is not uniformly expanding, the dynamical Borel-Cantelli lemma does not hold for sequences of intervals in general, even in the case that the map has a finite absolutely continuous invariant measure and summable decay of correlations.
In Section 2 we consider the class of piecewise monotone transformations on the interval. In Section 3 and 4 we apply the theorem in previous sections to non-uniformly expanding maps.

2. Uniformly expanding maps. In this section we consider piecewise expanding maps on the unit interval \(X = [0, 1] \). Let \(I = \{(a_i, b_i)\}_{i=1}^{\infty} \) be a countable family of closed intervals with disjoint interiors such that \(\bigcup I = X \). Let \(U = \bigcup (a_i, b_i) \) and \(S = X \setminus U \). We assume that \(T \) is differentiable on each \((a_i, b_i)\), \(T \) is called piecewise expanding if \(|T'(x)| \geq \alpha > 1\). The Perron-Frobenius operator is defined as

\[
Pf(x) = \sum_{y \in T^{-1}\{x\}} g(y)f(y),
\]

where

\[
g(x) = \begin{cases}
 \frac{1}{|T'(x)|} & \text{if } x \in U, \\
 0 & \text{if } x \in S.
\end{cases}
\]

We assume that \(T \) has a unique absolutely continuous invariant measure \(d\mu = hdx \) and the dynamical system \((T, \mu)\) is weakly mixing.

Let \(BV(X) \) be the set of bounded variation functions over \(X \) endowed with the norm \(\|f\|_{BV} = \int f + \|f\|_1 \), where \(\int f \) denotes the variation of a function \(f \). Rychlik[13] (see also [6]) showed that if \(T \) is piecewise expanding and \(g \) is of bounded variation, then there exist a positive constant \(C_0 \) and a constant \(0 < r < 1 \) such that for any \(f \in BV(X) \)

\[
\left\| P^n(f) - \left(\int f \right) h \right\|_{BV} \leq C_0 r^n \|f\|_{BV}.
\]

Thus there are \(r < 1 \) and \(C > 0 \) such that for all \(n \geq 1 \) and all \(f \in L^1(\mu) \) and \(\psi \in BV(X) \),

\[
\begin{align*}
\left| \int f \circ T^n \psi d\mu - \int f d\mu \int \psi d\mu \right| & \leq \|f\|_1 \|P^n(\psi h) - h(\int \psi h dx)\|_{BV} \\
& \leq C r^n \|f\|_1 \|\psi\|_{BV},
\end{align*}
\]

where \(C = C_0 (\int h + \|h\|_{\infty}) \). See also [1] for a comprehensive reference.

Theorem 2.1. Let \(T \) be a piecewise expanding map with bounded variation \(g = 1/|T'| \). Assume that \(T \) has a uniquely absolutely continuous invariant measure \(d\mu = hdx \) and \(h \) is bounded away from 0. If \(f_n \) is a sequence of nonnegative functions with \(\sum \mu(f_n) = \infty \) and \(\|f_n\|_{BV} < M \) for some \(M \), then for almost every \(x \)

\[
\lim_{N \to -\infty} \frac{\sum_{n=1}^{N} f_n \circ T^n(x)}{\sum_{n=1}^{N} \mu(f_n)} = 1,
\]

i.e., every sequence of uniformly bounded variation functions \(f_n \) is SBC.

Proof. Let \(f_n \) be a sequence of nonnegative functions on \(X \) with \(\|f_n\|_{BV} < M \). Then for \(i < j \),

\[
\int (f_j \circ T^i(x)) \cdot (f_i \circ T^i(x)) d\mu = \int (f_j \circ T^{j-i}(x)) \cdot f_i(x) d\mu.
\]

By (1) for a positive constant \(D \) we have

\[
\left| \int (f_j \circ T^{j-i}(x)) \cdot f_i(x) d\mu - \mu(f_j)\mu(f_i) \right| \leq CMr^{j-i} \|f_j\|_1 \leq DMr^{j-i} \mu(f_j).
\]
Hence
\[\int \left(\sum_{m<k \leq n} f_k(x) - \sum_{m<k \leq n} \mu(f_k) \right)^2 \, d\mu = \sum_{m<i,j \leq n} \left(\int f_i(x)f_j(x) \, d\mu - \mu(f_i)\mu(f_j) \right) < (M + 2DM \frac{r}{1-r}) \sum_{m<k \leq n} \mu(f_k). \]

Put \(\varphi_k = \tilde{f}_k = \mu(f_k) \). Then by Lemma 1.1, we complete the proof.

