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Mock exam Test 2 - Solutions.

1. (a) What does it mean for a sequence (sn) of real numbers to converge? [5]
(b) Prove that if (sn) and (tn) are convergent sequences, then (sntn) is a convergent sequence.

[15].

Solutions: (a) That given any ε > 0, ∃N such that |sn − s| < ε whenever n ≥ N .

(b) We use Fact 6 from Handout on sequences: Note that

|sntn−st| = |sntn−snt+snt−st| ≤ |sntn−snt|+|snt−st| = |sn(tn−t)|+|t(sn−s)| = |sn||tn−t|+|t||sn−s|.

Now |sn − s| → 0, so |t||sn − s| → 0, as n → ∞, by Fact 3. On the other hand, since
(sn) is convergent, it is bounded, by Fact 1. Thus (|sn|) is bounded. By the final assertion
of Fact 3, |sn||tn − t| → 0 as n → ∞. By the first assertion of Fact 3, we now see that
|sn||tn − t|+ |t||sn − s| → 0 as n →∞. Since |sntn − st| ≤ |sn||tn − t|+ |t||sn − s|, by Fact 6
we deduce that sntn → st as n →∞.

2. Prove that a decreasing bounded sequence (an) converges to infn an.

Solution: Let α = infn an. If ε > 0 then α + ε is not a lower bound for the an’s, so there
exists an N such that aN < α + ε. If n ≥ N then

α− ε < α ≤ an ≤ aN < α + ε,

and so |an − α| < ε for n ≥ N . Thus an → α.

3. (a) What is the definition of a Cauchy sequence?
(b) Suppose that (sn) is a sequence with |sn+1 − sn| ≤ 1

2n for all n ∈ N. Show that (sn) is a
Cauchy sequence.

(c) Is the sequence in (b) convergent? Why?

Solutions (a) That given any ε > 0, ∃N such that |sn − sm| < ε whenever m ≥ n ≥ N .

(b)

|sm−sn| = |sm−sm−1+sm−1−sm−2+ · · ·+sn+1−sn| ≤ |sm−sm−1|+ |sm−1−sm−2|+ · · ·+ |sn+1−sn|

≤ 1

2m−1
+

1

2m−2
+ · · ·+ 1

2n
≤ 1

2n
+

1

2n+1
+ · · · .

The latter is a geometric series with sum 2
2n = 1

2n−1 . If ε > 0 is given choose N with 1
2N−1 = ε

(so N = 1 + log2(1/ε)). If m ≥ n ≥ N then as above

|sm − sn| ≤
1

2n−1
≤ 1

2N−1
= ε,

That is, (sn) is a Cauchy sequence.

(c) Yes, since it is Cauchy, and we proved in class that every Cauchy sequence is convergent.
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4. Here f : D → R, and c is an accumulation point of D. Mark each statement True or False. If
it is true, give a simple reason. If it is false, give a counterexample (you don’t need to show
that it is a counterexample).
(a) Every sequence of real numbers has a convergent subsequence.
(b) If limx→c f(x) 6= L then there is a sequence (sn) in D which converges to c, but (f(sn))

does not converge to L.
(c) If f : D → R is continuous and bounded on D, then f(x) has a maximum and a minimum

value on D.

Solutions (a) False, consider the sequence 1, 2, 3, · · · .

(b) True, by a ‘Consequence’ in the classnotes after the main theorem in Section 20.

(c) False. Let f(x) = x on D = (0, 1).

5. Suppose that f : (a, b) → R, g : (a, b) → R, L ∈ R, and a < c < b.
(a) Prove that limx→c f(x) = L iff whenever (sn) is a sequence in (a, b)\{c} with limn sn = c,

then limn f(sn) = L.
(b) Prove that if limx→c f(x) = L and limx→c g(x) = M , then limx→c f(x)g(x) = LM .
(c) Using (a) show that if g(x) ≤ f(x) ≤ h(x) for all x ∈ (a, b), and if limx→c g(x) =

limx→c h(x) = L, then limx→c f(x) = L.
(d) Show that if f is continuous, and f(r) = 0 for all rational numbers r ∈ (a, b), then f(x) = 0

for all x ∈ (a, b).

Solutions (a) See Classnotes or Text (this is the main theorem in Section 20).

(b) See Classnotes or Text.

(c) Let sn ∈ (a, b) with sn 6= c and sn → c. Then g(sn) ≤ f(sn) ≤ h(sn). By (a) used twice,
we have g(sn) → L and h(sn) → L. By squeezing (Fact 5 for sequences), f(sn) → L. By (a)
again, limx→c f(x) = L.

(d) If x ∈ (a, b), and n ∈ N, by the density of the rationals we may choose a rational
number rn ∈ (a, b) with |x− rn| < 1/n. Then rn → r by Fact 6 (Sequences), so by (a) above
f(rn) → f(x). But f(rn) = 0 so that f(x) = 0.

6. (a) Give the ε− δ definition for a function f : (a, b) → R to be continuous at a point c ∈ (a, b).
(b) List as many other conditions as you know that are equivalent to f : (a, b) → R being

continuous at c ∈ (a, b).
(c) Using the ε− δ definition, show that the function x3 − x is continuous at x = −1.

Solutions (a) See classnotes, or Text.

(b) Here are 3 conditions: Firstly: f(sn) → f(c) whenever sn → c, sn ∈ (a, b). Secondly:
limx→c f(x) = f(c) . Thirdly: For any neighborhood V of f(c) there exists a neighborhood
U of c such that f(x) ∈ V for all x ∈ U ∩ (a, b).



(c) Let f(x) = x3 − x, then f(−1) = −1 + 1 = 0. So

|f(x)− f(0)| = |x3 − x− 0| = |x(x− 1)(x + 1)| = |x||x− 1||x + 1|.
If |x− 1| < 1 then 0 < x < 2 and 1 < x + 1 < 3 so that |x||x + 1| < 2.3 = 6. Choose δ > 0 so
that δ < 1 and δ < ε/6. If |x− 1| < δ then by the above we have

|f(x)− f(0)| = |x||x− 1||x + 1| < 6|x− 1| < 6δ < ε.

Thus we have verified the ε− δ definition for continuity at −1.

7. State and prove the ‘min-max theorem’.

Solution: See classnotes, or Text Corollary 22.3.


