NAME:

Department of Mathematics, University of Houston Math 3333 - Intermediate Analysis - David Blecher Final exam-August 2010.

Instructions. Time= 3 hours. Put all books and papers at the side of the room. Show all working and reasoning, the points are almost all for logical, complete reasoning. [Approximate point values are given, total = approximately 200 points plus 42 bonus points].

1. Write the negation of the statement: $\forall \epsilon > 0, \exists \delta > 0$ such that $|f(x) - L| < \epsilon$ whenever $0 < |x - c| < \delta$ and $x \in D$. [5]

Solution: $\exists \epsilon > 0 \text{ s.t. } \forall \delta > 0, \exists x \in D \text{ s.t. } 0 < |x - c| < \delta, \text{ but } |f(x) - L| \ge \epsilon.$ [5]

2. Prove that between every two real numbers, there is a rational number. [13]

Solution: Suppose that x < y. By the Archimidean principle, choose $n \in \mathbb{N}$ with n(y-x) > 1. 1. So the distance between nx and ny is > 1. Thus by a lemma in class there must exist $m \in \mathbb{Z}$ with nx < m < ny. Dividing by n we have $x < \frac{m}{n} < y$.

- 3. (a) What is a boundary point of a set S as defined in the notes? [3]
 - (b) What does it mean for a set to be open (as defined in the notes)?
 - (c) Prove that a set S is open if and only if for any $x \in S$ there exists a $\epsilon > 0$ such that $(x \epsilon, x + \epsilon) \subset S$. [7]

[2]

[2]

Solution. (a) This is a number x such that for every $\epsilon > 0$, we have $(x - \epsilon, x + \epsilon) \cap S \neq \emptyset$ and $(x - \epsilon, x + \epsilon) \cap S^c \neq \emptyset$. [3]

(b) That it contains none of its boundary points.

(c) Suppose $x \in S$. Then to say that there exists a $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \subset S$, is the same as saying that x is not a boundary point for S. (because a x is a boundary point for S iff for every $\epsilon > 0$, we have $(x - \epsilon, x + \epsilon) \cap S^c \neq \emptyset$, and the negation of this is that there exists a $\epsilon > 0$, such that $(x - \epsilon, x + \epsilon) \subset S$.) Saying S is open is the same as saying that S contains none of its boundary points, and this is the same as saying that for any $x \in S$, x is not a boundary point. Thus saying S contains none of its boundary points is the same as saying that for any $x \in S$, there exists a $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \subset S$. [7]

- 4. (a) Prove that if S is bounded above then $\sup(S)$ is a boundary point of S. [10]
 - (b) Prove that a closed set S which is bounded above has a maximum. [5]

Solution. (a) Let $\alpha = \sup S$, and let $\epsilon > 0$ be given. Since α is an upper bound of S, the interval $(\alpha, \alpha + \epsilon)$ contains no points of S, and hence contains points of S^c . On the other hand, $\alpha - \epsilon$ is not an upper bound of S, so the interval $(\alpha - \epsilon, \alpha)$ must contain a point in S. Thus the interval $(\alpha - \epsilon, \alpha + \epsilon)$ contains both points of S^c and points of S. So $\alpha \in bd(S)$.

(b) By (a), $\sup(S) \in Bdy(S) \subset S$. So S has a maximum.

5. Let $S = \{1 + \frac{1}{n} : n \in \mathbb{N}\}.$

- (a) Prove that $1 = \inf S$ (give all details).
- (b) Find all boundary points of S, and prove (using an ϵ argument) that the smallest of these numbers is a boundary point. [7]
- (c) Is this set open? Why? Is it closed? Why?

Solution. (a) Certainly 1 is a lower bound. However, if $\alpha > 1$ then $\alpha - 1 > 0$, so by the Archimidean property we can find $n \in \mathbb{N}$ with $\frac{1}{n} < \alpha - 1$. This implies that $1 + \frac{1}{n} < \alpha$, so that α is not a lower bound of S. So $1 = \inf S$. [7]

(b) The boundary points are $S \cup \{1\}$. To see that 1 is a boundary point, if $\epsilon > 0$ is given notice that $(1 - \epsilon, 1 + \epsilon)$ contains points in S^c (e.g. 1), and points in S, by the argument in (a) (taking $\alpha = 1 + \epsilon$). [7]

(c) It is not open, since it contains some of its boundary points. It is not closed since it does not contain the boundary point 1. [4]

- 6. (a) Define what we mean by $\lim_{n\to\infty} s_n = s$ (the definition involving ϵ). [4]
 - (b) Prove that if $s_n \to s$ and $t_n \to t \neq 0$, then $\frac{s_n}{t_n} \to \frac{s}{t}$.
 - (c) Prove that a decreasing bounded sequence converges to its infimum.