Therefore, every sequence of intervals is SBC with respect to the invariant measure \(\mu \).

3. Borel-Cantelli lemma for induced transformations. Let \(\mu \) be a probability measure on \(X \) and \(T : X \to X \) be a \(\mu \)-preserving transformation. For a measurable subset \(E \subset X \) with \(\mu(E) > 0 \) and a point \(x \in E \) which returns to \(E \) under iteration by \(T \), we define \(R_E \) to be the first return time
\[R_E(x) = \min \{ j \geq 1 : T^j(x) \in E \}. \]

Kac’s lemma[9] states that
\[\int E R_E(x) \, d\mu(x) \leq 1, \]
where the equality holds if \(T \) is ergodic. Let \(T_E \) be the induced transformation of \(T \) on \(E \), which is defined by
\[T_E(x) = T^{R_E(x)}(x). \]

Then \(T_E : E \to E \) preserves \(\mu \). Note that if \(T \) is ergodic, then \(T_E \) is also ergodic.

Theorem 3.1. Suppose that \(T \) is ergodic. Let \(f_n \) be a sequence of nonnegative functions such that \(f_1 \geq f_2 \geq \cdots \geq 0 \), \(\sum_n \mu(f_n) = \infty \) and \(\text{supp}(f_n) \subset E \). If every subsequence \(f_{n_k} \) with \(\sum \mu(f_{n_k}) = \infty \) is SBC with respect to \(T_E \), then \(f_n \) is SBC with respect to \(T \).

Proof. By Birkhoff’s ergodic theorem and Kac’s lemma
\[\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} R_E(T_E^i(x)) = \int E R_E(x) \, d\mu(x) = \frac{1}{\mu(E)} \]
for almost every \(x \). Fix any \(\varepsilon \) with \(0 < \varepsilon < 1/\mu(E) - 1 \), we can choose \(N_0(x, \varepsilon) \) such that if \(n > N_0 \),
\[(\frac{1}{\mu(E)} - \varepsilon)n < \sum_{i=0}^{n-1} R_E(T_E^i(x)) < (\frac{1}{\mu(E)} + \varepsilon)n. \quad (2) \]

Let \(g_n = f_{[n(1/\mu(E)+\varepsilon)]} \), where \([t]\) is the smallest integer which is not less than \(t \). Then since \(\{f_n\}_{n} \) is a decreasing sequence, \(\sum_n \mu(g_n) = \infty \). Thus \(\{g_n\}_{n} \) is SBC with respect to \(T_E \) and
\[\lim_{N \to \infty} \frac{\sum_{1 \leq n < N} g_n \circ T_E^n(x)}{\sum_{1 \leq n < N} \mu(g_n)} = \frac{1}{\mu(E)}, \quad \text{a.e.} \quad (3) \]

Let \(Q(n,x) = \sum_{i=0}^{n-1} R_E(T_E^i(x)) \). Then \(T^{Q(n,x)}(x) = T_E^n(x) \) and by \((2) \) we have for \(n > N_0 \)
\[g_n(T_E^n(x)) = f_{[n(1/\mu(E)+\varepsilon)]}(T^{Q(n,x)}(x)) \leq f_{Q(n,x)}(T^{Q(n,x)}(x)). \]
Since $f_k(T^k(x)) = 0$ if $k \neq Q(n, x)$, $n = 1, 2, \ldots$, we have for $Q(N, x) \leq K < Q(N + 1, x)$

$$
\sum_{1 \leq n < N} g_n \circ T^k E^n(x) \leq \sum_{1 \leq k < K} f_k \circ T^k(x) + \sum_{1 \leq n < N} f_1 \circ T^k E^n(x).
$$

