
MATH 3333–INTERMEDIATE ANALYSIS–BLECHER NOTES

This course has two goals. First, we learn how to prove things in mathematics.

This requires a talent for logic (to be able to follow very detailed chains of logical

implications). Don’t take this course if you usually lose arguments! It also requires

the ability to think very abstractly, manipulate mathematical symbols, and to be

able to find simple examples and use them to ‘see what is going on’, and then

to construct a formal proof. Most of this is learned by experience, and this and

Math 3325 (Transitions) are the courses in which we begin to learn this. It is

very very different to earlier courses, such as calculus, and because of this you may

dislike it very much for a while, or may decide that this is not where you want to

go with your life. Learning new skills is often unpleasant at first! You are going

to have to completely immerse yourself in the material to absorb it. The second

goal of the course is to rigorously develop the basic facts about the real numbers

and functions of one real variable, and to actually prove many of the facts you

took for granted in Calculus I and II. This will require us to really understand

ǫ-δ arguments and definitions, the basic ‘topology’ of the real number line (limits,

sequences, continuity), and why the basic results in calculus work. One only really

appreciates many mathematical ideas and techniques when you understand their

proofs.

You will be expected to reread and digest these typed notes after class, line by

line, trying to follow why the line is true, for example how it follows from previous

lines. I suggest you add a check mark after you have read and understood the line,

add extra explanation or pictures to yourself if needed. Add a question mark next

to any line you cannot follow, and ask me or the TA about it. That is why I have

given wide margins on every page. Also memorize ‘definitions’ as you read. The

best advice I can give to ensure success in this class is to do this reading properly.

In my experience, the class becomes much much more difficult if you do not do it.

This kind of detailed reading is not without pain, but it will help reconfigure your

brain to internalize the kind of logic/thinking/proof skills that are needed in this

subject (and in other math ‘proof’ courses). And remember the universal college

rule: 3 hours study outside of class for every hour in class. The way I will monitor

if you are doing all this is to give an ‘easy-quiz’ once a week, named as such because

it will be easy for anyone who has been reading the notes as suggested.

Some encouragement from a great mathematician: ”Mathematics is a process of

staring hard enough with enough perseverance at the fog of muddle and confusion
1
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to eventually break through to improved clarity. I’m happy when I can admit ...

that my thinking is muddled, and I try to overcome the embarassment that I might

reveal ignorance or confusion [and ask for help! (DB)] ... this has helped me develop

clarity...” Thurston

(These lines will be of great use here, or if you are going on to other higher level

math classes.)

Up to and including Section 3.2 of the textbook 5th Edition (Section 11 of 3rd

or 4th edition), are preliminaries. Most of this will be familiar to some, and so we

will move quickly. If you are not familiar with parts of this material before Section

3.3 in the textbook 5th Edition (Section 12 in the 4th Ed, or Section 3.3 of these

typed notes), then they are very important, and you may have to work harder than

some other students here, and use the textbook and outside sources like wikipedia

liberally.

1. Logic and deductive reasoning (Chapter 1, Lay)

The following will be a review for most (or who have 3325), so we will move

quickly. You probably will need to read it carefully several times. Depending

on your background, you might have to read Chapter 1 in the textbook too for

additional discussion/examples, or to supplement the following. You could also

look up several of these topics on wikipedia. Also, Math 3325 and 3336 is in large

part devoted to this kind of thing, and if you have taken any other math courses

with proofs (such as some linear algebra or abstract algebra courses) you will have

met it there too.

• Statement: a phrase that is either true or false, but not both. Mathemat-

ics consists entirely of statements, and is thus either right or wrong. Be

sure that your ‘statements’ are properly written, and have meaning (make

sense).

A statement which is true is also sometimes said ‘to hold’, or we say ‘it

holds’, or more rarely is called ‘valid’.

• Example of a statement: ‘Seven is an even number’. Example of a non-

statement: ‘This sentence is false’. Or: ‘Houston is a nice place to live’.

• Sometimes we give a statement a name. For example, let Q be the state-

ment: Seven is an odd number. Or, if x is a real number, let P (x) be the

statement: x2 − 5x+ 3 ≥ 0. Note P (0) is true here, but P (1) is false.

• Where things live: In mathematics, it is very important to keep remem-

bering ‘where things live’. By this I mean, what exactly are the objects

we are talking about. This is where most students get into trouble. For

example, if you are trying to prove something about a sphere in 3-space,

you will get into big trouble if you forget that your variable x is a point
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on the sphere, and start using it as if it were a real number, or a ratio-

nal number. Obviously you cannot take the square root of a point on the

sphere, and you cannot apply results that work for real numbers to points

on the sphere. This is just an example, I’m just trying to say that one gets

into trouble if you confuse the role of things, and forget what something is

supposed to be. This is true in real life too!!

• Negation: If P is a statement, then ∼ P or ¬P is its negation. For

example, if P (x) is as above, then ∼ P (x) is the statement: x2−5x+3 < 0.

• Connectives: ‘and’ (∧), ‘or’ (that is, the inclusive ‘or’ ∨). Thus A ∨ B

means A is true, or B is true, or both are true (see text).

• Implication: If P then Q. Also sometimes written as ‘P ⇒ Q’, or ‘P

implies Q’. We sometimes call P the hypothesis and Q the conclusion.

