\qquad

Department of Mathematics, University of Houston Math 3333 - Intermediate Analysis - David Blecher Mock exam Test 2 - Solutions.

1. (a) What does it mean for a sequence $\left(s_{n}\right)$ of real numbers to converge?
(b) Prove that if $\left(s_{n}\right)$ and $\left(t_{n}\right)$ are convergent sequences, then $\left(s_{n} t_{n}\right)$ is a convergent sequence. [15].

Solutions: (a) That given any $\epsilon>0, \exists N$ such that $\left|s_{n}-s\right|<\epsilon$ whenever $n \geq N$.
(b) We use Fact 6 from Handout on sequences: Note that

$$
\left|s_{n} t_{n}-s t\right|=\left|s_{n} t_{n}-s_{n} t+s_{n} t-s t\right| \leq\left|s_{n} t_{n}-s_{n} t\right|+\left|s_{n} t-s t\right|=\left|s_{n}\left(t_{n}-t\right)\right|+\left|t\left(s_{n}-s\right)\right|=\left|s_{n}\right|\left|t_{n}-t\right|+|t|\left|s_{n}-s\right| .
$$

Now $\left|s_{n}-s\right| \rightarrow 0$, so $|t|\left|s_{n}-s\right| \rightarrow 0$, as $n \rightarrow \infty$, by Fact 3. On the other hand, since $\left(s_{n}\right)$ is convergent, it is bounded, by Fact 1. Thus $\left(\left|s_{n}\right|\right)$ is bounded. By the final assertion of Fact 3, $\left|s_{n}\right|\left|t_{n}-t\right| \rightarrow 0$ as $n \rightarrow \infty$. By the first assertion of Fact 3, we now see that $\left|s_{n}\right|\left|t_{n}-t\right|+|t|\left|s_{n}-s\right| \rightarrow 0$ as $n \rightarrow \infty$. Since $\left|s_{n} t_{n}-s t\right| \leq\left|s_{n}\right|\left|t_{n}-t\right|+|t|\left|s_{n}-s\right|$, by Fact 6 we deduce that $s_{n} t_{n} \rightarrow s t$ as $n \rightarrow \infty$.
2. Prove that a decreasing bounded sequence $\left(a_{n}\right)$ converges to $\inf _{n} a_{n}$.

Solution: Let $\alpha=\inf _{n} a_{n}$. If $\epsilon>0$ then $\alpha+\epsilon$ is not a lower bound for the a_{n} 's, so there exists an N such that $a_{N}<\alpha+\epsilon$. If $n \geq N$ then

$$
\alpha-\epsilon<\alpha \leq a_{n} \leq a_{N}<\alpha+\epsilon,
$$

and so $\left|a_{n}-\alpha\right|<\epsilon$ for $n \geq N$. Thus $a_{n} \rightarrow \alpha$.
3. (a) What is the definition of a Cauchy sequence?
(b) Suppose that $\left(s_{n}\right)$ is a sequence with $\left|s_{n+1}-s_{n}\right| \leq \frac{1}{2^{n}}$ for all $n \in \mathbb{N}$. Show that $\left(s_{n}\right)$ is a Cauchy sequence.
(c) Is the sequence in (b) convergent? Why?

Solutions (a) That given any $\epsilon>0, \exists N$ such that $\left|s_{n}-s_{m}\right|<\epsilon$ whenever $m \geq n \geq N$.
(b)

$$
\begin{gathered}
\left|s_{m}-s_{n}\right|=\left|s_{m}-s_{m-1}+s_{m-1}-s_{m-2}+\cdots+s_{n+1}-s_{n}\right| \leq\left|s_{m}-s_{m-1}\right|+\left|s_{m-1}-s_{m-2}\right|+\cdots+\left|s_{n+1}-s_{n}\right| \\
\leq \frac{1}{2^{m-1}}+\frac{1}{2^{m-2}}+\cdots+\frac{1}{2^{n}} \leq \frac{1}{2^{n}}+\frac{1}{2^{n+1}}+\cdots .
\end{gathered}
$$

The latter is a geometric series with sum $\frac{2}{2^{n}}=\frac{1}{2^{n-1}}$. If $\epsilon>0$ is given choose N with $\frac{1}{2^{N-1}}=\epsilon$ (so $N=1+\log _{2}(1 / \epsilon)$). If $m \geq n \geq N$ then as above

$$
\left|s_{m}-s_{n}\right| \leq \frac{1}{2^{n-1}} \leq \frac{1}{2^{N-1}}=\epsilon,
$$

That is, $\left(s_{n}\right)$ is a Cauchy sequence.
(c) Yes, since it is Cauchy, and we proved in class that every Cauchy sequence is convergent.
4. Here $f: D \rightarrow \mathbb{R}$, and c is an accumulation point of D. Mark each statement True or False. If it is true, give a simple reason. If it is false, give a counterexample (you don't need to show that it is a counterexample).
(a) Every sequence of real numbers has a convergent subsequence.
(b) If $\lim _{x \rightarrow c} f(x) \neq L$ then there is a sequence $\left(s_{n}\right)$ in D which converges to c, but $\left(f\left(s_{n}\right)\right)$ does not converge to L.
(c) If $f: D \rightarrow \mathbb{R}$ is continuous and bounded on D, then $f(x)$ has a maximum and a minimum value on D.