Note that $\sup |f_k| \leq M$. By dividing both sides by $\sum_{1 \leq k < K} \mu(f_k)$ we have for $Q(N, x) \leq K < Q(N + 1, x)$

$$
\frac{\sum_{1 \leq k < K} f_k \circ T^k}{\sum_{1 \leq k < K} \mu(f_k)} \geq \frac{\sum_{1 \leq n < N} g_n \circ T^k E^n - \sum_{1 \leq n < N} f_1 \circ T^k E^n}{\sum_{1 \leq n < N} \mu(g_n)} \geq \frac{1}{\sum_{1 \leq n < N} \mu(g_n)} \sum_{1 \leq n < N} \mu(f_1). \quad (4)
$$

By Lemma 5.1 in Appendix, if we put $C = 1/\mu(E) + \varepsilon$ and $a_n = \mu(f_n)$, then for $Q(N, x) \leq K < Q(N + 1, x)$, $N > N_0$ we have

$$
\sum_{1 \leq k < K} \mu(f_k) \leq \sum_{1 \leq k < (1/\mu(E) + \varepsilon)(N + 1)} \mu(f_k) \leq (\frac{1}{\mu(E)} + \varepsilon)(\sum_{1 \leq n < N + 1} \mu(g_n) + \mu(f_1)). \quad (5)
$$

Since $\sum \mu(f_k)$ and $\sum \mu(g_k)$ diverge, by (3) and (5), the inequality (4) implies that

$$
\liminf_{K \to \infty} \frac{\sum_{1 \leq k < K} f_k \circ T^k E^n}{\sum_{1 \leq k < K} \mu(f_k)} \geq \frac{1}{1 + \varepsilon \mu(E)}, \quad \text{a.e.}
$$

For the other direction, let $r_n = f_{\lfloor n(1/\mu(E) - \varepsilon) \rfloor}$, where $\lfloor t \rfloor$ is the largest integer which does not exceed t. Then $\sum_n \mu(r_n) = \infty$. Thus $\{r_n\}$ is also SBC with respect to T_E and

$$
\lim_{N \to \infty} \frac{\sum_{1 \leq n < N} r_n \circ T^k E^n(x)}{\sum_{1 \leq n < N} \mu(r_n)} = \frac{1}{\mu(E)}, \quad \text{a.e.} \quad (6)
$$

By Lemma 5.1 in Appendix, if we put $C = 1/\mu(E) - \varepsilon$ and $a_n = \mu(f_n)$, for $Q(N, x) \leq K < Q(N + 1, x)$, $N > N_0$ we have

$$
\sum_{1 \leq k < K} \mu(f_k) \geq \sum_{1 \leq k < (1/\mu(E) - \varepsilon)N} \mu(f_k) \geq (\frac{1}{\mu(E)} - \varepsilon) \sum_{1 \leq n < N} \mu(r_n) - \mu(f_1). \quad (7)
$$

If $n > N_0$, then $r_n(T^n E^n(x)) \geq f_{Q(n, x)}(TQ(n, x)(x))$. Hence for $Q(N, x) \leq K < Q(N + 1, x)$ we have $\sum_{1 \leq n < N} r_n \circ T^k E^n(x) + \sum_{1 \leq n < N_0} f_1 \circ T^k E^n(x) \geq \sum_{1 \leq k < K} f_k \circ T^k(x)$ and

$$
\frac{\sum_{1 \leq k < K} f_k \circ T^k}{\sum_{1 \leq k < K} \mu(f_k)} \leq \frac{\sum_{1 \leq n < N} r_n \circ T^k E^n + \sum_{1 \leq n < N_0} f_1 \circ T^k E^n}{\sum_{1 \leq n < N} \mu(r_n)} \frac{\sum_{1 \leq n < N_0} \mu(r_n)}{\sum_{1 \leq k < K} \mu(f_k)}.
$$

Since $\sum \mu(f_k)$ and $\sum \mu(r_k)$ diverge, by (6) and (7) we have

$$
\limsup_{K \to \infty} \frac{\sum_{1 \leq k < K} f_k \circ T^k(x)}{\sum_{1 \leq k < K} \mu(f_k)} \leq \frac{1}{1 - \varepsilon \mu(E)}, \quad \text{a.e.}
$$

