Thermodynamics with small obstructions

Vaughn Climenhaga
University of Toronto

November 15, 2011

Joint work with Daniel J. Thompson (Penn State)
specification \Rightarrow intrinsic ergodicity (unique MME)

Theorem (C.–Thompson)

If all obstructions to specification have small entropy, then the MME is unique.
specification \Rightarrow intrinsic ergodicity (unique MME)

Theorem (C.–Thompson)

If all obstructions to specification have small entropy, then the MME is unique.

specification + Bowen property \Rightarrow unique equilibrium state

Theorem (C.–Thompson)

If all obstructions to specification and the Bowen property have small pressure, then the equilibrium state is unique.
Topological pressure

Topological dynamical system:
- X a compact metric space, $f : X \to X$ continuous
- $\mathcal{M} = \{\text{Borel } f\text{-invariant probability measures on } X\}$

Variational principle 1: $h_{\text{top}}(X, f) = \sup_{\mu \in \mathcal{M}} h_\mu(f)$
Variational principle 2: $P(\varphi) = \sup_{\mu \in \mathcal{M}} \left(h_\mu(f) + \int \varphi \, d\mu \right)$
Maximum achieved by MME/equilibrium state
Topological pressure

Topological dynamical system:
- X a compact metric space, $f : X \to X$ continuous
- $\mathcal{M} = \{\text{Borel } f\text{-invariant probability measures on } X\}$

Variational principle 1: $h_{\text{top}}(X, f) = \sup_{\mu \in \mathcal{M}} h_{\mu}(f)$

Variational principle 2: $P(\varphi) = \sup_{\mu \in \mathcal{M}} (h_{\mu}(f) + \int \varphi \, d\mu)$

Maximum achieved by MME/equilibrium state

Example

$X = \Sigma_2^+ = \{0, 1\}^\mathbb{N}$, $p, q \in \mathbb{R}$, $\varphi(x) = p1_{[0]} + q1_{[1]}$

Then $P(\varphi) = \log(e^p + e^q)$ and the unique equilibrium state is $(\alpha, 1 - \alpha)$-Bernoulli, where $\alpha = \frac{e^p}{e^p + e^q}$.

When is there a unique equilibrium state?
Thermodynamic formalism

Topological pressure $P(\varphi) = \sup_{\mu}(h_\mu(f) + \int \varphi \, d\mu)$:

- supremum of affine functions \Rightarrow convex function $C(X) \to \mathbb{R}$;
- equilibrium states are tangent functionals in $C(X)^*$.

If entropy map $\mu \mapsto h_\mu(f)$ is upper semi-continuous, then:

- so is $\mu \mapsto (h_\mu(f) + \int \varphi \, d\mu) \Rightarrow$ existence;
- unique \iff P (Gâteaux) differentiable;
- convex \Rightarrow diff. on residual set \Rightarrow unique.
Thermodynamic formalism

Topological pressure $P(\varphi) = \sup_{\mu}(h_{\mu}(f) + \int \varphi \, d\mu)$:
- supremum of affine functions \Rightarrow convex function $C(X) \to \mathbb{R}$;
- equilibrium states are tangent functionals in $C(X)^*$.

If entropy map $\mu \mapsto h_{\mu}(f)$ is upper semi-continuous, then:
- so is $\mu \mapsto (h_{\mu}(f) + \int \varphi \, d\mu) \Rightarrow$ existence;
- unique \iff P (Gâteaux) differentiable;
- convex \Rightarrow diff. on residual set \Rightarrow unique.

This says nothing about which potentials admit unique equilibrium states, or what the ergodic properties of those states are.