Solution. (a) That given any $\epsilon > 0$, $\exists N$ such that $|s_n - s| < \epsilon$ whenever $n \ge N$. [4]

(b) Note that

$$\left|\frac{s_n}{t_n} - \frac{s}{t}\right| = \left|\frac{s_n t - t_n s}{t_n t}\right| = \frac{|s_n t - st + st - t_n s|}{|t_n||t|} \le \frac{|s_n t - st| + |st - t_n s|}{|t_n||t|} = \frac{|s_n - s||t| + |s||t - t_n|}{|t_n||t|}.$$

By Fact 8, $\exists N \text{ s.t. } |t_n| > |t|/2 \text{ for } n \ge N$. Thus for $n \ge N$,

$$\left|\frac{s_n}{t_n} - \frac{s}{t}\right| \le \frac{|s_n - s||t| + |s||t - t_n|}{|t_n||t|} \le \frac{2}{|t|^2}(|s_n - s||t| + |s||t - t_n|).$$

Since $|s_n - s| \to 0$ and $|t - t_n| \to 0$, as $n \to \infty$, by Fact 3 (or another part of Fact 9) it follows that $|s_n - s||t| + |s||t - t_n| \to 0$ too. By Fact 3 again, $\frac{2}{|t|^2}(|s_n - s||t| + |s||t - t_n|) \to 0$ as $n \to \infty$. Thus we conclude from Fact 6, that $\frac{s_n}{t_n} \to \frac{s}{t}$ as $n \to \infty$. [12]

(c) If (s_n) is an decreasing bounded sequence, then $\{s_n : n = 1, 2, \dots\}$ has a greatest lower bound m say. Since $m + \epsilon$ is not a lower bound there exists N with $s_N < m + \epsilon$. If $n \ge N$ then $M + \epsilon > s_N \ge s_n \ge m > m - \epsilon$. Thus $s_n \to m$. [8]

7. Prove that $\lim_{n \to \infty} \frac{n^2 - 2}{n^2 + 2n + 2} = 1.$ [8]

Solution.
$$\frac{n^2-2}{n^2+2n+2} - 1 = \frac{-4-2n}{n^2+2n+2} = -2\frac{n+2}{n^2+2n+2}$$
. Thus
 $\left|\frac{n^2-2}{n^2+2n+2} - 1\right| = 2\frac{n+2}{n^2+2n+2} \le 2\frac{n+2}{n^2} = 2(\frac{1}{n} + \frac{2}{n^2} \to 0.$

Therefore $\lim_{n \to \infty} \frac{n^2 - 2}{n^2 + 2n + 2} = 1.$

[7]

[4]

[12]

[8]

[8]

- 8. (a) If (s_n) is a sequence, then what is a subsequence of (s_n) ?
 - (b) State the Bolzano-Weierstrass theorem for sequences.
 - (c) Complete the sentence: "A number x is in the closure \overline{S} of a set S iff for every $\epsilon > 0$, the intersection of S with". [3]

[4]

[4]

 $\left[15\right]$

Solution: (a) It is a sequence (s_{n_k}) , where $n_k \in \mathbb{N}$ with $n_1 < n_2 < n_3 < \cdots$.

- (b) Every bounded sequence has a convergent subsequence. [3]
- (c) ... with $(x \epsilon, x + \epsilon)$ is not empty.
- 9. Using the ϵ - δ definition, show that $\lim_{x\to 1} \frac{x^2-4}{x-4} = 1$.