4. A map with an indifferent fixed point. Let $X = [0, 1)$ be the unit interval and $T_α : X \to X$ be the transformation defined by

$$
T_α(x) = \begin{cases}
 x(1 + 2αxα), & \text{if } 0 \leq x < \frac{1}{2}, \\
 2x - 1, & \text{if } \frac{1}{2} \leq x < 1
\end{cases}
$$
for $0 < \alpha < 1$. Then T_α has an indifferent fixed point at $x = 0$ with $T'_\alpha(0) = 1$. It is well known that T_α has a finite absolutely continuous invariant measure μ with decreasing density function $h(x) = d\mu/dx$. This map is related with intermittency [11]. Hu [7] showed that
\[
\lim_{x \to 0} x^\alpha h(x) = c
\]
for some constant c. Also we have $\mu((0, x)) = x^{1-\alpha}$, i.e., there are positive constants C_1 and C_2 such that $C_1 x^{1-\alpha} < \mu((0, x)) < C_2 x^{1-\alpha}$ for small x [15]. See also [8] and [16].

Proposition 4.1. Let A_n be a decreasing sequence of intervals with $\sum_n \mu(A_n) = \infty$. If $0 \notin \cap_n A_n$, then A_n is SBC with respect to T_α and to the absolute continuous invariant measure μ.

Proof. Suppose that $\cap_n A_n$ contains an interval. Let (a, b) be the maximal interval contained in $\cap_n A_n$. Then we can divide A_n into three parts $A_n \cap [0, a]$, $A_n \cap (a, b)$, and $A_n \cap [b, 1]$. The intersections $\cap_n (A_n \cap [0, a])$ and $\cap_n (A_n \cap [b, 1])$ contain no intervals. By the Birkhoff ergodic theorem every sequence of an identical set is SBC, so the sequence of (a, b) is SBC and by Lemma 5.3 (i) we may assume that there is no interval in $\cap_n A_n$.

Let $E = [\frac{1}{2}, 1)$ and T_E be the induced map of T_α on E. Then T_E is a mixing piecewise expanding C^1 map with a countable partition and $|T'(x)|^{-1}$ is of bounded variation. Thus by Theorem 2.1, every sequence of intervals in E is SBC with respect to T_E.

Put $a_0 = 1$, $a_1 = \frac{1}{2}$, and $a_k = (T_\alpha|_{[0, \frac{1}{2})})^{-1}(a_{k-1})$ for $k > 1$ inductively. Then $(T_\alpha)^i(a_k, a_{k-1}) = [a_{k-i}, a_{k-i-1}]$ for each $i \leq k - 1$. Let $E_k = [a_k, 1)$ for $k \geq 1$ and T_{E_k} be the induced map of T_α on E_k. Then $T_{E_k}(x) = (T_\alpha)^i(x)$ for $x \in [a_k, a_{k+1}]$, $i > 0$. T_{E_k} is a mixing piecewise expanding C^1 map with a countable partition and $|T'(x)|^{-1}$ is of bounded variation. Thus by Theorem 2.1, every sequence of intervals in E_k is SBC with respect to T_{E_k}. Since $0 \notin \cap_n A_n$, there is k such that $A_n \subset E_k$ for all large n. By Theorem 3.1 A_n is SBC with respect to T. □

Proposition 4.2. Put $A_n = [0, n^{1/(\alpha - 1)})$ for $n > 1$. Then A_n is not BC with respect to T_α and the absolute continuous invariant measure μ.

Proof. Let
\[
J(x) = \{j \geq 0 \mid (T_\alpha)^j(x) \notin A_j \text{ and } (T_\alpha)^{j+1}(x) \in A_{j+1}\}.
\]
Assume that $(T_\alpha)^j(x) \in A_n$ for infinitely many n’s for a given point x. Then the cardinality of $J(x)$ is infinite or there is an integer $N \geq 0$ such that $(T_\alpha)^j(x) \in A_j$ for all $j \geq N$, which implies that $(T_\alpha)^N(x) = 0$ since T_α is strictly increasing on each A_n. Note that there are only countably many x’s with $(T_\alpha)^N(x) = 0$ for some N.