• Deduction words: ‘Thus’, ‘therefore’, ‘hence’, ‘consequently’, ‘this im-

plies that ...’, and so on. Also sometimes written as ∴ , or ⇒.

• Converse: The converse of ‘P ⇒ Q’ is ‘Q ⇒ P ’ or ‘P ⇐ Q’.

• Contrapositive: P ⇒ Q is the same as (∼ Q) ⇒ (∼ P ). The latter may

be easier!

For example, the contrapositive of (If n ∈ {1, 2, 3, · · · } then 2n is even),

is: (If 2n is not even then n /∈ {1, 2, 3, · · · }.
• Equivalence: P if and only if Q. Also written as: ‘P is equivalent to Q’,

‘P iff Q’, or ‘P ⇐⇒ Q’. To prove that P ⇐⇒ Q, we need to prove

both that P ⇒ Q, and its converse Q ⇒ P . To prove an equivalence we

often first prove one of these, and then say ‘Conversely,...’ and then go on

to show the other. Or sometimes you will see an ‘if and only if’ proof set

up as follows:

Proposition 1.1. P if and only if Q.

Proof. (P ⇒ Q) : Suppose that P holds. Then ... chain of reasoning ... so

that Q is true.

(Q ⇒ P ) : Conversely, suppose that Q holds. Then ... chain of reasoning

... so P is true. �

or this may appear as:

Proof. (⇒) : Suppose that P holds. Then ... chain of reasoning ... so that

Q is true.

(⇐) : Conversely, suppose that Q holds. Then ... chain of reasoning ...

so P is true. �
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Sometimes proving an equivalence is not done directly; for example to

show P ⇐⇒ Q, it is enough to prove that P ⇒ Q and (∼ P ) ⇒ (∼ Q).

• If we have more than two statements which are to be proved equivalent,

we often use ‘T.F.A.E.’ (‘the following are equivalent’). A typical result of

this kind may look as follows:

Theorem 1.2. Let .... . Then T.F.A.E.:

(i) P ,

(ii) Q ,

(iii) R.

Proof. (i) ⇒ (iii) Suppose that P holds. Then ... chain of reasoning ... so

that (iii) holds.

(iii) ⇒ (ii) Suppose that R holds. Then ... chain of reasoning ... so that

Q holds.

(ii) ⇒ (i) Finally, suppose that (ii) holds. Then ... chain of reasoning ...

so that P holds. �

• ∀ quantifier: ‘For all’, ‘for every’, ‘whenever’, ... . For example, ∀x ≥
2, x2 − 5x + 10 ≥ 0. Also acceptable here: x2 − 5x + 10 ≥ 0, ∀x ≥ 2

(BEWARE: in general, do not move quantifiers around, see below), or even

x2 − 5x+ 10 ≥ 0, x ≥ 2,

or

x2 − 5x+ 10 ≥ 0, (x ≥ 2).

Proving a ‘for all’ statement usually means taking an arbitrary or generic

member x from the system under consideration (in the example above, we

would need to take an arbitrary real number x ≥ 2), and show that the

statement asserted about x is true.

• ∃ quantifier: ‘There exists’, ‘there is at least one’. For example, ∃x such

that x2 − 5x+ 3 ≤ −1. (Often ‘such that’ is written s.t. or ∋.) Proving a

‘there exists statement’ usually means finding a clever choice of a particular

x that works (e.g. x = 1 in the last example). Thus we have to ‘construct’

(maybe by guesswork, or intuition) an example satisfying the required con-

dition. However, sometimes a ‘there exists statement’ may be proved in

other ways, for example by contradiction (assume its negation, which is a

‘for all’ statement, and show that this leads to a contradiction). We’ll talk

more about proofs by contradiction later.

• Practice exercise from text: Rewrite using the symbols ∃, ∀:
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(a) There exists a positive number x such that x2 = 5. [Answer: ∃x > 0

s.t. x2 = 5.]

(b) For every positive number N there is a positive number M such that

N < 1/M . [Answer: ∀N > 0, ∃M > 0 s.t. N < 1/M .]

(c) If n ≥ N , then |fn(x) − f(x)| ≤ 3 for all x in A. [Answer: ∀n ≥
N, ∀x ∈ A, |fn(x)− f(x)| ≤ 3.]

• Order of quantifiers, etc., matters: so be careful! ‘∀x, ∃y s.t. y > x’ is

not the same statement as ‘∃y s.t. ∀x, y > x’. (See end of Section 1.2 text

5th Edition (Section 2 of 4th edition).

• Negations of statements with quantifiers: A rough guide, when negat-

ing statements with quantifiers, is that ∀’s become ∃, ∃’s become ∀, and in-

equalities in ‘conclusions’ reverse. More precisely, the negation of ‘∀x, P (x)’

is ‘∃x s.t. (∼ P (x))’, and the negation of ‘∃x s.t. P (x)’ is ‘∀x, (∼ P (x))’.

Thus the negation of ‘Everyone in the room is asleep’, or equivalently the

negation of ‘∀x in room, x is asleep’, is ‘∃x in room s.t. x is asleep’. That was

a good test if you were awake. Also, the negation of P ∧Q is (∼ P )∨(∼ Q),

and the negation of P ∨Q is (∼ P ) ∧ (∼ Q).

• Examples from this section of the text. What are the negations of the

following statements:

(a) For every x ∈ A, f(x) > 5. [Answer: ∃x ∈ A s.t. ∼ [f(x) > 5], or

∃x ∈ A s.t. f(x) ≤ 5.]

