Motivating examples in dynamical systems

Vaughn Climenhaga

University of Houston

October 16, 2012
A pretty picture
The logistic map

Logistic map: \(f(x) = \lambda x(1 - x) \quad 0 \leq \lambda \leq 4 \)

- Maps the interval \([0, 1]\) into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

What is the long-term behaviour, and (how) does it depend on \(\lambda\)?
The logistic map

Logistic map: \(f(x) = \lambda x(1 - x) \) \(0 \leq \lambda \leq 4 \)

- Maps the interval \([0, 1]\) into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

What is the long-term behaviour, and (how) does it depend on \(\lambda \)?
The logistic map

Logistic map: $f(x) = \lambda x(1 - x) \quad 0 \leq \lambda \leq 4$

- Maps the interval $[0, 1]$ into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

What is the long-term behaviour, and (how) does it depend on λ?
The logistic map

Logistic map: \(f(x) = \lambda x(1 - x) \quad \text{for} \quad 0 \leq \lambda \leq 4 \)

Maps the interval \([0, 1]\) into itself

Iterate over and over again: represents state of a dynamical system evolving in time

What is the long-term behaviour, and (how) does it depend on \(\lambda \)?
The logistic map

Logistic map: \(f(x) = \lambda x(1 - x) \) \hspace{1cm} 0 \leq \lambda \leq 4

- Maps the interval \([0, 1]\) into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

\(\lambda = 2.5 \)

What is the long-term behaviour, and (how) does it depend on \(\lambda \)?
The logistic map

Logistic map: \(f(x) = \lambda x(1 - x) \quad 0 \leq \lambda \leq 4 \)

Maps the interval \([0, 1]\) into itself

Iterate over and over again: represents state of a dynamical system evolving in time

What is the long-term behaviour, and (how) does it depend on \(\lambda \)?
The logistic map

Logistic map: \(f(x) = \lambda x(1 - x) \) \(\quad 0 \leq \lambda \leq 4 \)

- Maps the interval \([0, 1]\) into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

What is the long-term behaviour, and (how) does it depend on \(\lambda \)?
The logistic map

Logistic map: \(f(x) = \lambda x(1 - x) \quad 0 \leq \lambda \leq 4 \)

- Maps the interval \([0, 1]\) into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

What is the long-term behaviour, and (how) does it depend on \(\lambda \)?
The logistic map

Logistic map: \(f(x) = \lambda x (1 - x) \) \hspace{1cm} 0 \leq \lambda \leq 4

- Maps the interval [0, 1] into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

What is the long-term behaviour, and (how) does it depend on \(\lambda \)?
The logistic map

Logistic map: \(f(x) = \lambda x(1 - x) \quad 0 \leq \lambda \leq 4 \)

- Maps the interval \([0, 1]\) into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

What is the long-term behaviour, and (how) does it depend on \(\lambda \)?
The logistic map

Logistic map: $f(x) = \lambda x(1 - x)$ \hspace{1cm} $0 \leq \lambda \leq 4$

Maps the interval $[0, 1]$ into itself

Iterate over and over again: represents state of a dynamical system evolving in time

What is the long-term behaviour, and (how) does it depend on λ?
The logistic map

Logistic map: \(f(x) = \lambda x(1 - x) \quad 0 \leq \lambda \leq 4 \)

- Maps the interval \([0, 1]\) into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

What is the long-term behaviour, and (how) does it depend on \(\lambda \)?
The logistic map

Logistic map: \(f(x) = \lambda x(1 - x) \)

Maps the interval \([0, 1]\) into itself
Iterate over and over again: represents state of a dynamical system evolving in time

What is the long-term behaviour, and (how) does it depend on \(\lambda \)?
The logistic map

Logistic map: \(f(x) = \lambda x(1 - x) \quad 0 \leq \lambda \leq 4 \)

- Maps the interval \([0, 1]\) into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

What is the long-term behaviour, and (how) does it depend on \(\lambda \)?
The logistic map

Logistic map: \(f(x) = \lambda x(1 - x) \) \quad 0 \leq \lambda \leq 4

Maps the interval \([0, 1]\) into itself

Iterate over and over again: represents state of a dynamical system evolving in time