Let
\[
B_n = \left[\frac{1}{2}, \frac{1}{2} + \frac{n^{1/(\alpha - 1)}}{2} \right)
\]
for $n > 1$. Then $T_\alpha(B_n) = A_n$, so if $(T_\alpha)^n(x) \in A_n$ for some $n \geq 1$ then $(T_\alpha)^{n-1}(x) \in A_n$ or $(T_\alpha)^{n-1}(x) \in B_n$. Thus, if $(T_\alpha)^n(x) \in A_n$, then either $(T_\alpha)^i(x) \in A_n$ for all i, $0 \leq i \leq n$ or there is ℓ with $0 \leq \ell < n$ such that $(T_\alpha)^\ell(x) \in B_n$ and $(T_\alpha)^i(x) \in A_n$ for $\ell < i \leq n$. Hence we have
\[
J(x) = \{j \geq 0 \mid (T_\alpha)^j(x) \in B_{j+1}\}.
\]
Since the invariant density function $h(x)$ is decreasing, $\mu(B_n)$ is bounded by

$$\mu(B_n) \leq h \left(\frac{1}{2} \right) \frac{n^{1/(\alpha-1)}}{2}$$

and $\sum_n \mu(B_n) < \infty$. Therefore, by the first Borel-Cantelli lemma, for only finitely many n’s $(T_n)^n(x) \in B_{n+1}$ and the cardinality $|J(x)|$ is finite for almost every x. Hence for almost every x, we have $(T_n)^n(x) \in A_n$ for only finitely many n’s. But $\mu(A_n) \approx (n^{1/(\alpha-1)})^{1-\alpha} = n^{-1}$ and $\sum_n \mu(A_n) = \infty$. \hfill \Box

We introduce the SBC property with respect to Lebesgue measure in the following theorem.

Theorem 4.3. Let A_n be a decreasing sequence in X with $\sum_n \lambda(A_n) = \infty$. Then A_n is SBC with respect to T_a and Lebesgue measure λ, in the sense that for almost every x

$$\lim_{N \to \infty} \frac{S_N(x)}{\sum_{n=1}^N \lambda(A_n)} = \begin{cases} h(t), & \text{if } \cap_n A_n = \{t\}, \ t \neq 0 \\ \infty, & \text{if } \cap_n A_n = \{0\} \\ \frac{1}{b-a} \int_a^b h(t)dt, & \text{if } \cap_n A_n = [a,b]. \end{cases}$$

Proof. It is known [15] that $h(x)$ is continuous on $(0,1]$.

First, assume that $\cap_n A_n = \{t\}, \ t \neq 0$. Then by Proposition 4.1 we have

$$\frac{S_N(x)}{\sum_{n=1}^N \mu(A_n)} \to 1.$$

Since $\mu(A_n)/\lambda(A_n) \to h(t)$, we have the proof.

Next assume that $\cap_n A_n = \{0\}$. Let $A_n^{(0)} = A_n$, $A_n^{(i)} = (T_a|_{[0,1]}^{-1}A_n, \ i \geq 1$ and $B_n^{(i)} = (T_a|_{[0,1]}^{-1}A_n^{(i)})^{-1}A_n^{(0)}$, $i \geq 0$. Note that for each i the sequence $\{B_n^{(i)}\}$ is SBC with respect to λ. Then we have

$$T_a^{-n}A_n = B_n^{(0)} \cup B_n^{(n-1)} \cup T_a^{-1}B_n^{(n-2)} \cup \cdots \cup T_a^{-n+1}B_n^{(0)}$$

and the unions are disjoint. Therefore, the number of n’s such that $(T_n)^n(x) \in A_n$ for $1 \leq n \leq N$ is

$$S_N(x) = \sum_{n=1}^N 1_{T_a^{-n}A_n}(x) = \sum_{n=1}^N 1_{A_n^{(0)}}(x) + \sum_{k=0}^{N-1} \sum_{n=1}^{N-k} 1_{T_a^{-n+1}B_n^{(k)}}(x).$$