(b) There exists a positive number y such that 0 < g(y) ≤ 1. [Answer:

∀y > 0,∼ [0 < g(y) ≤ 1]. Since 0 < g(y) ≤ 1 represents (0 <

g(y)) ∧ (g(y) ≤ 1), its negation is (0 ≥ g(y)) ∨ (g(y) > 1). So the final

answer is: ∀y > 0, (0 ≥ g(y))∨ (g(y) > 1), which in English reads: For

every y > 0, either 0 ≥ g(y) or g(y) > 1.]

(c) ∀ǫ > 0 ∃N s.t. |fn(x) − f(x)| < ǫ whenever n ≥ N, x ∈ A. [Answer:

We can do this one step at a time:

∼ [∀ǫ > 0, ∃N s.t. ∀n ≥ N, x ∈ A, |fn(x) − f(x)| < ǫ]

⇐⇒ ∃ǫ > 0 s.t. ∼ [∃N s.t. ∀n ≥ N, x ∈ A, |fn(x)− f(x)| < ǫ]

⇐⇒ ∃ǫ > 0 s.t. ∀N ,∼ [∀n ≥ N, ∀x ∈ A, |fn(x)− f(x)| < ǫ]

⇐⇒ ∃ǫ > 0 s.t. ∀N , ∃n ≥ N s.t. ∼ [∀x ∈ A, |fn(x)− f(x)| < ǫ]

⇐⇒ ∃ǫ > 0 s.t. ∀N , ∃n ≥ N, ∃x ∈ A s.t. ∼ [|fn(x) − f(x)| < ǫ]

⇐⇒ ∃ǫ > 0 s.t. ∀N , ∃n ≥ N, and ∃x ∈ A s.t. |fn(x) − f(x)| ≥ ǫ.

(Note that you can always test if a line like one of the last few lines is

correct by comparing it with the previous line, and see if they are saying

the same thing logically, maybe by turning them partly back into English.)
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• Some ’phrases’ in a math statement, just like in an English statement,

should be treated as ’molecules’ and not be split up into its individual

atoms. For example, if you were to negate the statement ”there is a guy in

the class whose name is Sam”, you would treat ’guy in the class’ as a single

compound object, a molecule, so we will not be negating the atoms ’guy’

or ’class’. The negation is: ’for every (guy in the class), their name is not

Sam’. Another example: if we were to negate ‘there exist real numbers x

and y with sum z’, that is ∃x ∈ R and y ∈ R s.t. x+ y = z, we treat ‘x ∈ R

and y ∈ R as a molecule, and do not split them and change the ‘and’ to an

‘or’. The negation is: ‘for all x ∈ R and y ∈ R, x+ y 6= z.

• Respectively’s: Often to save writing an only slightly changed sentence,

we use the word ‘respectively’. For example: ‘The function f(x) is strictly

increasing (resp. strictly decreasing) if f ′(x) > 0 (resp. f ′(x) < 0) for all x’.

You are supposed to read the statement twice, once without reading the

words in parentheses, and then again with the words before the parentheses

replaced by the words in parentheses. Similarly, if a sentence is only slightly

changed more than once. For example: ‘The function f(x) is strictly in-

creasing (resp. strictly decreasing, constant) if f ′(x) > 0 (resp. f ′(x) < 0,

f ′(x) = 0) for all x’.

• Techniques of proof: Deductive reasoning. Suppose you are trying to

prove that P implies Q. As explained in Section 1.3 of the text 5th Edition

(Section 3 of 4th edition), this usually boils down to building a bridge of

logical statements, to connect the hypothesis P to the conclusion Q. The

building blocks of the bridge consist of:

– Definitions (the basic meanings of the words used, usually of the key

words contained in P and Q),

– Theorems or facts that have been previously established as true (look

for those using the key words contained in P and Q),

– Statements that are logically implied by earlier statements in the proof,

– Axioms. These occur less frequently in proofs, they are the basic

assumptions one makes at the beginning of a theory, and one does not

usually discuss them too much after the first few days of class.

The MOST IMPORTANT, and most frequently useful, technique

for proving results in this class is to GO BACK TO THE DEFI-

NITION.

When actually building the bridge, it may not be at all obvious (at least

to a beginning bridge-builder), which blocks to use, and the order to use

them in. This comes with experience, perseverance, intuition, good logical

abilities, and sometimes good luck.
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In trying to prove P ⇒ Q, the text suggests starting at both ends and

working to the middle. Ask: “What does P imply?” Answering this is

usually just a matter of looking up the definitions of the words in P , and

seeing what then must obviously follow. Often it entails looking back in

your notes to see what previously established Theorems or facts we can

bring to bear on P . Suppose then that we realize that P ⇒ P1 (actually

there may be several things that P implies). Then ask what P1 implies,

using a similar process to the one we just went through. Continue this

process until you build a chain (or chains) of deductions, and you can go

no further. If you havent reached Q yet, start to work backwards from Q,

asking “What statement would imply Q?” Again, answering this is usually

just a matter of looking up the definitions of the words in Q and using

your head, or looking back in your notes to see what previously established

Theorems or facts we can use to get Q. Once we have realized that Q1 ⇒ Q,

we repeat the process, to find Q2 with Q2 ⇒ Q1. Hopefully the two parts

of the bridge meet in the middle. This is deductive reasoning. When one

gets good at it, it becomes pretty automatic, like eating popcorn: you reach

automatically and quickly for the definition or fact you need to add to the

bridge, and the bridge is built in seconds. It is a messy process sometimes

(cramming a lot of popcorn in your mouth), but once a shoddy bridge is

built one can then write it again economically, and so that it reads nicely.