What is the long-term behaviour, and (how) does it depend on \(\lambda \)?
The logistic map

Logistic map: \(f(x) = \lambda x(1 - x) \) \(0 \leq \lambda \leq 4 \)

- Maps the interval \([0, 1]\) into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

\(\lambda = 2.5 \)

What is the long-term behaviour, and (how) does it depend on \(\lambda \)?
The logistic map

Logistic map: \(f(x) = \lambda x(1 - x) \) \(0 \leq \lambda \leq 4 \)

- Maps the interval \([0, 1]\) into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

\(\lambda = 2.8 \)

What is the long-term behaviour, and (how) does it depend on \(\lambda \)?
The logistic map

Logistic map: \(f(x) = \lambda x(1 - x) \) \(\quad \) \(0 \leq \lambda \leq 4 \)

- Maps the interval \([0, 1]\) into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

What is the long-term behaviour, and (how) does it depend on \(\lambda \)?
The logistic map

Logistic map: \(f(x) = \lambda x(1 - x) \quad 0 \leq \lambda \leq 4 \)

- Maps the interval \([0, 1]\) into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

What is the long-term behaviour, and (how) does it depend on \(\lambda \)?
The logistic map

Logistic map: \(f(x) = \lambda x(1 - x) \) \(0 \leq \lambda \leq 4 \)

Maps the interval \([0, 1]\) into itself

Iterate over and over again: represents state of a dynamical system evolving in time

\(\lambda = 3.5 \)

What is the long-term behaviour, and (how) does it depend on \(\lambda \)?
The logistic map

Logistic map: \(f(x) = \lambda x(1 - x) \) \(0 \leq \lambda \leq 4 \)

- Maps the interval \([0, 1]\) into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

What is the long-term behaviour, and (how) does it depend on \(\lambda \)?
The logistic map

Logistic map: \(f(x) = \lambda x(1 - x) \) \(0 \leq \lambda \leq 4 \)

- Maps the interval \([0, 1]\) into itself
- Iterate over and over again: represents state of a dynamical system evolving in time

What is the long-term behaviour, and (how) does it depend on \(\lambda \)?
More than just a pretty picture

Bifurcation diagram. Horizontal $=$ parameter, vertical $=$ recurrent states
More than just a pretty picture

$\lambda \in [3, 3.57 \ldots]$ ← period-doubling cascade
More than just a pretty picture

\[\lambda \in [3.832, 3.857 \ldots] \leftarrow \text{window of stability} \]
More than just a pretty picture

\[\lambda = 4 \quad \text{← chaos} \]
Aside: Mandelbrot set

Fix $c \in \mathbb{C}$: let $z_0 = 0$, $z_{n+1} = z_n^2 + c$.

Mandelbrot set $M = \{ c \mid z_n \nrightarrow \infty \}$
Aside: Mandelbrot set

Fix $c \in \mathbb{C}$: let $z_0 = 0$, $z_{n+1} = z_n^2 + c$.

Mandelbrot set $M = \{c \mid z_n \not\to \infty\}$
Aside: Mandelbrot set

Fix $c \in \mathbb{C}$: let $z_0 = 0$, $z_{n+1} = z_n^2 + c$.

Mandelbrot set $M = \{c \mid z_n \not\to \infty\}$
Aside: Mandelbrot set

Fix $c \in \mathbb{C}$: let $z_0 = 0$, $z_{n+1} = z_n^2 + c$.

Mandelbrot set $M = \{ c \mid z_n \not\to \infty \}$
Aside: Mandelbrot set

Fix $c \in \mathbb{C}$: let $z_0 = 0$, $z_{n+1} = z_n^2 + c$.

Mandelbrot set $M = \{ c \mid z_n \not\to \infty\}$
Aside: Mandelbrot set

Fix \(c \in \mathbb{C} \): let \(z_0 = 0 \), \(z_{n+1} = z_n^2 + c \).

Mandelbrot set \(M = \{ c \mid z_n \not\rightarrow \infty \} \)
Aside: Mandelbrot set

Fix \(c \in \mathbb{C} \): let \(z_0 = 0, \ z_{n+1} = z_n^2 + c \).