Since $\sum_{n=1}^\infty \lambda(B_n^{(0)}) = \frac{1}{2} \sum_{n=1}^\infty \lambda(A_n) = \infty$ and $(T_a)'(0) = 1$, for any $k \geq 1$ we have

$$\frac{S_N(x)}{\sum_{n=1}^N \lambda(A_n)} = \frac{S_N(x)}{2 \sum_{n=1}^N \lambda(B_n^{(0)})} \geq \frac{\sum_{k=0}^{N-1} \sum_{n=1}^{N-k} 1_{T_a^{-n+1}B_n^{(k)}}(x)}{2 \sum_{n=1}^N \lambda(B_n^{(0)})}$$

and

$$\lim_{N \to \infty} \frac{\sum_{n=1}^{N-k} 1_{T_a^{-n+1}B_n^{(k)}}(x)}{\sum_{n=1}^N \lambda(B_n^{(0)})} = \lim_N \frac{\sum_{n=1}^{N-k} 1_{T_a^{-n+1}B_n^{(k)}}(x)}{\sum_{n=1}^{N-k} \lambda(B_n^{(k)})} = \frac{\sum_{n=1}^{N-k} 1_{T_a^{-n+1}B_n^{(k)}}(x)}{\sum_{n=1}^{N-k} \lambda(B_n^{(k)})} = h\left(\frac{1}{2}\right) > 0.$$
Hence we have
\[
\lim_{N \to \infty} \frac{S_N(x)}{\sum_{n=1}^{N} \lambda(A_n)} = \infty.
\]

Now, we assume that \(\cap A_n = [a, b] \). Then for any \(\varepsilon > 0 \) there is \(M > 0 \) such that \((a, b) \subset A_n \subset (a - \varepsilon, b + \varepsilon) \cap X \) for \(n > M \). Hence we have
\[
\lim_{N \to \infty} \frac{\sum_{n=1}^{N} 1_{(a, b)}(T^n(x))}{(b - a + 2\varepsilon)N} \leq \lim_{N \to \infty} \frac{S_N(x)}{\sum_{n=1}^{N} \lambda(A_n)} \leq \lim_{N \to \infty} \frac{\sum_{n=1}^{N} 1_{(a - \varepsilon, b + \varepsilon) \cap X}(T^n(x))}{(b - a)N}.
\]

By the Birkhoff ergodic theorem for almost every \(x \)
\[
\frac{\mu((a, b))}{b - a + 2\varepsilon} \leq \lim_{N \to \infty} \frac{S_N(x)}{\sum_{n=1}^{N} \lambda(A_n)} \leq \frac{\mu((a - \varepsilon, b + \varepsilon) \cap X)}{b - a}.
\]

Since \(\mu \) is an absolutely continuous measure, we have
\[
\lim_{N \to \infty} \frac{S_N(x)}{\sum_{n=1}^{N} \lambda(A_n)} = \frac{\mu((a, b))}{b - a}.
\]

\[\square\]

Let \(\xi = \{[0, \frac{1}{\ell}], (\frac{1}{\ell}, 1)\} \) be a partition of \(X \) and \(\xi_n = \xi \vee T^{-1}\xi \vee \cdots \vee T^{-n+1}\xi \), where \(\xi \vee \eta = \{A \cap B : A \in \xi, B \in \eta\} \). In [7], Hu showed that there exist constants \(C_1 > 0 \) and \(\ell \) such that for any \(m \geq 0 \) and \(E \in \xi_m \) and for any measurable set \(F \subset [\frac{1}{\ell}, 1) \),
\[
|\mu(T^{-n-m}F \cap E) - \mu(F)\mu(E)| \leq \frac{C_1m^{\beta-1}}{(n - \ell)^{\beta-1}}\mu(F)\mu(E), \quad \text{for any } n \geq \ell,
\]
where \(\beta = 1/\alpha \). See also [10] and [16].

Theorem 4.4. Suppose that \(\alpha < \frac{3 - \sqrt{5}}{2} \). Let \(A_n \) be a sequence of intervals in \([d, 1) \), \(d > 0 \) with \(\sum \mu(A_n) = \infty \). Then \(A_n \) is SBC with respect to \(T_n \) and to the absolutely continuous invariant measure \(\mu \).

