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Final exam–August 2010.

Instructions. Time= 3 hours. Put all books and papers at the side of the room. Show all working
and reasoning, the points are almost all for logical, complete reasoning. [Approximate point values
are given, total = approximately 200 points plus 42 bonus points].

1. Write the negation of the statement: ∀ε > 0, ∃ δ > 0 such that |f(x) − L| < ε whenever
0 < |x− c| < δ and x ∈ D. [5]

Solution: ∃ε > 0 s.t. ∀δ > 0, ∃x ∈ D s.t. 0 < |x− c| < δ, but |f(x)− L| ≥ ε. [5]

2. Prove that between every two real numbers, there is a rational number. [13]

Solution: Suppose that x < y. By the Archimidean principle, choose n ∈ N with n(y−x) >
1. So the distance between nx and ny is > 1. Thus by a lemma in class there must exist
m ∈ Z with nx < m < ny. Dividing by n we have x < m

n
< y.

3. (a) What is a boundary point of a set S as defined in the notes? [3]
(b) What does it mean for a set to be open (as defined in the notes)? [2]
(c) Prove that a set S is open if and only if for any x ∈ S there exists a ε > 0 such that

(x− ε, x+ ε) ⊂ S. [7]

Solution. (a) This is a number x such that for every ε > 0, we have (x− ε, x+ ε)∩S 6= ∅
and (x− ε, x+ ε) ∩ Sc 6= ∅. [3]

(b) That it contains none of its boundary points. [2]

(c) Suppose x ∈ S. Then to say that there exists a ε > 0 such that (x− ε, x+ ε) ⊂ S, is
the same as saying that x is not a boundary point for S. (because a x is a boundary point
for S iff for every ε > 0, we have (x− ε, x+ ε)∩Sc 6= ∅, and the negation of this is that there
exists a ε > 0, such that (x− ε, x+ ε) ⊂ S.) Saying S is open is the same as saying that S
contains none of its boundary points, and this is the same as saying that for any x ∈ S, x
is not a boundary point. Thus saying S contains none of its boundary points is the same as
saying that for any x ∈ S, there exists a ε > 0 such that (x− ε, x+ ε) ⊂ S. [7]

4. (a) Prove that if S is bounded above then sup(S) is a boundary point of S. [10]
(b) Prove that a closed set S which is bounded above has a maximum. [5]

Solution. (a) Let α = supS, and let ε > 0 be given. Since α is an upper bound of S,
the interval (α, α + ε) contains no points of S, and hence contains points of Sc. On the
other hand, α− ε is not an upper bound of S, so the interval (α− ε, α) must contain a point
in S. Thus the interval (α−ε, α+ε) contains both points of Sc and points of S. So α ∈ bd(S).

(b) By (a), sup(S) ∈ Bdy(S) ⊂ S. So S has a maximum.
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5. Let S = {1 + 1
n

: n ∈ N}.
(a) Prove that 1 = inf S (give all details). [7]
(b) Find all boundary points of S, and prove (using an ε argument) that the smallest of

these numbers is a boundary point. [7]
(c) Is this set open? Why? Is it closed? Why? [4]

Solution. (a) Certainly 1 is a lower bound. However, if α > 1 then α− 1 > 0, so by the
Archimidean property we can find n ∈ N with 1

n
< α − 1. This implies that 1 + 1

n
< α, so

that α is not a lower bound of S. So 1 = inf S. [7]

(b) The boundary points are S ∪{1}. To see that 1 is a boundary point, if ε > 0 is given
notice that (1− ε, 1 + ε) contains points in Sc (e.g. 1), and points in S, by the argument in
(a) (taking α = 1 + ε). [7]

(c) It is not open, since it contains some of its boundary points. It is not closed since it
does not contain the boundary point 1. [4]

6. (a) Define what we mean by limn→∞ sn = s (the definition involving ε). [4]
(b) Prove that if sn → s and tn → t 6= 0, then sn

tn
→ s

t
. [12]

(c) Prove that a decreasing bounded sequence converges to its infimum. [8]

Solution. (a) That given any ε > 0, ∃N such that |sn − s| < ε whenever n ≥ N . [4]

(b) Note that

∣∣∣∣sntn − s

t

∣∣∣∣ =
∣∣∣∣snt− tnstnt

∣∣∣∣ =
|snt− st+ st− tns|

|tn||t|
≤ |snt− st|+ |st− tns|

|tn||t|
=
|sn − s||t|+ |s||t− tn|

|tn||t|
.

By Fact 8, ∃N s.t. |tn| > |t|/2 for n ≥ N . Thus for n ≥ N ,

∣∣∣∣sntn − s

t

∣∣∣∣ ≤ |sn − s||t|+ |s||t− tn||tn||t|
≤ 2

|t|2
(|sn − s||t|+ |s||t− tn|).