General principle: Uniform mixing of X and regularity of φ should imply uniqueness and strong ergodic properties.
Focus on shift spaces (subshifts):
- \(X \subset \Sigma_\sigma^+ \) closed and \(\sigma \)-invariant, NOT NECESSARILY AN SFT
- language of \(X \): \(\mathcal{L} = \mathcal{L}(X) = \{x_1 \cdots x_n \mid x \in X, n \geq 1\} \)
- words of length \(n \): \(\mathcal{L}_n = \{w \in \mathcal{L} \mid |w| = n\} \)
- entropy: \(h_{\text{top}}(X, \sigma) = \lim_{n \to \infty} \frac{1}{n} \log \# \mathcal{L}_n \)
- pressure: \(P(\varphi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{w \in \mathcal{L}_n} e^{\sup_{x \in [w]} S_n \varphi(x)} \)
- \(S_n \varphi(x) = \varphi(x) + \varphi(\sigma x) + \cdots + \varphi(\sigma^{n-1} x) \)

expansive \(\Rightarrow \) entropy map \(\mathcal{M} \to \mathbb{R} \) upper semi-continuous

Existence guaranteed: the real question is uniqueness.

Beyond transitivity, what do we need?
Uniqueness may fail

Example

Let $X \subset \Sigma_5^+ = \{0, 1, 2, 1, 2\}^\mathbb{N}$ be the shift whose language \mathcal{L} contains $v0^nw$ and $w0^nv$ if and only if $n \geq 2 \max(|v|, |w|)$.

- (X, σ) is topologically transitive (indeed, mixing)
- $h_{top}(X, \sigma) = \log 2$
- 2 measures of maximal entropy:
 \[\nu = (\frac{1}{2}, \frac{1}{2})\text{-Bernoulli on } \{1, 2\}^\mathbb{N}, \]
 \[\mu = (\frac{1}{2}, \frac{1}{2})\text{-Bernoulli on } \{1, 2\}^\mathbb{N}. \]

Uniqueness of an MME can fail for transitive shifts.
Classes of intrinsically ergodic shifts

The following are intrinsically ergodic (unique MME):
- Irreducible subshifts of finite type (Parry 1964)
Classes of intrinsically ergodic shifts

The following are *intrinsically ergodic* (unique MME):

- Irreducible subshifts of finite type *(Parry 1964)*
Classes of intrinsically ergodic shifts

The following are intrinsically ergodic (unique MME):

- Irreducible subshifts of finite type (Parry 1964)
- Shifts with specification (Bowen 1974)
Classes of intrinsically ergodic shifts

The following are intrinsically ergodic (unique MME):

- Irreducible subshifts of finite type (Parry 1964)
- Shifts with specification (Bowen 1974)
- β-shifts (Walters 1978, Hofbauer 1979)
The motivating question

Intrinsic ergodicity is not necessarily preserved by factors.

- $X \subset \{0, 1, 2, 1, 2\}^\mathbb{N}$ as before: two MMEs
- $Y \subset \Sigma_6^+ = \{0, 1, 2, 1, 2, 3\}^\mathbb{N}$: one MME
- $\pi: Y \to X$ by $\pi(3) = 2$, others unchanged

Specification is preserved by factors, so intrinsic ergodicity survives.

What about β-shifts? (Klaus Thomsen, Mike Boyle)
The motivating question

Intrinsic ergodicity is not necessarily preserved by factors.

- \(X \subset \{0, 1, 2, 1, 2\}^\mathbb{N} \) as before: two MMEs
- \(Y \subset \Sigma_6^+ = \{0, 1, 2, 1, 2, 3\}^\mathbb{N} \): one MME
- \(\pi: Y \to X \) by \(\pi(3) = 2 \), others unchanged

Specification is preserved by factors, so intrinsic ergodicity survives.