Proof. Let \(E \) be an interval in \(X \) and \(F \) be a measurable set in \([\frac{1}{\ell}, 1) \). Then there are \(E_1 \) and \(E_2 \) in \(\xi_m \) such that \(E_1 \subset E \subset E_2 \) and \(\mu(E_2 \setminus E_1) \leq C_0m^{-\beta} \) (see [16]). By (8) we have
\[
\mu(E_1) + \frac{C_1m^{\beta-1}}{(n - \ell)^{\beta-1}}\mu(E_1) \leq \frac{\mu(T^{-n-m}F \cap E)}{\mu(F)} \leq \mu(E_2) + \frac{C_1m^{\beta-1}}{(n - \ell)^{\beta-1}}\mu(E_2)
\]
so we have
\[
\left| \frac{\mu(T^{-n-m}F \cap E)}{\mu(F)} - \mu(E) \right| \leq C_0m^{-\beta} + \frac{C_1m^{\beta-1}}{(n - \ell)^{\beta-1}}.
\]

Put \(p = \frac{2\beta-1}{\beta-1} \). If \(m^p \leq n \leq (m + 1)^p \), then for \(m \geq \ell \)
\[
\left| \frac{\mu(T^{-n-m}F \cap E)}{\mu(F)} - \mu(E) \right| \leq C(m - 1)^{-\beta},
\]
where \(C = C_0 + C_1 \). Thus, we have
\[
\sum_{k=0}^{\infty} \left| \frac{\mu(T^{-k}F \cap E)}{\mu(F)} - \mu(E) \right| \leq \ell^p + \ell + \sum_{m=\ell}^{\infty} \sum_{n=[m^p]}^{(m+1)^p} \left| \frac{\mu(T^{-n-m}F \cap E)}{\mu(F)} - \mu(E) \right|
\]
\[
\leq \ell^p + \ell + C \sum_{m=\ell}^{\infty} ((m+1)^p - m^p + 2)(m - 1)^{-\beta}.
\]
Let
\[D = \ell^p + \ell + C \sum_{m=\ell}^{\infty} (p(m + 1)^{p-1} + 2)(m - 1)^{-\beta}. \]

If \(\beta > \frac{3+p}{2} \), then \(D < \infty \) and
\[\sum_{k=0}^{\infty} \left| \mu(T^{-k} F \cap E) - \mu(F)\mu(E) \right| \leq D\mu(F). \]

Hence, by Lemma 1.1 we have the proof for a sequence of intervals \(A_n \) in \([1/2, 1)\).

Put \(a_0 = \frac{1}{2} \) and \(a_k = (T_{\alpha} |_{[0, \frac{1}{2}]})^{-1}(a_{k-1}) \) for \(k \geq 1 \) inductively. Let \(B = \left[\frac{1}{2}, 1 \right) \).

If \(A_n \subset [a_1, a_0) \), then \(T(A_n) \subset B \) so \(\{T(A_n)\}_n \) and \(\{T^{-1} \circ T(A_n) \cap B\}_n \) are SBC. Also \(\{T^{-1} \circ T(A_n)\}_n \) is SBC by Lemma 5.2. By Lemma 5.3 (ii) \(A_n \) is SBC because \(A_n = T^{-1} \circ T(A_n) \setminus (T^{-1} \circ T(A_n) \cap B) \) and \(\mu(T^{-1} \circ T(A_n) \cap B) < c\mu(T^{-1} \circ T(A_n)) \) for some constant \(c \). Now if \(A_n \subset [a_1, 1) \), then \(A_n \) is SBC by Lemma 5.3 (i). Inductively, if \(A_n \subset [a_k, 1) \) for some \(k \), then \(A_n \) is SBC.

