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Department of Mathematics, University of Houston
Math 3333 - Intermediate Analysis - David Blecher
Final exam—August 2010.

Instructions. Time= 3 hours. Put all books and papers at the side of the room. Show all working
and reasoning, the points are almost all for logical, complete reasoning. [Approximate point values
are given, total = approximately 200 points plus 42 bonus points].

1. Write the negation of the statement: Ve > 0, 36 > 0 such that |f(z) — L| < € whenever

O<|r—¢c/ <dand z € D. 5]
Solution: 3¢ > 0s.t. V9§ >0, Iz € Ds.t. 0 < |z —¢| <0, but |f(z) — L] > e. 5]
2. Prove that between every two real numbers, there is a rational number. [13]

Solution: Suppose that z < y. By the Archimidean principle, choose n € N with n(y—z) >
1. So the distance between nx and ny is > 1. Thus by a lemma in class there must exist
m € Z with nx < m < ny. Dividing by n we have r < ™ < y.

3. (a) What is a boundary point of a set S as defined in the notes? 3]
(b) What does it mean for a set to be open (as defined in the notes)? 2]

(c) Prove that a set S is open if and only if for any = € S there exists a € > 0 such that
(x—ex+¢€) CS. [7]
Solution. (a) This is a number x such that for every e > 0, we have (z —e,x+€)NS # 0

and (x — e,z +€) N S° # 0. 3]
(b) That it contains none of its boundary points. 2]

(c) Suppose z € S. Then to say that there exists a € > 0 such that (zr — e,z +¢) C S, is
the same as saying that x is not a boundary point for S. (because a x is a boundary point
for S iff for every € > 0, we have (z —e, x4+ ¢€) NS¢ # (), and the negation of this is that there
exists a € > 0, such that (x —e,x +¢€) C S.) Saying S is open is the same as saying that S
contains none of its boundary points, and this is the same as saying that for any x € S, z
is not a boundary point. Thus saying S contains none of its boundary points is the same as

saying that for any x € S, there exists a € > 0 such that (r — e,z +¢€) C S. [7]
4. (a) Prove that if S is bounded above then sup(S) is a boundary point of S. [10]
(b) Prove that a closed set S which is bounded above has a maximum. 5]

Solution. (a) Let a = sup S, and let € > 0 be given. Since « is an upper bound of S,
the interval (o, @ + €) contains no points of S, and hence contains points of S¢. On the
other hand, o — € is not an upper bound of S, so the interval (o — €, &) must contain a point
in S. Thus the interval (a«—e, a+€) contains both points of S and points of S. So o € bd(S5).

(b) By (a), sup(S) € Bdy(S) € S. So S has a maximum.



5.Let S={1+2:neN}

(a) Prove that 1 =inf S (give all details). [7]
(b) Find all boundary points of S, and prove (using an e argument) that the smallest of

these numbers is a boundary point. [7]
(c) Is this set open? Why? Is it closed? Why? 4]

Solution. (a) Certainly 1 is a lower bound. However, if & > 1 then o — 1 > 0, so by the
Archimidean property we can find n € N with % < a — 1. This implies that 1 + % < a, S0
that « is not a lower bound of S. So 1 = inf S. [7]

(b) The boundary points are SU{1}. To see that 1 is a boundary point, if € > 0 is given
notice that (1 —¢,1+ €) contains points in S¢ (e.g. 1), and points in S, by the argument in

(a) (taking @ = 1 +¢). [7]
(c) It is not open, since it contains some of its boundary points. It is not closed since it
does not contain the boundary point 1. [4]

6. (a) Define what we mean by lim,, .., s, = s (the definition involving ¢). [4]
(b) Prove that if s, — s and ¢, — t # 0, then 3 — . [12]

(c) Prove that a decreasing bounded sequence converges to its infimum. 8]
Solution. (a) That given any € > 0, 3N such that |s, — s| < ¢ whenever n > N. 4]