What about \(\beta \)-shifts? (Klaus Thomsen, Mike Boyle)

Theorem (C.–Thompson 2010)

\((X, \sigma)\) a subshift factor of a \(\beta \)-shift

\[\Rightarrow \text{all obstructions to specification have zero entropy} \]

\[\Rightarrow (X, \sigma) \text{ is intrinsically ergodic} \]
For $\beta > 1$, Σ_β is the coding space for the map

$$f_\beta : [0, 1] \to [0, 1], \quad x \mapsto \beta x \pmod{1}$$

$$1_\beta = a_1 a_2 \cdots,$$ where $1 = \sum_{n=1}^{\infty} a_n \beta^{-n}$
For \(\beta > 1 \), \(\Sigma_\beta \) is the coding space for the map

\[
f_\beta : [0, 1] \to [0, 1], \quad x \mapsto \beta x \pmod{1}
\]

\(1_\beta = a_1a_2 \cdots \), where \(1 = \sum_{n=1}^{\infty} a_n\beta^{-n} \)

Fact: \(x \in \Sigma_\beta \iff \sigma^n x \preceq 1_\beta \) for all \(n \)

\(\iff x \) labels a walk starting at B on this graph:

(Here \(1_\beta = 2100201 \ldots \))
Specification

Topological transitivity \(\Rightarrow \) for every \(w_1, \ldots, w_m \in \mathcal{L} \) \(\exists z_i \in \mathcal{L} \) for which the concatenated word \(w_1 z_1 w_2 z_2 \cdots z_{m-1} w_m \) is in \(\mathcal{L} \).

Definition

\(X \) has **specification** if \(\exists t \in \mathbb{N} \) such that \(z_i \) can always be chosen to have length \(t \), independently of \(w_i \).

- Mixing SFTs and sofic shifts have specification.
- \(\Sigma_{\beta} \) does not have specification if \(1_{\beta} \) contains arbitrarily long strings of 0’s. (Happens for Leb-a.e. \(\beta > 1 \).)
Specification

Topological transitivity ⇒ for every \(w_1, \ldots, w_m \in \mathcal{L} \) \(\exists z_i \in \mathcal{L} \) for which the concatenated word \(w_1z_1w_2z_2\cdots z_{m-1}w_m \) is in \(\mathcal{L} \).

Definition

\(X \) has **specification** if \(\exists t \in \mathbb{N} \) such that \(z_i \) can always be chosen to have length \(t \), independently of \(w_i \).

- Mixing SFTs and sofic shifts have specification.
- \(\Sigma_\beta \) does not have specification if \(1_\beta \) contains arbitrarily long strings of 0’s. (Happens for Leb-a.e. \(\beta > 1 \).)

The only obstruction to specification is the tail of the sequence \(1_\beta \).

Key idea: zero entropy obstructions are invisible to MMEs
Obstructions to specification

Let \(\mathcal{G} \subset \mathcal{L} \), where \(\mathcal{L} \) is the set of all words, and let \(\mathcal{G}^M := \{vw \mid v \in \mathcal{G}, |w| \leq M\} \). Define the filtration \(\mathcal{L} = \bigcup_M \mathcal{G}^M \).

Definition

\(\mathcal{C} \subset \mathcal{L} \) contains all obstructions to specification if \(\exists \mathcal{G} \) s.t.

- \(\mathcal{L} = \mathcal{G} \mathcal{C} := \{vw \in \mathcal{L} \mid v \in \mathcal{G}, w \in \mathcal{C}\} \)
- Every \(\mathcal{G}^M \) has specification (\(\mathcal{G} \) is a core for specification)

We can glue words (orbit segments) together, provided we are allowed to remove an obstructing piece from the end of each word.
Obstructions to specification

\[G \subset \mathcal{L} \leadsto G^M := \{vw \mid v \in G, |w| \leq M\} \leadsto \text{filtration } \mathcal{L} = \bigcup_M G^M \]

Definition

\(\mathcal{C} \subset \mathcal{L} \) contains all obstructions to specification if \(\exists G \) s.t.

- \(\mathcal{L} = GC := \{vw \in \mathcal{L} \mid v \in G, w \in \mathcal{C}\} \)
- every \(G^M \) has specification (\(G \) is a core for specification)

We can glue words (orbit segments) together, provided we are allowed to remove an obstructing piece from the end of each word.

Example

For the \(\beta \)-shift, take \(\mathcal{C} = \{\text{prefixes of } 1_\beta\} \).