Example of working backwards: Suppose that you were asked to prove

the following

Theorem 1.3. For every ǫ > 0 there exists a δ > 0 such that

1− δ < x < 1 + δ implies that 5− ǫ < 2x+ 3 < 5 + ǫ.

Note that here we want 5− ǫ < 2x+3 < 5+ ǫ. Subtracting 3, the above

is equivalent to 2 − ǫ < 2x < 2 + ǫ. Dividing by 2, the last inequality is

equivalent to 1− ǫ/2 < x < 1+ ǫ/2. Thus if we choose δ = ǫ/2, then indeed

1− δ < x < 1 + δ implies that 5− ǫ < 2x+ 3 < 5 + ǫ.

We can now tidy up, and write the proof economically, and so that it

reads nicely:

Proof. Given any number ǫ > 0, set δ = ǫ/2. Then δ > 0. If 1 − δ < x <

1 + δ, then 1 − ǫ/2 < x < 1 + ǫ/2. Multiplying this inequality through by

2, and then adding 3, we obtain 5 − ǫ < 2x+ 3 < 5 + ǫ. This is what was

required. �

• Proof by cases: Many proofs divide naturally up into different cases,

each of which need to be dealt with separately. For example, this occurs
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frequently when one has to divide by a certain quantity in a proof. One

cannot divide by 0, so one has to break the proof into two cases, first the

case where the quantity is not zero, and second, the case where the quantity

is zero. In the latter case, we cannot divide through by the zero quantity,

and the proof has to be finished in another way. Another example: read

Example in the text (Ex 4.5 in 4th Edition).

• Proof by contradiction: One way to prove a statement P is to assume

that it was false, that is, we assume that ∼ P is true, and then use de-

ductive reasoning to deduce a statement Q, where Q is clearly false. Such

a proof is often written beginning with the words “BWOC suppose that

P is false. ...”; BWOC stands for ‘By way of contradiction’. Then one

continues the proof until one arrives at something riduculous. This is proof

by contradiction, or reductio ad absurdum. Or, if we want to prove that

P ⇒ Q, it suffices to show that P ∧ (∼ Q) leads to a contradiction.

• Techniques of disproof: Disproving a false statement is often harder

than proving a true statement, because it often means finding a coun-

terexample. A counterexample is an example showing that a statement

is false. Finding examples is sometimes hard. Here is one that is not so

hard, it just takes a few minutes of perseverance: Show that the statement

‘n2+n+17 is a prime number for all positive integers n’ is false. [Solution:

n = 16 is a counterexample.]

Another way to disprove a statement P is to assume that it was true,

and then use deductive reasoning to show that P ⇒ Q, where Q is clearly

false. This is also proof by contradiction.

• General advice: Write down all your reasoning, particularly if you are

new at this, or if you want a good grade. Don’t say ‘it is clear’, if it would

not be clear to a classmate.

Homework for Chapter 1.

5th Edition numbers: 1.1 Ex 2, 1.2 Ex 3, 11, 13, 15, 17, 18, 22. 1.3 Ex 2, 3, 6a-f,

7. 1.4 Ex 1, 9, 11, 19c, 23, 24. (4th & 3rd Edition numbers: Numbers in parentheses

refer to the equivalent problems in the third edition of the text: Exercises 1.2, 2.3,

2.5 (not f), 2.11 (2.7), 2.13 (2.9), 2.15 (2.11), 2.16 (2.12), 2.20 (2.16), 3.2, 3.3, 3.6a-f,

3.7 (3.8), 4.1, 4.3, 4.5, 4.13c (4.7), 4.17 (4.11), 4.18 (4.12).)

You do not need to do them all. They will be collected in class on the date

listed on the website, but the grade will be essentially just for turning something

in. Instead, there will be a 10 minute quiz on that date containing some of these

problems.
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2. Sets and functions (Chapter 2 Lay)

Please read Chapter 2 yourself, Sections 1, 2, 3 in the 5th edition of the text (5,

6, 7 in the 4th Ed). You can omit the later Sections of Chapter 2).

Some important notations for this course and for these notes:

• A set, naively, is a collection of objects (elements, members). For example

we may write A = {1, 2, 3}. We write x ∈ A if x is an element of set A,

and x /∈ B if x is not an element of set B.

• In this course/these notes we will write N for the natural numbers N =

{1, 2, 3, · · · }, and N0 for the whole numbers N0 = {0, 1, 2, 3, · · · }, and Z

for the integers Z = {· · · ,−2,−1, 0, 1, 2, 3, · · ·}. We usually reserve the

symbols n,m for natural numbers or integers. The rational numbers are

Q = {m/n : m,n ∈ Z, n 6= 0}. The real numbers are written as R, and

R+ = {x ∈ R : x ≥ 0}. Of course the irrational numbers are {x ∈ R : x /∈
Q}. The notation A \B means {x ∈ A : x /∈ B} (called the set-difference).

Thus the irrational numbers are R \Q.

