\qquad

Department of Mathematics, University of Houston
 Math 3333-Intermediate Analysis - David Blecher
 Test 3-August 2010

Instructions. Show all working and reasoning, the points are almost all for logical, complete reasoning. If you use a result from the class notes, state it, but you need not prove it unless you are asked to. [Approximate point values in parentheses, total $=100$ points, but there are 5 bonus points]

1. If f is integrable on $[a, b]$ then does it follow that f is differentiable on (a, b) ? Prove it or give a counterexample (and short explanation why your example fits the requirements). [7]
2. If $f(x)$ is differentiable at c, prove that $f(x)$ is continuous at c.
3. Let $f(x)=x^{2}|x|$. Prove that f is differentiable at every point.
4. (a) State and prove Rolle's theorem.
(b) State the mean value theorem.
(c) Prove that if $f^{\prime}(x) \leq 0$ for all $x \in(a, b)$ then $f(x)$ is decreasing on (a, b).
5. (a) What can you say about a function $f:(a, b) \rightarrow \mathbb{R}$ which is one-to-one and continuous? List as many consequences as you know.
(b) State the inverse function theorem.
6. (a) Define a partition P of $[a, b]$, define $L(f, P)$ and the lower integral $L(f)$.
(b) What does it mean to say that a bounded function $f:[a, b] \rightarrow \mathbb{R}$ is integrable?
(c) Give an example of a bounded function on $[0,1]$ that is not integrable (you need not explain why).
7. (a) If f and g are integrable on $[a, b]$, and $g \leq f$ on $[a, b]$, prove that $\int_{a}^{b} g d x \leq \int_{a}^{b} f d x$. [8]
(b) Suppose that $f(x) \geq 0$ for all $x \in[a, b]$, and that f is continuous on $[a, b]$, and $\int_{a}^{b} f d x=$ 0 . Prove that f is always 0 on $[a, b]$. (Hint: you could use (a), taking g as in picture.) [14]