- \(\mathcal{C} \) = words whose path never returns to \(B \) (cusp excursions)
- \(G \) = words whose path begins and ends at \(B \)
Small obstructions

Theorem (C.–Thompson 2010)

If X is a shift space, \mathcal{C} contains all obstructions to specification, and $h(\mathcal{C}) < h_{\text{top}}(X, \sigma)$, then (X, σ) is intrinsically ergodic.

Remark: If the shadowing orbits can be taken to be periodic, then the unique MME is the limit of the measures $\mu_n = \delta_{\text{Per}(n)}$.
Small obstructions

Theorem (C.–Thompson 2010)

If X is a shift space, \mathcal{C} contains all obstructions to specification, and $h(\mathcal{C}) < h_{\text{top}}(X, \sigma)$, then (X, σ) is intrinsically ergodic.

Remark: If the shadowing orbits can be taken to be periodic, then the unique MME is the limit of the measures $\mu_n = \delta_{\text{Per}(n)}$.

Proposition

$\pi : X \rightarrow Y$ a factor map, $\mathcal{C} \subset \mathcal{L}(X)$ contains all obstructions \Rightarrow

- $\pi(\mathcal{C}) \subset \mathcal{L}(Y)$ also contains all obstructions
- $h(\pi(\mathcal{C})) \leq h(\mathcal{C})$
A shift space X is **coded** if its language \mathcal{L} is freely generated by a countable set of **generators** $\{w_n\}_{n \in \mathbb{N}} \subset \mathcal{L}$.

$$\mathcal{L} = \{\text{all subwords of } w_{n_1} w_{n_2} \cdots w_{n_k} \mid n_i \in \mathbb{N}\}$$

Canonical decomposition $\mathcal{L} = C^s G C^p$ s.t. $G(M)$ has specification:

$$G = \{w_{n_1} w_{n_2} \cdots w_{n_k} \mid n_i \in \mathbb{N}\}$$

$$C^s = \{\text{suffixes of } w_n \mid n \in \mathbb{N}\}$$

$$C^p = \{\text{prefixes of } w_n\}$$

Obstruction: prefixes and suffixes of generators

Let $\hat{h} = h(\{\text{prefixes and suffixes of generators}\})$.

- $\hat{h} < h_{\text{top}}(X, \sigma) \Rightarrow (X, \sigma)$ is intrinsically ergodic
- $\hat{h} = 0 \Rightarrow$ every subshift factor of (X, σ) is intrinsically ergodic
Unique equilibrium states? **Specification is not enough**: consider Manneville–Pomeau map.

- \(f(x) = x + x^{1+\varepsilon} \pmod{1} \), \(\varphi_t = -t \log f' \)
- \(t < 1 \): unique eq. state, fully supported
- \(t > 1 \): unique eq. state, atomic
- \(t = 1 \): two equilibrium states
The Bowen property

Unique equilibrium states? **Specification is not enough**: consider Manneville–Pomeau map.

- \(f(x) = x + x^{1+\varepsilon} \pmod{1} \), \(\varphi_t = -t \log f' \)
- \(t < 1 \): unique eq. state, fully supported
- \(t > 1 \): unique eq. state, atomic
- \(t = 1 \): two equilibrium states

Need control of how \(S_n \varphi \) varies across \(n \)-cylinders.

Definition

For \(\mathcal{D} \subset \mathcal{L} \), write \(V_n(\mathcal{D}, \phi) = \sup_{w \in \mathcal{D}_n} \sup_{x, y \in [w]} |\phi(x) - \phi(y)| \). Then \(\varphi \) has the Bowen property on \(\mathcal{D} \) if \(\sup_n V_n(\mathcal{D}, S_n \varphi) < \infty \).

Hölder potentials on shift spaces have the Bowen property.
Utility of the Bowen property

Definition of pressure:

\[P(D, \varphi) = \lim_{n \to \infty} \frac{1}{n} \log \Lambda_n(D, \varphi) \]

\[\Lambda_n(D, \varphi) = \sum_{w \in D_n} e^{\sup_{x \in [w]} S_n \varphi(x)} \]

What happens if we replace \(x \) with some other \(y \in [w] \)?