(b) Note that

S| [Snt —tns|  |spt — st + st —tys]| < st — st| + |st —tps|  |sp — s|[t] + [s||t — 1,
t tnt [tllt] - [tl[t] [tallt]
By Fact 8, AN s.t. [t,| > |t|/2 for n > N. Thus for n > N,
Sn S| |sn — s||t] + |s|]t — ta] 2
2 < (|50 — st t—t,)).
- g < el =B < — sl + Bl — )
Since |s, — s| — 0 and |t — t,| — 0, as n — oo, by Fact 3 (or another part of Fact 9) it
follows that |s,, — s||t| + |s||t — t,] — 0 too. By Fact 3 again, ﬁ(\sn — s|[t| +|s||t —tn]) — 0O
as n — oo. Thus we conclude from Fact 6, that = — § as n — oo. [12]
(¢) If (s,) is an decreasing bounded sequence, then {s, : n = 1,2,---} has a greatest
lower bound m say. Since m + € is not a lower bound there exists N with sy < m +e. If
n> N then M +€> sy >s, >m>m—e. Thus s, — m. 8]
7. Prove that lim, % =1 8]
Solution. 5% 1= 52t = ~27%2 . Thuy

- n2+2n+2 - n? n  n?
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Therefore lim,, % = 1. 8]



8. (a) If (s,) is a sequence, then what is a subsequence of (s,)? [4]

(b) State the Bolzano-Weierstrass theorem for sequences. [4]
(c) Complete the sentence: “A number z is in the closure S of a set S iff for every € > 0,
the intersection of S with ....". 3]

Solution: (a) It is a sequence (s, ), where n, € N with ny <ng <ns < ---.
(b) Every bounded sequence has a convergent subsequence. 3]

(¢) ... with (x — €, + €) is not empty.

9. Using the e-6 definition, show that lim,_,; ””;%44 = 1. [15]
Solution: We have
% —4 ’_|x2—4—(:1c—4)]_|x2—x|_|x||x—1|
xr—4 |z — 4] Cjx—4] |z —4]

If [#—1] <1then0 <z <2and —4 < 2 —4 < —2 so that |z — 4] > 2. Thus 2zl <

jo—1]
@ = |x — 1]. So given € > 0 choose § < e and 6 < 1. If 0 < |z — ¢| < ¢ then by the
calculations above,
% —4 |||z — 1
— =l = —1l<d<e
x—4 ‘ |z — 4] [z =1l ‘
10. Suppose that f: (a,b) = R, g: (a,b) =R, L€ R, and a < ¢ < b.
(a) State and prove our ‘Main Theorem #1’ (a criterion for when lim, .. f(z) = L in
terms of sequences converging to c). [27]
(b) If C < f(x) < D for all z, and if lim,_.. f(x) = L, prove C < L < D. 6]

Solution: (a) lim,_.. f(xz) = L iff whenever (s,) is a sequence in (a,b) \ {c} with s, — ¢
then f(s,) — L.

Suppose that lim, . f(xz) # L. Thus Je > 0 such that V§ > 0, 3z € (¢ — J,c + ) such
that © # ¢ and |f(z) — L| > e. Taking § = &, there exists s, € (¢ — +,¢ 4 1) such that
sp # ¢ and |f(s,) — L| > €. Clearly s,, — ¢ by ‘squeezing/pinching’ fact about sequences,
but f(s,) does not converge to L. [10]

Conversely, suppose that lim,_,. f(z) = L. Thatis, givene >0 36 > 0s.t. |f(z)—L| <€
whenever 0 < |v —¢| < 4. If s, — ¢, 8, # ¢ then IN s.t. 0 < |s, — ¢| < 0 whenever n > N.
So if n > N then |f(s,) — L| <€, and so f(s,) — f(c). [10]

(b) Let (s,) be a sequence in (¢,b) with s, — ¢. Then f(s,) — L by (a). However
C < f(sn) < D, so by a Fact from the Sequences handout, C' < L < D.

11. Define what it means for f to be continuous at ¢, and write down three other equivalent
conditions. [11]

Soln. For every € > 0 there exists a § > 0 such that |f(z) — f(c)| < e whenever |z —¢| < 6.

An equivalent condition: lim,_.. f(x) = f(c¢). Anotheris: f(s,) — f(c) whenever s,, — ¢,
sp € (a,b). Another is: Given a nhd U of f(c) , there exists a nhd V of ¢ with f(V N(a,b)) C
U.