Since |sn − s| → 0 and |t − tn| → 0, as n → ∞, by Fact 3 (or another part of Fact 9) it
follows that |sn− s||t|+ |s||t− tn| → 0 too. By Fact 3 again, 2

|t|2 (|sn− s||t|+ |s||t− tn|)→ 0

as n→∞. Thus we conclude from Fact 6, that sn

tn
→ s

t
as n→∞. [12]

(c) If (sn) is an decreasing bounded sequence, then {sn : n = 1, 2, · · · } has a greatest
lower bound m say. Since m + ε is not a lower bound there exists N with sN < m + ε. If
n ≥ N then M + ε > sN ≥ sn ≥ m > m− ε. Thus sn → m. [8]

7. Prove that limn
n2−2

n2+2n+2
= 1. [8]

Solution. n2−2
n2+2n+2

− 1 = −4−2n
n2+2n+2

= −2 n+2
n2+2n+2

. Thus

∣∣∣∣∣ n2 − 2

n2 + 2n+ 2
− 1

∣∣∣∣∣ = 2
n+ 2

n2 + 2n+ 2
≤ 2

n+ 2

n2
= 2(

1

n
+

2

n2
→ 0.

Therefore limn
n2−2

n2+2n+2
= 1. [8]



8. (a) If (sn) is a sequence, then what is a subsequence of (sn)? [4]
(b) State the Bolzano-Weierstrass theorem for sequences. [4]
(c) Complete the sentence: “A number x is in the closure S̄ of a set S iff for every ε > 0,

the intersection of S with ....”. [3]

Solution: (a) It is a sequence (snk
), where nk ∈ N with n1 < n2 < n3 < · · · .

(b) Every bounded sequence has a convergent subsequence. [3]

(c) ... with (x− ε, x+ ε) is not empty.

9. Using the ε-δ definition, show that limx→1
x2−4
x−4

= 1. [15]

Solution: We have∣∣∣∣x2 − 4

x− 4
− 1

∣∣∣∣ =
|x2 − 4− (x− 4)|

|x− 4|
=
|x2 − x|
|x− 4|

=
|x||x− 1|
|x− 4|

.

If |x − 1| < 1 then 0 < x < 2 and −4 < x − 4 < −2 so that |x − 4| > 2. Thus |x||x−1|
|x−4| <

2|x−1|
2

= |x − 1|. So given ε > 0 choose δ < ε and δ < 1. If 0 < |x − c| < δ then by the
calculations above, ∣∣∣∣x2 − 4

x− 4
− 1

∣∣∣∣ =
|x||x− 1|
|x− 4|

< |x− 1| < δ < ε.

10. Suppose that f : (a, b)→ R, g : (a, b)→ R, L ∈ R, and a < c < b.
(a) State and prove our ‘Main Theorem #1’ (a criterion for when limx→c f(x) = L in

terms of sequences converging to c). [27]
(b) If C ≤ f(x) ≤ D for all x, and if limx→c f(x) = L, prove C ≤ L ≤ D. [6]

Solution: (a) limx→c f(x) = L iff whenever (sn) is a sequence in (a, b) \ {c} with sn → c
then f(sn)→ L.

Suppose that limx→c f(x) 6= L. Thus ∃ε > 0 such that ∀δ > 0 , ∃x ∈ (c− δ, c + δ) such
that x 6= c and |f(x) − L| ≥ ε. Taking δ = 1

n
, there exists sn ∈ (c − 1

n
, c + 1

n
) such that

sn 6= c and |f(sn) − L| ≥ ε. Clearly sn → c by ‘squeezing/pinching’ fact about sequences,
but f(sn) does not converge to L. [10]

Conversely, suppose that limx→c f(x) = L. That is, given ε > 0 ∃ δ > 0 s.t. |f(x)−L| < ε

whenever 0 < |x− c| < δ. If sn → c, sn 6= c then ∃N s.t. 0 < |sn − c| < δ whenever n ≥ N .
So if n ≥ N then |f(sn)− L| < ε, and so f(sn)→ f(c). [10]

(b) Let (sn) be a sequence in (c, b) with sn → c. Then f(sn) → L by (a). However
C ≤ f(sn) ≤ D, so by a Fact from the Sequences handout, C ≤ L ≤ D.

11. Define what it means for f to be continuous at c, and write down three other equivalent
conditions. [11]

Soln. For every ε > 0 there exists a δ > 0 such that |f(x)−f(c)| < ε whenever |x−c| < δ.

An equivalent condition: limx→c f(x) = f(c). Another is: f(sn)→ f(c) whenever sn → c,
sn ∈ (a, b). Another is: Given a nhd U of f(c) , there exists a nhd V of c with f(V ∩(a, b)) ⊂
U .