- Continuity \(\Rightarrow \) exponential growth rate \(P(D, \varphi) \) preserved
- Bowen \(\Rightarrow \) \(\Lambda_n \) preserved to within multiplicative constant

Proposition

\(\text{Bowen} + \text{specification} \Rightarrow \frac{1}{C} e^{nP(\varphi)} \leq \Lambda_n(X, \varphi) \leq Ce^{nP(\varphi)} \)
Unique equilibrium states

Theorem (Bowen 1974)

Consider a system \((X, f)\) and a potential \(\varphi : X \to \mathbb{R}\). Suppose

1. \(X\) a compact metric space;
2. \(f\) a continuous map;
3. \(f\) is expansive;
4. \(f\) has specification;
5. \(\varphi\) has the Bowen property.

Then \(\varphi\) has a unique equilibrium state.

Goal: Replace these with non-uniform versions. Expect to get same result provided obstructions to all properties are small.
Uniqueness in the presence of obstructions

Definition

\(C \subset \mathcal{L} \) contains all obstructions to the Bowen property for \(\varphi \) if

- \(\varphi \) is Bowen on some \(\mathcal{G} \subset \mathcal{L} \) with \(\mathcal{L} = \mathcal{G}C \).

Theorem (C.–Thompson 2011)

Let \(X \) be a shift space and \(\varphi \in C(X) \). If \(C \) contains all obstructions to specification and the Bowen property for \(\varphi \) and \(P(C, \varphi) < P(X, \varphi) \), then there is a unique equilibrium state for \(\varphi \).
Uniqueness in the presence of obstructions

Definition

\(\mathcal{C} \subset \mathcal{L} \) contains all obstructions to the Bowen property for \(\varphi \) if

- \(\varphi \) is Bowen on some \(\mathcal{G} \subset \mathcal{L} \) with \(\mathcal{L} = \mathcal{G}\mathcal{C} \).

Theorem (C.–Thompson 2011)

Let \(X \) be a shift space and \(\varphi \in C(X) \). If \(\mathcal{C} \) contains all obstructions to specification and the Bowen property for \(\varphi \) and \(P(\mathcal{C}, \varphi) < P(X, \varphi) \), then there is a unique equilibrium state for \(\varphi \).

Remark: Each of the following implies that \(P(\mathcal{C}, \varphi) < P(X, \varphi) \).

- \(h(\mathcal{C}) + \sup_{\mu} \int \varphi \, d\mu < P(X, \varphi) \)
- Every equilibrium state \(\mu \) for \(\varphi \) has \(h(\mu) > h(\mathcal{C}) \)
Equilibrium states for β-shifts

Let $(X, f) = (\Sigma_\beta, \sigma)$ be a β-shift.

Theorem (Walters 1978)

Every Lipschitz potential φ has a unique equilibrium state.

Theorem (Hofbauer–Keller 1982)

If φ has the Bowen property and $\sup \varphi - \inf \varphi < h_{\text{top}}(X, f)$, then φ has a unique equilibrium state.

Theorem (C.–Thompson 2011)

Every Bowen potential φ has a unique equilibrium state.

It suffices to prove that every equilibrium state has positive entropy.
Variants of Manneville–Pomeau

Generalise Manneville–Pomeau:
- $\gamma > 0 \implies f_\gamma(x) = x + \gamma x^{1+\epsilon} \pmod{1}$.
- Coding space is Σ_β for some $\beta > 1$.
- For most values of γ, specification fails.
- $\varphi_t = -t \log f'$ is not Bowen.

Remark: For shape of pressure graph, must show
- $\exists \chi > 0$ s.t. $\lambda(x) \geq \chi$ for Leb-a.e. x;
- $h(\mu) \leq \lambda(\mu)$ for every $\mu \in M$.