• Most of the sets we look at will be intervals: that is is a subset of R of one

of the 9 types: [a, b] = {x ∈ R : a ≤ x ≤ b}, [a, b) = {x ∈ R : a ≤ x <

b}, (a, b] = {x ∈ R : a < x ≤ b}, (a, b) = {x ∈ R : a < x < b}, [a,∞) = {x ∈
R : a ≤ x}, (a,∞) = {x ∈ R : a < x}, (−∞, b] = {x ∈ R : x ≤ b}, (−∞, b) =

{x ∈ R : x < b}, (−∞,∞) = R. Here a, b are real numbers with a < b

(except in the first of these 9 types where a ≤ b). [Pictures drawn in class.]

• ∅ denotes the empty set (no members). The simplest kind of set after the

empty set is a set with only one element (number), this is called a singleton

set. A set A is called finite iff ∃n ∈ N such that A can be written as

A = {x1, x2, · · · , xn}, for some x1, x2, · · ·xn ∈ A. If the xi here are all

different (distinct), then n is called the cardinality of A. So a singleton set

has cardinality 1. A set is called infinite if it is not finite. Intervals are

infinite sets (except [a, a]).

• The notation A ⊆ B or A ⊂ B means that A is a subset of set B, (that

is, x ∈ A ⇒ x ∈ B). Of course A = B if A ⊂ B and B ⊂ A (that is,

x ∈ A ⇔ x ∈ B).

Example: 5 ∈ N ⊆ Z ⊆ R, {1, 2, 3, 4} = {2, 4, 1, 3} = {1, 2, 3, 2, 4, 2}.
• Unions: A ∪B = {x : (x ∈ A) ∨ (x ∈ B)}

Intersections: A ∩B = {x : (x ∈ A) ∧ (x ∈ B)}
We will talk about unions and intersections of infinitely many sets later

• Complement: Ac = {x : x /∈ A}
• We say that sets A and B are disjoint if A∩B = ∅ (no common elements).

• Examples: A = {1, 2, 3, 4}, B = {2, 4, 6}, A ∪B = {1, 2, 3, 4, 6}
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A ∩B = {2, 4}, A\B = {1, 3}, (A ∩B) ∪ (A\B) = {1, 2, 3, 4} = A

• Functions: f : A → B means that f is a function from domain A into the

codomain B. Most of the following you will have met in other courses such

as Calculus II:

• The default domain of f in this course is the largest subset of numbers x in

R for which f(x) is a real number or makes sense. For example the default

domain of 1/
√
2− x is (−∞, 2).

• Image: if C ⊆ A, and f : A → B, then f(C) = {f(x) : x ∈ C}. This is a

subset of the codomain of f , called the image of C under f

• Pre-image: If f : A → B, and D ⊆ B, then f−1(D) = {x ∈ A : f(x) ∈ D}.
This is called the pre-image of D under f

• I did an example in class of finding the image and pre-image: here A was

the set of all students in class today, B = {n ∈ N : n ≤ 12}, and f(x) is the

number of the birthmonth of student x. I asked f−1({2, 3, 7}) to stand up.

I also asked what f(B) was if B were the students in class today wearing

red shirts.

• We say that f : A → B is surjective, or onto if f(A) = B. That is,

∀b ∈ B ∃a ∈ A s.t. f(a) = b.

• We say that f : A → B is injective, or one-to-one if f(x1) = f(x2) ⇒
x1 = x2. We sometimes write f is 1-1 in this case.

• We say that f : A → B is bijective if it is one-to-one and onto. In this case

there is an inverse function f−1 : B → A with f−1(y) = x iff f(x) = y,

for x ∈ A, y ∈ B. Actually there exists an inverse function if f is merely

injective (and not onto), but the domain of f−1 in that case is f(A).

• Composition of functions: If f : A → B and g : B → C then g ◦ f : A → C

is such that (g ◦ f)(a) = g(f(a)) for a ∈ A
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3. The real numbers

3.1. Mathematical induction. Axiom: [Well-ordering property of N]. Let S 6= ∅
be a subset of N. Then ∃m ∈ S s.t. m ≤ k, ∀k ∈ S. (Note: m = min(S)).

We will go through the following quickly, since many of you already know it. See

also wikipedia.

Theorem 3.1. [Principle of Mathematical Induction] Let P (n) be a statement

∀n ∈ N. Suppose that

(a) P (1) is true, and

(b) ∀k ∈ N, if P (k) is true then P (k + 1) is true.

Then P (n) is true ∀n ∈ N.

Remark: Sometimes the assumption that P (k) is true in statement (b) is called

the inductive hypothesis.

Proof. By contradiction. Suppose that the statements (a) and (b) hold, but P (n)

is false for some n ∈ N. That is, the set S = {n ∈ N : P (n) is false} is not the

empty set. By the well-ordering axiom, ∃m ∈ S s.t. m ≤ k, ∀k ∈ S. Since P (1)

is true by (a), 1 /∈ S, so that m > 1. Then m− 1 ∈ N, and m− 1 /∈ S (since m is

the least element). Thus, P (m− 1) is true, and so P (m) is true by (b), so m /∈ S,

which contradicts the definition of m. Thus S = ∅, and P (n) is true ∀n ∈ N. �

It is best to always have certain words in every mathematical induction proof.

Otherwise you may lose points. I have underlined such words in the examples

below.

Example: Prove that 1 + 2 + · · ·+ n = 1
2n(n+ 1), ∀n ∈ N.