12. (a) State the intermediate value theorem. [6]
(b) Let K ≥ 1 and consider the function f(x) = x2 − K. By looking at f(0) and f(K),

and using the IVT, show that
√
K exists. [5]

Soln. (a) If f : [a, b]→ R is continuous, and if z is a number between f(a) and f(b) then
there exists a c ∈ (a, b) with f(c) = z. [6]

(b) f(0) = −K < 0. f(K) = K2 −K > 0. So by the IVT there exists a c ∈ (a, b) with
f(c) = 0. That is, c2 = K. [5]

13. If f, g : (a, b)→ R is differentiable at c ∈ (a, b), prove that the product f(x)g(x) is differen-
tiable at c. [8]

Soln. We have f(x)g(x)−f(c)g(c)
x−c = f(x)g(x)−f(x)g(c)

x−c +f(x)g(c)−f(c)g(c)
x−c = f(x) g(x)−g(c)

x−c +g(c) f(x)−f(c)
x−c .

By a theorem in class, f is continuous at c, that is, limx→c f(x) = f(c). So

lim
x→c

f(x)g(x)− f(c)g(c)

x− c
= lim

x→c
f(x)

g(x)− g(c)

x− c
+ g(c)

f(x)− f(c)

x− c
= f(c)g′(c) + g(c)f ′(c).

14. (a) State the mean value theorem. [6]
(b) Prove that if f ′(x) = g′(x) for all x ∈ (a, b) then f(x) = g(x)+C on (a, b) for a constant

C. [4]

Soln. (a) If f : [a, b]→ R is continuous, and f is differentiable on (a, b), then there exists
c ∈ (a, b) with f ′(c) = (f(b)− f(a))/(b− a). [6]

(b) Let h = f −g, then h′ = 0, so by another corollary of the MVT, h = C for a constant
C. Thus f(x) = g(x) + C. [4]

15. (a) State Riemann’s condition for integrability. [4]
(b) What is a uniformly continuous function? [4]
(c) Prove that a continuous function f : [a, b]→ R is integrable. [15]

Soln. (a) Riemann’s condition states that a bounded function f : [a, b]→ R is integrable
iff for every ε > 0 there exists a partition P of [a, b] such that U(f, P )− L(f, P ) < ε. [4]

(b) ∀ ε > 0, ∃ δ > 0 such that |f(x)− f(y)| < ε whenever x, y ∈ D, and |x− y| < δ. [4]



(c) By a theorem in class, f is uniformly continuous since [a, b] is compact. Thus given
ε > 0, there is a number δ > 0 such that |f(x) − f(y)| < ε

b−a whenever x, y ∈ [a, b] and
|x− y| < δ. Choose a partition P = {x0, x1, · · · , xn} of [a, b] such that ∆xk = xk−xk−1 < δ
for every k = 1, 2, · · · , n. Consider the interval [xk−1, xk]. By the Min-max theorem, f has
a maximum value Mk and a minimum value mk on this interval; so there are numbers s and
t in [xk−1, xk] with f(s) = Mk, f(t) = mk. Since |s− t| ≤ ∆xk < δ, we conclude that

Mk −mk = |f(s)− f(t)| < ε

b− a
.

Now

U(f, P )− L(f, P ) =
n∑
k=1

∆xkMk −
n∑
k=1

∆xkmk =
n∑
k=1

∆xk (Mk −mk),

and so

U(f, P )− L(f, P ) <
n∑
k=1

∆xk
ε

b− a
= (b− a)

ε

b− a
= ε.

Thus f satisfies ‘Riemann condition’ (b) above, and so f is integrable. [15]

16. State and prove the second fundamental theorem of calculus (about integrating a derivative).
[5+18]

Soln. If f : [a, b] → R is continuous, and is differentiable on (a, b), and if f ′ is integrable
on [a, b] (set f ′(a) = f ′(b) = 0 if they are not already defined), then

∫ b
a f

′ dx = f(b)− f(a).

Proof: Suppose that P = {x0, x1, · · · , xn} is a partition of [a, b]. By the MVT on [xk−1, xk]
there is a number tk ∈ (xk−1, xk) such that f(xk)− f(xk−1) = f ′(tk)(xk − xk−1) . Thus

f(b)− f(a) =
n∑
k=1

(f(xk)− f(xk−1)) =
n∑
k=1

f ′(tk)(xk − xk−1).

On the other hand, we have by an observation in class about Riemann sums,

L(f ′, P ) ≤
n∑
k=1

f ′(tk)(xk − xk−1) ≤ U(f ′, P ),

and so
L(f ′, P ) ≤ f(b)− f(a) ≤ U(f ′, P ).

Taking the supremum over partitions P we get∫ b

a
f ′ dx = L(f ′) = sup{L(f ′, P ) : partitions P} ≤ f(b)− f(a).

Similarly, taking the infimum over partitions P we get

f(b)− f(a) ≤ U(f ′) =
∫ b

a
f ′ dx.

Thus
∫ b
a f

′ dx = f(b)− f(a).