Theorem (C.–Thompson 2011)

For $t < 1$ and $\epsilon \in (0, 1)$, there is a unique equilibrium state for φ_t.
Variations of Manneville–Pomeau (cont.)

\(\mathcal{C} \) must capture all obstructions to both specification and the Bowen property.

Bowen property ⇔ bounded distortion

1. Bounded distortion on \(\mathcal{D} := \{w \mid w_{|w|} > 0\} \)
2. Take \(\mathcal{C} \) as before and expand it to
 \[\hat{\mathcal{C}} := \{w0^k \mid w \in \mathcal{C} \cup \sigma \mathcal{C}, k \geq 0\} \]
3. \(\hat{\mathcal{G}} = \{w \in \mathcal{G} \mid w_{|w|} > 0\} \cup \{wb \mid w \in \mathcal{G}\} \)
4. \(P(\mathcal{C}, \varphi_t) = \max(\lim \frac{1}{n} S_n \varphi_t(x), \varphi_t(0)) = \lim \frac{1}{n} S_n \varphi_t(x) \)
5. Uses similar argument to Bowen potentials on \(\Sigma_\beta \) provided \(P(\varphi_t) > 0 \).
Proof sketch for unique MME (Bowen’s proof)

Step 1. Constructible MME μ

Step 2. μ is ergodic and Gibbs.

Step 3. No room for another MME $\nu \perp \mu$.
Proof sketch for unique MME (Bowen’s proof)

Step 1. Constructible MME $\mu = \lim_n N(\sum_{w \in \mathcal{L}_n} \delta_{w,n})$

Step 2. μ is ergodic and Gibbs.

Step 3. No room for another MME $\nu \perp \mu$.
Proof sketch for unique MME (Bowen’s proof)

Step 1. Constructible MME $\mu = \lim_n N(\sum_{w \in L_n} \delta_{w,n})$

Step 2. μ is ergodic and Gibbs. For $w \in L_n$,

$$Ke^{-nh} \leq \mu([w]) \leq K'e^{-nh}$$

Step 3. No room for another MME $\nu \perp \mu$.
Proof sketch for unique MME (Bowen’s proof)

Step 1. Constructible MME $\mu = \lim_n N(\sum_{w \in \mathcal{L}_n} \delta_{w,n})$

Step 2. μ is ergodic and Gibbs. For $w \in \mathcal{L}_n$,

$$Ke^{-nh} \leq \mu([w]) \leq K'e^{-nh}$$

Step 3. No room for another MME $\nu \perp \mu$. Choose \mathcal{D} such that $\nu(\mathcal{D}_n) \to 1$ and $\mu(\mathcal{D}_n) \to 0$.
Proof sketch for unique MME (Bowen’s proof)

Step 0. Counting estimates. $C e^{nh} \leq \#\mathcal{D}_n \leq C' e^{nh}$ whenever $\nu(\mathcal{D}_n) \gg 0$ for some MME ν

Step 1. Constructible MME $\mu = \lim_n N(\sum_{w \in \mathcal{L}_n} \delta_{w,n})$

Step 2. μ is ergodic and Gibbs. For $w \in \mathcal{L}_n$,

$$Ke^{-nh} \leq \mu([w]) \leq K'e^{-nh}$$

Step 3. No room for another MME $\nu \perp \mu$. Choose \mathcal{D} such that $\nu(\mathcal{D}_n) \to 1$ and $\mu(\mathcal{D}_n) \to 0$.
Proof sketch for unique MME (Bowen’s proof)

Step 0. Counting estimates. \(C e^{nh} \leq \#D_n \leq C' e^{nh} \) whenever \(\nu(D_n) \gg 0 \) for some MME \(\nu \)

Step 1. Constructible MME \(\mu = \lim_n \mathcal{N}(\sum_{w \in \mathcal{L}_n} \delta_{w,n}) \)

Step 2. \(\mu \) is ergodic and Gibbs. For \(w \in \mathcal{L}_n \),

\[
Ke^{-nh} \leq \mu([w]) \leq K'e^{-nh}
\]