Solution. We use Mathematical Induction. First we check that the statement

is true for n = 1:

1 =
1

2
(1)(1 + 1),

which is true. Next assume that the statement is true for n = k, that is:

1 + 2 + · · ·+ k =
1

2
k(k + 1).

We need to prove that the statement is true for n = k + 1, that is, we need to check if:

1 + 2 + · · ·+ k + (k + 1) =
1

2
(k + 1)[(k + 1) + 1].

The left side of the last formula, by the inductive hypothesis, equals:

1

2
k(k + 1) + (k + 1) = (k + 1)(

1

2
k + 1) = (k + 1)(

1

2
k +

1

2
· 2) = 1

2
(k + 1)(k + 2).
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The right side of the formula we are checking, is:

1

2
(k + 1)[(k + 1) + 1] =

1

2
(k + 1)(k + 2).

Since the left side equals the right side, we have proved that the statement is true for

n = k + 1. By mathematical induction, it is true for all n ∈ N. �.

Modified induction: Instead of proving that P (n) is true for all n ∈ N, we may

be asked to prove P (n) for n ≥ m. Here m is some fixed ‘starting point’ integer.

For example, we may be asked to prove P (0), P (1), P (2), . . . ; or we may want to

prove P (5), P (6), P (7), . . . (indeed P (4) may not be true). Here the theorem is:

Suppose that (a) P (m) is true, and (b) for all integers k ≥ m, if P (k) is true then

P (k + 1) is true. Then P (n) is true for all n ∈ N, n ≥ m.

Example: Prove that 2n > n2 for all natural numbers n ≥ 5.

Solution. We use Mathematical Induction. First we check that the statement

is true for n = 5:

25 = 32 > 25 = 52,

which is true. Next assume that the statement is true for an integer n = k ≥ 5, that is:

2k > k2.

We need to prove that the statement is true for n = k + 1, that is, we need to check if:

2k+1 > (k + 1)2.

The left side of the last formula, by the inductive hypothesis, equals:

2 · 2k > 2 · k2.

The right side of the formula we are checking, is:

(k + 1)2 = k2 + 2k + 1.

Thus we are done if 2 · k2 > k2 + 2k + 1, that is if 2k2 − (k2 + 2k + 1) = k2 −
2k − 1 > 0 for k ≥ 5. By College Algebra or Calculus I it is easy to see that

k2 − 2k − 1 > 0 if k ≥ 5 (indeed the quadratic x2 − 2x − 1 has its biggest root

at −b+
√
b2−4ac
2a = 2+

√
8

2 = 1 +
√
2 < 5. See picture drawn in class). Thus the

left side of the formula we are checking is greater than the right side, and so

we have proved that the statement is true for n = k + 1.

By (modified) induction, it is true for all n ∈ N, n ≥ 5. �.



MATH 3333–INTERMEDIATE ANALYSIS–BLECHER NOTES 13

3.2. Ordered fields. We are moving towards trying to define the real numbers.

We will define them by their properties: we will make a long list of ‘sensible prop-

erties’, and the real numbers will be the only thing that satisfies all of this long list.

All other so-called ‘well-known facts’ about real numbers can be deduced from this

list!

You do not need to memorize the following definitions:

A field is any set F with an addition + and a multiplication · such that

A1 ∀x, y ∈ F, x+ y ∈ F

A2 x+ y = y + x

A3 x+ (y + z) = (x+ y) + z

A4 ∃ unique element in F, written 0, s.t. 0 + x = x, ∀x ∈ F

A5 ∀x ∈ F, ∃w ∈ F s.t. x+ w = 0

M1 ∀x, y ∈ F, x · y ∈ F

M2 x · y = y · x
M3 x · (y · z) = (x · y) · z
M4 ∃ unique element in F, written 1, s.t. 1 · x = x, ∀x ∈ F

M5 ∀x ∈ F, x 6= 0, ∃ z ∈ F s.t. x · z = 1.

DL x · (y + z) = x · y + x · z
Items (A2,A3,M2,M3,DL) must hold for all x, y, z ∈ F.

The number 0 in (A4) is called the zero, the number 1 in (M4) is called the one

or identity, the number w in (A5) is called the negative of x and is written as −x,

and the number z in (M5) is called the inverse or reciprocal of x and is written as
1
x
or x−1.

An ordered field is a field F with a relation/ordering < such that

O1 ∀x, y ∈ F exactly one of the relations x < y, y < x, or y = x holds

O2 if x < y and y < z, then x < z

O3 if x < y, then x+ z < y + z

O4 if x < y and z > 0, then xz < yz

Here of course, x, y, z ∈ F.

Examples. The set Q is an ordered field, that is it obeys these 11 + 4 axioms.

The following are “examples of proving the obvious”. Why do we want to do

this? Answer: 1) they are examples of showing how all properties we know about

numbers, and say are obvious, are actually derivable from the dozen or so rules

(A1, A2, · · · ) above, and 2) for practice at proving things and using mathematical

logic.

Theorem 3.2. Let x, y, z be in an ordered field F.
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(a) If x+ z = y + z, then x = y,

(b) x · 0 = 0,

(c) (−1) · x = −x,

(d) xy = 0 ⇔ x = 0 or y = 0,

(e) x < y ⇔ −y < −x,

(f) If x < y and z < 0, then xz > yz

(g) If xz = yz, and z 6= 0 then x = y.