Solutions (a) False, consider the sequence $1,2,3, \cdots$.
(b) True, by a 'Consequence' in the classnotes after the main theorem in Section 20.
(c) False. Let $f(x)=x$ on $D=(0,1)$.
5. Suppose that $f:(a, b) \rightarrow \mathbb{R}, g:(a, b) \rightarrow \mathbb{R}, L \in \mathbb{R}$, and $a<c<b$.
(a) Prove that $\lim _{x \rightarrow c} f(x)=L$ iff whenever $\left(s_{n}\right)$ is a sequence in $(a, b) \backslash\{c\}$ with $\lim _{n} s_{n}=c$, then $\lim _{n} f\left(s_{n}\right)=L$.
(b) Prove that if $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$, then $\lim _{x \rightarrow c} f(x) g(x)=L M$.
(c) Using (a) show that if $g(x) \leq f(x) \leq h(x)$ for all $x \in(a, b)$, and if $\lim _{x \rightarrow c} g(x)=$ $\lim _{x \rightarrow c} h(x)=L$, then $\lim _{x \rightarrow c} f(x)=L$.
(d) Show that if f is continuous, and $f(r)=0$ for all rational numbers $r \in(a, b)$, then $f(x)=0$ for all $x \in(a, b)$.

Solutions (a) See Classnotes or Text (this is the main theorem in Section 20).
(b) See Classnotes or Text.
(c) Let $s_{n} \in(a, b)$ with $s_{n} \neq c$ and $s_{n} \rightarrow c$. Then $g\left(s_{n}\right) \leq f\left(s_{n}\right) \leq h\left(s_{n}\right)$. By (a) used twice, we have $g\left(s_{n}\right) \rightarrow L$ and $h\left(s_{n}\right) \rightarrow L$. By squeezing (Fact 5 for sequences), $f\left(s_{n}\right) \rightarrow L$. By (a) again, $\lim _{x \rightarrow c} f(x)=L$.
(d) If $x \in(a, b)$, and $n \in \mathbb{N}$, by the density of the rationals we may choose a rational number $r_{n} \in(a, b)$ with $\left|x-r_{n}\right|<1 / n$. Then $r_{n} \rightarrow r$ by Fact 6 (Sequences), so by (a) above $f\left(r_{n}\right) \rightarrow f(x)$. But $f\left(r_{n}\right)=0$ so that $f(x)=0$.
6. (a) Give the $\epsilon-\delta$ definition for a function $f:(a, b) \rightarrow \mathbb{R}$ to be continuous at a point $c \in(a, b)$.
(b) List as many other conditions as you know that are equivalent to $f:(a, b) \rightarrow \mathbb{R}$ being continuous at $c \in(a, b)$.
(c) Using the $\epsilon-\delta$ definition, show that the function $x^{3}-x$ is continuous at $x=-1$.

Solutions (a) See classnotes, or Text.
(b) Here are 3 conditions: Firstly: $f\left(s_{n}\right) \rightarrow f(c)$ whenever $s_{n} \rightarrow c, s_{n} \in(a, b)$. Secondly: $\lim _{x \rightarrow c} f(x)=f(c)$. Thirdly: For any neighborhood V of $f(c)$ there exists a neighborhood U of c such that $f(x) \in V$ for all $x \in U \cap(a, b)$.
(c) Let $f(x)=x^{3}-x$, then $f(-1)=-1+1=0$. So

$$
|f(x)-f(0)|=\left|x^{3}-x-0\right|=|x(x-1)(x+1)|=|x||x-1||x+1| .
$$

If $|x-1|<1$ then $0<x<2$ and $1<x+1<3$ so that $|x||x+1|<2.3=6$. Choose $\delta>0$ so that $\delta<1$ and $\delta<\epsilon / 6$. If $|x-1|<\delta$ then by the above we have

$$
|f(x)-f(0)|=|x||x-1||x+1|<6|x-1|<6 \delta<\epsilon .
$$

Thus we have verified the $\epsilon-\delta$ definition for continuity at -1 .
7. State and prove the 'min-max theorem'.

Solution: See classnotes, or Text Corollary 22.3.