Step 3. No room for another MME \(\nu \perp \mu \). Choose \(D \) such that \(\nu(D_n) \to 1 \) and \(\mu(D_n) \to 0 \).

\[
\mu(D_n) \geq Ke^{-nh} \#D_n \geq KC > 0
\]
Proof sketch for unique MME (Our proof)

Step 0. Counting estimates. \(C e^{nh} \leq \# D_n \leq C' e^{nh} \) whenever \(\nu(D_n) \gg 0 \) for some MME \(\nu \)

Step 1. Constructible MME \(\mu = \lim_n N(\sum_{w \in \mathcal{L}_n} \delta_{w,n}) \)

Step 2. \(\mu \) is ergodic and Gibbs. For \(w \in \mathcal{L}_n \),

\[K e^{-nh} \leq \mu([w]) \leq K' e^{-nh} \]

Step 3. No room for another MME \(\nu \perp \mu \). Choose \(D \) such that \(\nu(D_n) \to 1 \) and \(\mu(D_n) \to 0 \).

\[\mu(D_n) \geq K e^{-nh} \# D_n \geq K C > 0 \]
Proof sketch for unique MME (Our proof)

Step 0. Counting estimates. \(C(M) e^{nh} \leq \#(\mathcal{D} \cap \mathcal{G}(M))_n \leq C' e^{nh} \) whenever \(\nu(\mathcal{D}_n) \gg 0 \) for some MME \(\nu \)

Step 1. Constructible MME \(\mu = \lim_n N(\sum_{w \in \mathcal{L}_n} \delta_{w,n}) \)

Step 2. \(\mu \) is ergodic and Gibbs. For \(w \in \mathcal{L}_n, \)

\[
Ke^{-nh} \leq \mu([w]) \leq K' e^{-nh}
\]

Step 3. No room for another MME \(\nu \perp \mu \). Choose \(\mathcal{D} \) such that \(\nu(\mathcal{D}_n) \to 1 \) and \(\mu(\mathcal{D}_n) \to 0 \).

\[
\mu(\mathcal{D}_n) \geq Ke^{-nh} \#\mathcal{D}_n \geq KC > 0
\]
Proof sketch for unique MME (Our proof)

Step 0. Counting estimates. \(C(M)e^{nh} \leq \#(\mathcal{D} \cap \mathcal{G}(M))_n \leq C'e^{nh} \) whenever \(\nu(\mathcal{D}_n) \gg 0 \) for some MME \(\nu \)

Step 1. Constructible MME \(\mu = \lim_n N(\sum_{w \in \mathcal{L}_n} \delta_{w,n}) \)

Step 2. \(\mu \) is ergodic and Gibbs. For \(w \in \mathcal{G}(M)_n \),
\[
K(M)e^{-nh} \leq \mu([w]) \leq K'e^{-nh}
\]

Step 3. No room for another MME \(\nu \perp \mu \). Choose \(\mathcal{D} \) such that \(\nu(\mathcal{D}_n) \to 1 \) and \(\mu(\mathcal{D}_n) \to 0 \).
\[
\mu(\mathcal{D}_n) \geq Ke^{-nh} \#\mathcal{D}_n \geq KC > 0
\]
Proof sketch for unique MME (Our proof)

Step 0. Counting estimates. \(C(M)e^{nh} \leq \#(\mathcal{D} \cap \mathcal{G}(M))_n \leq C'e^{nh} \) whenever \(\nu(\mathcal{D}_n) \gg 0 \) for some MME \(\nu \)

Step 1. Constructible MME \(\mu = \lim_n N(\sum_{w \in \mathcal{L}_n} \delta_{w,n}) \)

Step 2. \(\mu \) is ergodic and Gibbs. For \(w \in \mathcal{G}(M)_n \),

\[
K(M)e^{-nh} \leq \mu([w]) \leq K'e^{-nh}
\]

Step 3. No room for another MME \(\nu \perp \mu \). Choose \(\mathcal{D} \) such that \(\nu(\mathcal{D}_n) \to 1 \) and \(\mu(\mathcal{D}_n) \to 0 \).

\[
\mu((\mathcal{D} \cap \mathcal{G}(M))_n) \geq K(M)e^{-nh} \#(\mathcal{D} \cap \mathcal{G}(M))_n \geq K(M)C(M) > 0
\]
Bowen potentials on β-shifts

X a β-shift and φ a Bowen potential. C as before.