Proof. (a) If x+z = y+z, then adding −z, we get (x+z)+(−z) = (y+z)+(−z).

Now (x+ z) + (−z) = x + (z + (−z)) by (A3), which equals x+ 0 by (A5), which

equals 0+x by (A2) and (A4). So (x+z)+(−z) = x and similarly (y+z)+(−z) = y.

So x = y.

(b) By A4, x · 0 = x · (0 + 0)
DL
= x · 0+ x · 0. By A4 again, 0+ x · 0 = x · 0+ x · 0.

So by (a), 0 = x · 0.
(c) By M2, we have

x+ (−1) · x = x+ x · (−1)
M4
= x · 1 + x · (−1)

DL
= x · [1 + (−1)]

A5
= x · 0 (b)

= 0.

By A5, (−1) · x = −x

(d) (⇐) If y = 0, then xy = x · 0 (b)
= 0. If x = 0, then xy = 0 · y M2

= y · 0 (b)
= 0.

(⇒) Suppose that xy = 0 and x 6= 0. We prove that y = 0. Since x 6= 0, there

is an inverse 1
x
s.t.

(

1
x

)

· x M2
= x ·

(

1
x

) M5
= 1. Thus

0
(b)
=

(

1

x

)

· (xy) M3
=

(

1

x
· x

)

· y = 1 · y M4
= y.

So y = 0.

(e) (⇒) x < y
O3⇒ x+ [(−x)+ (−y)] < y+ [(−x)+ (−y)]

A2⇒ x+ [(−x)+ (−y)] <

y + [(−y) + (−x)]
A3⇒ [x + (−x)] + (−y) < [y + (−y)] + (−x)

A5⇒ 0 + (−y) <

0 + (−x)
A2,A4⇒ −y < −x.

(⇐) is similar.

(f) If z < 0, then −0 < −z by (e). Since 0 + 0 = 0 by A4, and 0 + (−0) = 0 by

A5, we have −0 = 0 and 0 < −z. Thus if x < y then by O4 we have x(−z) < y(−z).

Now −z = (−1)z by (c), and so

x(−z) = x[(−1)z]
M3
= [x(−1)]z

M2
= [(−1)x]z

M3
= (−1)(xz)

(c)
= −(xz).

Similarly, y(−z) = −(yz). Thus, −(xz) < −(yz), and then (e) gives yz < xz.

(g) Similar to (a) but using the product rather than +, and 1 rather than 0 and

1/z rather than z. �

From Calculus (or before) we recall the absolute value of a number:

|x| =
{

x, if x ≥ 0
−x, if x < 0

Some also call this the modulus or mod x.
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Theorem 3.3. (a) |x| ≥ 0,

(b) If a ≥ 0 then |x| ≤ a ⇔ −a ≤ x ≤ a; and in particular −|x| ≤ x ≤ |x|,
(c) |xy| = |x| · |y|,
(d) |x+ y| ≤ |x|+ |y| (“triangle inequality”)

(e) | − x| = |x| and |x− y| = |y − x|.
(f) ||x| − |y|| ≤ |x− y|.

Proof. (a) If x ≥ 0 then |x| = x ≥ 0. If x < 0, then |x| = −x > 0, as we saw in

the last proof somewhere. So in both cases, |x| ≥ 0.

(b) (⇒) If |x| ≤ a and x ≥ 0, then −a ≤ 0 ≤ x = |x| ≤ a. If x < 0, then

−x = |x| ≤ a ⇒ x ≥ −a. Thus, −a ≤ x < 0 ≤ a.

(⇐) Suppose −a ≤ x ≤ a. If x ≥ 0, then x = |x| ≤ a. If x < 0, a ≥ −x = |x|.
(c) Do as an exercise (Hint: consider four cases depending on whether x and y

are both positive, both negative, or have opposite signs. For example, if x ≥ 0, y < 0

then xy ≤ 0 and so |xy| = −(xy) = x(−y) = |x| · |y|).
(d) By (b) we have −|x| ≤ x ≤ |x| and −|y| ≤ y ≤ |y|. Adding these together:

−(|x|+|y|) ≤ x+y ≤ |x|+|y|. Hence, by (b) again (but used in the other direction),

|x+ y| ≤ |x|+ |y|.
(e) The first follows from (c) with y = −1, the second follows from the first with

x replaced by y − x (of course −(y − x) = x− y).

(f) |x| = |x−y+y| ≤ |x−y|+ |y| by the triangle inequality. So |x|−|y| ≤ |x−y|.
Similarly, |y| − |x| ≤ |y − x| = |x− y| (using (e) too), so mulyiplying by −1 we get

|x| − |y| ≥ −|x− y|. So −|x− y| ≤ |x| − |y| ≤ |x− y|; hence ||x| − |y|| ≤ |x− y| by
(b). �

Another useful form: |a − b| ≤ |a − c| + |c − b|. This follows from the triangle

inequality: |a− b| = |a− c+ c− b| ≤ |a− c|+ |c− b|.

We will prove later that square roots exist. For now let us just take it on faith.

Proposition 3.4.
√
2 is irrational.

Proof. We will use the ‘prime factorization’ from earlier courses: any n ∈ N may

be uniquely written as n = pm1

1 pm2

2 · · · pmk

k where 1 < p1 < p2 < · · · < pk are

primes, and mk ∈ N. Such primes p1, · · · , pk are called the prime factors of n.