12. (a) State the intermediate value theorem. 6]
(b) Let K > 1 and consider the function f(z) = z?> — K. By looking at f(0) and f(K),
and using the IVT, show that v/K exists. (5]

Soln. (a) If f : [a,b] — R is continuous, and if z is a number between f(a) and f(b) then
there exists a ¢ € (a,b) with f(c) = z. 6]

(b) f(0)=—-K < 0. f(K)=K?*— K > 0. So by the IVT there exists a ¢ € (a,b) with
f(c) =0. That is, ¢* = K. 5]

13. If f,g: (a,b) — R is differentiable at ¢ € (a,b), prove that the product f(z)g(z) is differen-
tiable at c. 8]

Soln. We have L@@ =1g(e) _ floe)=fale) | [@Q=f€ale) _ () sle)=ale) | () L)=S()

By a theorem in class, f is continuous at ¢, that is, lim,_. f(x) = f(c). So

g L0900 = O _ 0y 90 =500 0 0= _ g 4
14. (a) State the mean value theorem. 6]
(b) Prove that if f'(x) = ¢'(z) for all x € (a,b) then f(z) = g(x)+C on (a,b) for a constant
C. 4]

Soln. (a) If f: [a,b] — R is continuous, and f is differentiable on (a,b), then there exists

¢ € (a,b) with f'(c) = (f(b) — f(a))/(b—a). [6]

(b) Let h = f—g, then b’ = 0, so by another corollary of the MVT, h = C for a constant

C. Thus f(z) = g(z) + C. 4]

15. (a) State Riemann’s condition for integrability. [4]
(b) What is a uniformly continuous function? [4]

(c) Prove that a continuous function f : [a,b] — R is integrable. [15]

Soln. (a) Riemann’s condition states that a bounded function f : [a,b] — R is integrable
iff for every € > 0 there exists a partition P of [a, b] such that U(f, P) — L(f,P) <e.  [4]

(b) Ye >0, 36 > 0 such that |f(z) — f(y)| < € whenever z,y € D, and |z —y| < . [4]



16.

(¢) By a theorem in class, f is uniformly continuous since [a, b] is compact. Thus given
¢ > 0, there is a number § > 0 such that |f(z) — f(y)| < ;= whenever z,y € [a,b] and
|z —y| < d. Choose a partition P = {xg, 1, ,x,} of [a,b] such that Az, =z — a1 <6
for every k =1,2,--- ,n. Consider the interval [z)_1,z;]. By the Min-max theorem, f has
a maximum value M, and a minimum value my, on this interval; so there are numbers s and

tin [zg_1, xx) with f(s) = My, f(t) = my. Since |s — t| < Az < §, we conclude that
€
My —my = |f(s) = f(t)] < P a

b
Now
k=1 k=1 k=1
and so .
€ €
P)—L(f,P A = (b— = e

U(P)=LP) < 3 Anp s = (=) =

Thus f satisfies ‘Riemann condition’ (b) above, and so f is integrable. [15]

State and prove the second fundamental theorem of calculus (about integrating a derivative).
[5+18]

Soln. If f : [a,b] — R is continuous, and is differentiable on (a,b), and if f’ is integrable
on [a,b] (set f'(a) = f'(b) = 0 if they are not already defined), then [° f'dz = f(b) — f(a).

Proof: Suppose that P = {zg, z1,- - ,x,} is a partition of [a, b]. By the MVT on [zy_1, xk]
there is a number t; € (zx_1, xx) such that f(zx) — f(xg—1) = f'(tx)(2x — xx—1) . Thus

n

F0) — F(@) = 3 (Flaw) — flre)) = z £ () (2 — ).

k=1
On the other hand, we have by an observation in class about Riemann sums,

L P) < S f(t)(an — wes) < US, P),

k=1
and so
L(f', P) < f(b) = f(a) SU(f", P).
Taking the supremum over partitions P we get
b
/ f'dx = L(f") = sup{L(f', P) : partitions P} < f(b) — f(a).
Similarly, taking the infimum over partitions P we get

fb) = fla) <Uf) = /ab fde.
Thus [} f'dz = f(b) — f(a).