- Need to check that $P(C, \varphi) < P(X, \varphi)$.

For a β-shift, C_n contains exactly one word, so C has zero entropy.

For $\varphi \neq 0$, need to show that C has small pressure:

$$\lim_{n \to \infty} \frac{1}{n} S_n \varphi(1_\beta) < P(X, \varphi).$$

Key step: exponentially many words near 1_β
Estimating $P(\mathcal{C}, \varphi)$, Part I

1. Write $1_\beta = u_1 u_2 u_3 \cdots$, where $u_j = 0^{\ell_j} a_j$ for some $a_j > 0$.

2. Can replace any u_j with $\hat{u}_j = 0^{\ell_j} 0$ and get a legal word.

3. Can change any k of the first n words u_j to \hat{u}_j; this produces $\binom{n}{k}$ distinct words $w \in \mathcal{L}_N$, where $N = |u_1 u_2 \cdots u_n|$.

4. Each such word has $\inf_{x \in [w]} S_N \varphi(x) \geq S_N \varphi(1_\beta) - 5kV$, where $V = \sup_{w \in \mathcal{L}} \sup_{x, y \in [w]} |S_{|w|} \varphi(x) - S_{|w|} \varphi(y)|$.

5. $\Lambda_N(\mathcal{L}, \varphi) \geq \sum_{k=0}^{n} \binom{n}{k} e^{S_N \varphi(1_\beta) - 5kV} = e^{S_N \varphi(1_\beta)} (1 + e^{-5V})^n$

6. If 1_β has a positive frequency of non-zero symbols, then $n \geq \delta N$ for some $\delta > 0$, so this suffices.
Estimating $P(\mathcal{C}, \varphi)$, Part II

What if there is not a positive frequency of non-zero symbols?

1. $\frac{n}{N} \to 0 \Rightarrow \delta_{1\beta,n} \xrightarrow{wk^*} \delta_0 \Rightarrow \frac{1}{n} S_n \varphi(1_\beta) \to \varphi(0)$.

2. Fix $1 < \beta' < \beta$ such that $\Sigma_{\beta'}$ is an SFT.

3. $\varphi|_{\Sigma_{\beta'}}$ has a unique equilibrium state, which is not δ_0:

 $\varphi(0) < P(\Sigma_{\beta'}, \varphi) \leq P(\Sigma_\beta, \varphi)$.

If $\lim \frac{n}{N} = 0$ and $\lim \frac{N}{n} > 0$, need to combine both arguments.

Remark: Argument adapts to f_γ and φ_t provided $P(\varphi_t) > 0$.
What if there is not a positive frequency of non-zero symbols?

1. \(\frac{n}{N} \to 0 \Rightarrow \delta_{1\beta,n} \xrightarrow{wk^*} \delta_0 \Rightarrow \frac{1}{n} S_n \varphi(1\beta) \to \varphi(0). \)

2. Fix \(1 < \beta' < \beta \) such that \(\Sigma_{\beta'} \) is an SFT.

3. \(\varphi|\Sigma_{\beta'} \) has a unique equilibrium state, which is not \(\delta_0 \):

\[
\varphi(0) < P(\Sigma_{\beta'}, \varphi) \leq P(\Sigma_{\beta}, \varphi).
\]

If \(\lim \frac{n}{N} = 0 \) and \(\lim \frac{n}{N} > 0 \), need to combine both arguments.

Remark: Argument adapts to \(f_\gamma \) and \(\varphi_t \) provided \(P(\varphi_t) > 0 \).