Note that then n2 = p2m1

1 p2m2

2 · · · p2mk

k ; from which one can deduce that n and n2

have exactly the same prime factors. BWOC, suppose
√
2 = m

n
, where m,n ∈ Z

and n 6= 0 and m and n have no common prime factors. Then 2 = m2

n2 , so that

2n2 = m2. Thus m2 is ‘divisible’ by 2; that is 2 is one of its prime factors. Hence

2 must be one of the prime factors of m (Why?). Thus, m = 2k for some k ∈ Z.

But then 2n2 = (2k)2 = 22k2, so that n2 = 2k2. So 2 is a prime factor of n2, hence
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2 is a prime factor of n. This contradicts the fact that m and n have no common

prime factors. �

Remark A similar proof shows that
√
p is irrational for any prime number p.

Homework 1.

See course webpage.

3.3. The completeness axiom. The next bit you also saw in Calculus I and it is

in the official syllabus for the “Transitions” course:

Definitions Let S be a nonempty subset of F. A number M ∈ F is called an

upper bound for S if x ≤ M, ∀x ∈ S. If there exists an upper bound for S then

we say that S is bounded above, otherwise S is unbounded above.

Similarly, a number m ∈ F is a lower bound for S, and the set S is bounded

below, if m ≤ x, ∀x ∈ S. Otherwise S is unbounded below.

The set S is bounded if it is bounded below and above.

An upper bound β of the subset S, which has the property that β ≤ M for

every upper bound M for S, is called the least upper bound or supremum of S. It

is denoted by lub(S) or sup(S).

Similarly, a lower bound α of S, which has the property that α ≥ m for every

lower bound m for S, is called the greatest lower bound or infimum of S. It is

denoted by glb(S) or inf(S).

If an upper bound M is an element of S, then it is called the maximum of S

(largest element), denoted by max(S). Clearly this is the least upper bound of

S, since any other upper bound of S is ≥ max(S) (because max(S) ∈ S). So

max(S) = sup(S) in this case. If no upper bounds of S are in S we say that S has

no maximum, or that no maximum exists.

Similarly, if a lower bound m is an element of S, then it is called the minimum

(least element), denoted by min(S). Clearly this is the greatest lower bound of S,

so min(S) = inf(S) in this case.

Remarks. 1) It is not obvious that least upper bounds or greatest lower bounds

exist. In fact they do not in the field F = Q.

2) Any nonempty subset T of a bounded set S is bounded. Proof: If M is an

upper bound for S, it is also an upper bound for T ⊂ S. The same holds for lower

bounds.

We say that an ordered field F has the completeness property (CP) if every

nonempty subset S of F which is bounded above, has a least upper bound in F.
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Theorem 3.5. There exists one and only one ordered field that satisfies the com-

pleteness property (CP).

We define the real numbers R to be the one and only one complete ordered field

in the last theorem. A real number is a member, or element, of this one and only

one complete ordered field. We will not prove this theorem (due to Dedekind and

Cantor), it is too lengthy. In practice this means that we take the completeness

property (CP) as an axiom, we are taking it on faith. It also means that all the

properties of the real numbers that we learned in high school, are deducible, or can

be proved, from the 16 properties above (A1–A5,M1–M5, DL, O1-O4, CP). We did

some of this in Theorem 3.2 above.

• It is easy to prove from (CP) that every nonempty subset of R which is

bounded below has a greatest lower bound or inf. Indeed in Homework 2

you will prove that if S is a nonempty set, then S is bounded below iff

T = {−x : x ∈ S} is bounded above, and in this case inf(S) = − sup(T ).

• A moments thought shows that a nonempty set in R which is bounded

above (resp. below) has a maximum (resp. minimum) iff sup(S) ∈ S (resp.

inf(S) ∈ S).

Examples:

(a) The finite set S = {2, 4, 6, 8} is bounded. The upper bounds of this set, are

all numbers x ≥ 8. Since the upper bound 8 is in S, we have max(S) =

sup(S) = 8. Similarly, the lower bounds of this set, are all numbers x ≤ 2,

and min(S) = inf(S) = 2.

By the same argument, any finite set is bounded, and has a maximum

and a minimum, which equal the sup and inf respectively.

(b) The interval S = [1,∞) has no upper bounds, but is bounded below. Since

one of its lower bounds, namely 1, is in S, we have min(S) = inf(S) = 1.

(c) The interval S = (0, 4] is bounded. The upper bound 4 is in S, so max(S) =

sup(S) = 4. The lower bound 0 is not in the set S. Indeed the set has

no minimum. To see that 0 = inf(S), BWOC (by way of contradiction)

suppose that there existed a lower bound m of S with m > 0. Since m

is a lower bound, m ≤ 4, and so 0 < m
2 < m ≤ 4. Hence m

2 ∈ S. But

this contradicts the fact that m is a lower bound of S (since m > m
2 ∈ S).

Hence 0 is the greatest lower bound: that is, 0 = inf(S).

(d) The interval S = [1, 2). As in (b) we have 1 = min(S) = inf(S). Clearly

2 is an upper bound of S. BWOC, suppose that there existed an upper

bound M of S with M < 2. Since M is an upper bound of S we have

M ≥ 1. If one draws a picture of the number line one sees the problem:

if M < 2 then numbers between M and 2 like the average M+2
2 , are in S