5. Appendix.

Lemma 5.1. Let \(\{a_n\}_{n=1}^{\infty} \) be a nonnegative decreasing sequence and \(C > 1 \). Then for any integer \(N > 0 \) we have

\[C \sum_{1 \leq n < N} a_{\lfloor Cn \rfloor} - a_1 \leq \sum_{1 \leq k < CN} a_k \leq C \left(\sum_{1 \leq n < N} a_{\lfloor Cn \rfloor} + a_1 \right). \]

Proof. Put \(a_0 = a_1 \) for convenience. (i) Let \(f(n + t) = a_{n+1} \) for an integer \(n \geq 0 \), \(0 \leq t < 1 \). Then we have
\[f_0^{[CN]} f(x) dx = \sum_{1 \leq n < CN} a_n. \]
Let \(g(C(n+t)) = f(Cn) \) for an integer \(n \geq 0 \), \(0 \leq t < 1 \). Then we have
\[g(x) \geq f(x) \quad \text{and} \quad f_0^{CN} g(x) dx = C \sum_{0 \leq n < N} a_{\lfloor Cn \rfloor}. \]

(ii) Let \(f(n + t) = a_n \) for an integer \(n \geq 0 \), \(0 \leq t < 1 \). Then
\[f_0^{[CN]} f(x) dx = \sum_{0 \leq n < CN} a_n. \]
Let \(g(C(n+t)) = f(C(n+1)) \) for an integer \(n \geq 0 \), \(0 \leq t < 1 \). Then
\[g(x) \leq f(x) \quad \text{and} \quad f_0^{CN} g(x) dx = C \sum_{1 \leq n < N} a_{\lfloor Cn \rfloor}. \]

Lemma 5.2. \(A_n \) is SBC if and only if \(T^{-1} A_n \) is SBC.

Proof. Let \(E_N \) be the number of \(n \)'s such that \(T^n(x) \in A_n, 1 \leq n \leq N \) and \(S_N = \sum_{n=1}^{N} \mu(A_n) \). Let \(E \) be the set of point such that \(E_N/S_N \to 1 \). Then \(T^{-1} E \) is the set of point such that \(E_N/S_N \to 1 \) for the sequence \(T^{-1} A_n \).

Lemma 5.3. (i) Let \(A_n \) and \(B_n \) be SBC with \(A_n \cap B_n = \emptyset \). Then \(B_n \cup A_n \) is SBC.

(ii) Let \(A_n \) and \(B_n \) be SBC with \(A_n \subset B_n \). If \(\sum_{n=1}^{N} \mu(A_n) < c \sum_{n=1}^{N} \mu(B_n) \) for some constant \(0 < c < 1 \), then \(B_n \setminus A_n \) is SBC.

Proof. Let \(E_N \) and \(E'_N \) be the number of \(n \)'s such that \(T^n(x) \in A_n, 1 \leq n \leq N \) and \(T^n(x) \in B_n, 1 \leq n \leq N \) respectively. Let \(S_N = \sum_{n=1}^{N} \mu(A_n) \) and \(S'_N = \sum_{n=1}^{N} \mu(B_n) \). Then for every \(\varepsilon \) there is \(M \) such that if \(N > M \)
\[\left| \frac{E_N}{S_N} - 1 \right| < \varepsilon \quad \text{and} \quad \left| \frac{E'_N}{S'_N} - 1 \right| < \varepsilon. \]

Hence for \(N > M \)
\[\left| \frac{E_N + E'_N}{S_N + S'_N} - 1 \right| \leq \left| \frac{E_N}{S_N} - 1 \right| \left| \frac{S_N}{S_N + S'_N} \right| + \left| \frac{E'_N}{S'_N} - 1 \right| \left| \frac{S'_N}{S_N + S'_N} \right| < \varepsilon \left| \frac{S_N + S'_N}{S_N + S'_N} \right| = \varepsilon. \]
and

\[
\frac{E_N - E_N}{S_N - S_N} - 1 \leq \frac{E_N - 1}{S_N - S_N} \frac{S_N}{S'_N - S_N} + \frac{E'_N - 1}{S'_N - S_N} < \epsilon \frac{S_N + S_N}{S_N - S_N} < \frac{1 + c}{1 - c}.
\]

Acknowledgements. The author wishes to thank the referees for valuable comments and Professor Huyi Hu for many helpful discussions. The author also wishes to thank Korea Institute for Advanced Study for the conductive environment in which the work was done.

REFERENCES

Received February 2006; revised October 2006.

E-mail address: kimdh@suwon.ac.kr