Mandelbrot set \(M = \{ c \mid z_n \not\to \infty \} \)
Aside: Mandelbrot set

Fix $c \in \mathbb{C}$: let $z_0 = 0$, $z_{n+1} = z_n^2 + c$.

Mandelbrot set $M = \{c \mid z_n \not\to \infty\}$
Aside: Mandelbrot set

Fix $c \in \mathbb{C}$: let $z_0 = 0, z_{n+1} = z_n^2 + c$.

Mandelbrot set $M = \{c \mid z_n \not\to \infty\}$
Aside: Mandelbrot set

Fix $c \in \mathbb{C}$: let $z_0 = 0, \quad z_{n+1} = z_n^2 + c$.

Mandelbrot set $M = \{c \mid z_n \not\to \infty\}$
Aside: Mandelbrot set

Fix $c \in \mathbb{C}$: let $z_0 = 0$, $z_{n+1} = z_n^2 + c$.

Mandelbrot set $M = \{ c \mid z_n \not\to \infty \}$
Aside: Mandelbrot set

Fix $c \in \mathbb{C}$: let $z_0 = 0$, $z_{n+1} = z_n^2 + c$.

Mandelbrot set $M = \{ c \mid z_n \not\rightarrow \infty \}$

Vaughn Climenhaga (University of Houston)
October 16, 2012
Aside: Mandelbrot set

Fix $c \in \mathbb{C}$: let $z_0 = 0$, $z_{n+1} = z_n^2 + c$.

Mandelbrot set $M = \{ c \mid z_n \not\to \infty \}$
Aside: Mandelbrot set

Fix $c \in \mathbb{C}$: let $z_0 = 0, \ z_{n+1} = z_n^2 + c$.

Mandelbrot set $M = \{c \mid z_n \not\to \infty\}$
Aside: Mandelbrot set

Fix $c \in \mathbb{C}$: let $z_0 = 0$, $z_{n+1} = z_n^2 + c$.

Mandelbrot set $M = \{ c \mid z_n \not\to \infty \}$
Numerical picture of bifurcation diagram for logistic maps raises questions:

1. Various phenomena are suggested by numerics: period-doubling cascades, windows of stability, self-similarity, chaos. Can their existence be proved rigorously?
2. Qualitative behaviour depends on parameter. How large are the parameter sets on which different behaviours occur?
3. Can consider other one-parameter families of interval maps \(f_\lambda : [0, 1] \). Does the same story happen here?
4. What about higher dimensions \((f_\lambda : \mathbb{R}^d) \) or manifolds \((f_\lambda : M) \)?
General answers

1. Rigorous phenomena for logistic maps. Period-doubling, windows of stability, self-similarity, chaos: All can be rigorously proved to exist.

2. Size of parameter sets (prevalence of different behaviours).

3. Other interval maps.

4. Higher dimensions.
General answers

1. Rigorous phenomena for logistic maps. Period-doubling, windows of stability, self-similarity, chaos: All can be rigorously proved to exist.

2. Size of parameter sets (prevalence of different behaviours). Windows of stability are open and dense. Chaos is a Cantor set but has positive measure.

3. Other interval maps.

4. Higher dimensions.
General answers

1. Rigorous phenomena for logistic maps.
 Period-doubling, windows of stability, self-similarity, chaos: All can be rigorously proved to exist.

2. Size of parameter sets (prevalence of different behaviours).
 Windows of stability are open and dense. Chaos is a Cantor set but has positive measure.

3. Other interval maps.
 Same results can be proved for very general families of interval maps. Even some quantitative results are identical, such as rate of convergence in period-doubling cascades (Feigenbaum universality).

4. Higher dimensions.
General answers

1. Rigorous phenomena for logistic maps.
 Period-doubling, windows of stability, self-similarity, chaos: All can be rigorously proved to exist.

2. Size of parameter sets (prevalence of different behaviours).
 Windows of stability are open and dense. Chaos is a Cantor set but has positive measure.

3. Other interval maps.
 Same results can be proved for very general families of interval maps. Even some quantitative results are identical, such as rate of convergence in period-doubling cascades (Feigenbaum universality).

4. Higher dimensions.
 Numerics suggest a similar story, but proofs are much harder and most answers are still unknown.