Solution: We have

$$\left|\frac{x^2-4}{x-4}-1\right| = \frac{|x^2-4-(x-4)|}{|x-4|} = \frac{|x^2-x|}{|x-4|} = \frac{|x||x-1|}{|x-4|}.$$

If |x-1| < 1 then 0 < x < 2 and -4 < x - 4 < -2 so that |x-4| > 2. Thus $\frac{|x||x-1|}{|x-4|} < \frac{2|x-1|}{2} = |x-1|$. So given $\epsilon > 0$ choose $\delta < \epsilon$ and $\delta < 1$. If $0 < |x-c| < \delta$ then by the calculations above,

$$\left|\frac{x^2 - 4}{x - 4} - 1\right| = \frac{|x||x - 1|}{|x - 4|} < |x - 1| < \delta < \epsilon.$$

- 10. Suppose that $f : (a, b) \to \mathbb{R}, g : (a, b) \to \mathbb{R}, L \in \mathbb{R}$, and a < c < b.
 - (a) State and prove our 'Main Theorem #1' (a criterion for when $\lim_{x\to c} f(x) = L$ in terms of sequences converging to c). [27]
 - (b) If $C \le f(x) \le D$ for all x, and if $\lim_{x\to c} f(x) = L$, prove $C \le L \le D$. [6]

Solution: (a) $\lim_{x\to c} f(x) = L$ iff whenever (s_n) is a sequence in $(a, b) \setminus \{c\}$ with $s_n \to c$ then $f(s_n) \to L$.

Suppose that $\lim_{x\to c} f(x) \neq L$. Thus $\exists \epsilon > 0$ such that $\forall \delta > 0$, $\exists x \in (c - \delta, c + \delta)$ such that $x \neq c$ and $|f(x) - L| \geq \epsilon$. Taking $\delta = \frac{1}{n}$, there exists $s_n \in (c - \frac{1}{n}, c + \frac{1}{n})$ such that $s_n \neq c$ and $|f(s_n) - L| \geq \epsilon$. Clearly $s_n \to c$ by 'squeezing/pinching' fact about sequences, but $f(s_n)$ does not converge to L. [10]

Conversely, suppose that $\lim_{x\to c} f(x) = L$. That is, given $\epsilon > 0 \quad \exists \ \delta > 0$ s.t. $|f(x) - L| < \epsilon$ whenever $0 < |x - c| < \delta$. If $s_n \to c, s_n \neq c$ then $\exists N$ s.t. $0 < |s_n - c| < \delta$ whenever $n \ge N$. So if $n \ge N$ then $|f(s_n) - L| < \epsilon$, and so $f(s_n) \to f(c)$. [10]

(b) Let (s_n) be a sequence in (c, b) with $s_n \to c$. Then $f(s_n) \to L$ by (a). However $C \leq f(s_n) \leq D$, so by a Fact from the Sequences handout, $C \leq L \leq D$.

11. Define what it means for f to be continuous at c, and write down three other equivalent conditions. [11]

Soln. For every $\epsilon > 0$ there exists a $\delta > 0$ such that $|f(x) - f(c)| < \epsilon$ whenever $|x - c| < \delta$.

An equivalent condition: $\lim_{x\to c} f(x) = f(c)$. Another is: $f(s_n) \to f(c)$ whenever $s_n \to c$, $s_n \in (a, b)$. Another is: Given a nhd U of f(c), there exists a nhd V of c with $f(V \cap (a, b)) \subset U$.

- 12. (a) State the intermediate value theorem.
 - (b) Let $K \ge 1$ and consider the function $f(x) = x^2 K$. By looking at f(0) and f(K), and using the IVT, show that \sqrt{K} exists. [5]

[6]

Soln. (a) If $f : [a, b] \to \mathbb{R}$ is continuous, and if z is a number between f(a) and f(b) then there exists a $c \in (a, b)$ with f(c) = z. [6]

(b) f(0) = -K < 0. $f(K) = K^2 - K > 0$. So by the IVT there exists a $c \in (a, b)$ with f(c) = 0. That is, $c^2 = K$. [5]

13. If $f, g: (a, b) \to \mathbb{R}$ is differentiable at $c \in (a, b)$, prove that the product f(x)g(x) is differentiable at c. [8]

Soln. We have $\frac{f(x)g(x)-f(c)g(c)}{x-c} = \frac{f(x)g(x)-f(x)g(c)}{x-c} + \frac{f(x)g(c)-f(c)g(c)}{x-c} = f(x)\frac{g(x)-g(c)}{x-c} + g(c)\frac{f(x)-f(c)}{x-c}.$ By a theorem in class, f is continuous at c, that is, $\lim_{x\to c} f(x) = f(c)$. So

$$\lim_{x \to c} \frac{f(x)g(x) - f(c)g(c)}{x - c} = \lim_{x \to c} f(x) \frac{g(x) - g(c)}{x - c} + g(c) \frac{f(x) - f(c)}{x - c} = f(c)g'(c) + g(c)f'(c).$$

