\qquad

Department of Mathematics, University of Houston Math 3333 - Intermediate Analysis - David Blecher Test 2 - Mock Exam

Instructions. Show all working and reasoning, the points are almost all for logical, complete reasoning. Time $=90$ mins. [Approximate point values]

1. (a) What does it mean for a sequence $\left(s_{n}\right)$ of real numbers to converge to a number s ?
(b) Prove that if $\left(s_{n}\right)$ and $\left(t_{n}\right)$ are convergent sequences, then $\left(s_{n} t_{n}\right)$ is a convergent sequence. [15].
2. Prove that a decreasing bounded sequence $\left(a_{n}\right)$ converges to $\inf _{n} a_{n}$.
3. (a) What is the definition of a Cauchy sequence?
(b) Suppose that $\left(s_{n}\right)$ is a sequence with $\left|s_{n+1}-s_{n}\right| \leq \frac{1}{2^{n}}$ for all $n \in \mathbb{N}$. Show that $\left(s_{n}\right)$ is a Cauchy sequence.
(c) Is the sequence in (b) convergent? Why?
4. Here $f: D \rightarrow \mathbb{R}$, and c is an accumulation point of D. Mark each statement True or False. If it is true, give a simple reason. If it is false, give a counterexample (you don't need to show that it is a counterexample).
(a) Every sequence of real numbers has a convergent subsequence.
(b) If $\lim _{x \rightarrow c} f(x) \neq L$ then there is a sequence $\left(s_{n}\right)$ in D which converges to c, but $\left(f\left(s_{n}\right)\right)$ does not converge to L.
(c) If $f: D \rightarrow \mathbb{R}$ is continuous and bounded on D, then $f(x)$ has a maximum and a minimum value on D.
5. Suppose that $f:(a, b) \rightarrow \mathbb{R}, g:(a, b) \rightarrow \mathbb{R}, L \in \mathbb{R}$, and $a<c<b$.
(a) Prove that $\lim _{x \rightarrow c} f(x)=L$ iff whenever $\left(s_{n}\right)$ is a sequence in $(a, b) \backslash\{c\}$ with $\lim _{n} s_{n}=c$, then $\lim _{n} f\left(s_{n}\right)=L$.
(b) Prove that if $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$, then $\lim _{x \rightarrow c} f(x) g(x)=L M$.
(c) Using (a) show that if $g(x) \leq f(x) \leq h(x)$ for all $x \in(a, b)$, and if $\lim _{x \rightarrow c} g(x)=$ $\lim _{x \rightarrow c} h(x)=L$, then $\lim _{x \rightarrow c} f(x)=L$.
(d) Show that if f is continuous, and $f(r)=0$ for all rational numbers $r \in(a, b)$, then $f(x)=0$ for all $x \in(a, b)$.
6. (a) Give the $\epsilon-\delta$ definition for a function $f:(a, b) \rightarrow \mathbb{R}$ to be continuous at a point $c \in(a, b)$.
(b) List as many other conditions as you know that are equivalent to $f:(a, b) \rightarrow \mathbb{R}$ being continuous at $c \in(a, b)$.
(c) Using the $\epsilon-\delta$ definition, show that the function $x^{3}-x$ is continuous at $x=-1$.
7. State and prove the 'min-max theorem'.