(a) State the mean value theorem. [6]
(b) Prove that if f'(x) = g'(x) for all x ∈ (a, b) then f(x) = g(x) + C on (a, b) for a constant C. [4]

Soln. (a) If $f : [a, b] \to \mathbb{R}$ is continuous, and f is differentiable on (a, b), then there exists $c \in (a, b)$ with f'(c) = (f(b) - f(a))/(b - a). [6]

(b) Let h = f - g, then h' = 0, so by another corollary of the MVT, h = C for a constant C. Thus f(x) = g(x) + C. [4]

15.	(a) State Riemann's condition for integrability.	[4]
	(b) What is a uniformly continuous function?	[4]
	(c) Prove that a continuous function $f:[a,b] \to \mathbb{R}$ is integrable.	[15]

Soln. (a) Riemann's condition states that a bounded function $f : [a, b] \to \mathbb{R}$ is integrable iff for every $\epsilon > 0$ there exists a partition P of [a, b] such that $U(f, P) - L(f, P) < \epsilon$. [4]

(b)
$$\forall \epsilon > 0, \exists \delta > 0$$
 such that $|f(x) - f(y)| < \epsilon$ whenever $x, y \in D$, and $|x - y| < \delta$. [4]

(c) By a theorem in class, f is uniformly continuous since [a, b] is compact. Thus given $\epsilon > 0$, there is a number $\delta > 0$ such that $|f(x) - f(y)| < \frac{\epsilon}{b-a}$ whenever $x, y \in [a, b]$ and $|x-y| < \delta$. Choose a partition $P = \{x_0, x_1, \dots, x_n\}$ of [a, b] such that $\Delta x_k = x_k - x_{k-1} < \delta$ for every $k = 1, 2, \dots, n$. Consider the interval $[x_{k-1}, x_k]$. By the Min-max theorem, f has a maximum value M_k and a minimum value m_k on this interval; so there are numbers s and t in $[x_{k-1}, x_k]$ with $f(s) = M_k, f(t) = m_k$. Since $|s-t| \leq \Delta x_k < \delta$, we conclude that

$$M_k - m_k = |f(s) - f(t)| < \frac{\epsilon}{b-a}$$

Now

$$U(f,P) - L(f,P) = \sum_{k=1}^{n} \Delta x_k M_k - \sum_{k=1}^{n} \Delta x_k m_k = \sum_{k=1}^{n} \Delta x_k (M_k - m_k),$$

and so

$$U(f,P) - L(f,P) < \sum_{k=1}^{n} \Delta x_k \frac{\epsilon}{b-a} = (b-a) \frac{\epsilon}{b-a} = \epsilon$$

Thus f satisfies 'Riemann condition' (b) above, and so f is integrable.

[15]

16. State and prove the second fundamental theorem of calculus (about integrating a derivative). [5+18]

Soln. If $f : [a, b] \to \mathbb{R}$ is continuous, and is differentiable on (a, b), and if f' is integrable on [a, b] (set f'(a) = f'(b) = 0 if they are not already defined), then $\int_a^b f' dx = f(b) - f(a)$.

Proof: Suppose that $P = \{x_0, x_1, \dots, x_n\}$ is a partition of [a, b]. By the MVT on $[x_{k-1}, x_k]$ there is a number $t_k \in (x_{k-1}, x_k)$ such that $f(x_k) - f(x_{k-1}) = f'(t_k)(x_k - x_{k-1})$. Thus

$$f(b) - f(a) = \sum_{k=1}^{n} \left(f(x_k) - f(x_{k-1}) \right) = \sum_{k=1}^{n} f'(t_k)(x_k - x_{k-1}).$$

On the other hand, we have by an observation in class about Riemann sums,

$$L(f', P) \le \sum_{k=1}^{n} f'(t_k)(x_k - x_{k-1}) \le U(f', P),$$

and so

$$L(f', P) \le f(b) - f(a) \le U(f', P).$$

Taking the supremum over partitions P we get

$$\int_{a}^{b} f' dx = L(f') = \sup\{L(f', P) : \text{partitions } P\} \le f(b) - f(a).$$

Similarly, taking the infimum over partitions P we get

$$f(b) - f(a) \le U(f') = \int_a^b f' \, dx.$$

Thus $\int_a^b f' dx = f(b) - f(a)$.