Abbreviated notes version for Test 3: just the definitions, theorem statements, proofs on the list. I may possibly have made a mistake, so check it. Also, this is not intended as a REPLACEMENT for your classnotes; the classnotes have lots of other things that you may need for your understanding, like worked examples.

6. The derivative

6.1. Differentiation rules. Definition: Let $f : (a, b) \to \mathbb{R}$ and $c \in (a, b)$. If the limit $\lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ exists and is finite, then we say that f is differentiable at c, and we write this limit as f'(c) or $\frac{df}{dx}(c)$. This is the derivative of f at c, and also obviously equals $\lim_{h\to 0} \frac{f(c+h)-f(c)}{h}$ by setting x = c + h or h = x - c. If f is differentiable at every point in (a, b), then we say that f is differentiable on (a, b).

Theorem 6.1. If $f : (a, b) \to \mathbb{R}$ is differentiable at at a point $c \in (a, b)$, then f is continuous at c.

Proof. If f is differentiable at c then

$$f(x) = \frac{f(x) - f(c)}{x - c}(x - c) + f(c) \to f'(c)0 + f(c) = f(c),$$

as $x \to c$. So f is continuous at c.

Theorem 6.2. (Calculus I differentiation laws) If $f, g : (a, b) \to \mathbb{R}$ is differentiable at a point $c \in (a, b)$, then

- (1) f(x) + g(x) is differentiable at c and (f+g)'(c) = f'(c) + g'(c).
- (2) f(x) g(x) is differentiable at c and (f g)'(c) = f'(c) g'(c).
- (3) Kf(x) is differentiable at c if K is a constant, and (Kf)'(c) = Kf'(c).
- (4) (Product rule) f(x)g(x) is differentiable at c, and (fg)'(c) = f'(c)g(c) + f(c)g'(c).
- (5) (Quotient rule) $\frac{f(x)}{g(x)}$ is differentiable at c if $g(c) \neq 0$, and $(\frac{f}{g})'(c) = \frac{f'(c)g(c) f(c)g'(c)}{g(c)^2}$.

Proof. In the last step of many of the proofs below we will be silently using the definition of the derivative, and the 'limit laws' from Theorem 5.2.

(1) As $x \to c$ we have

$$\frac{f(x) + g(x) - (f(c) + g(c))}{x - c} = \frac{f(x) - f(c)}{x - c} + \frac{g(x) - g(c)}{x - c} \to f'(c) + g'(c).$$

(4) We have

$$\frac{f(x)g(x) - f(c)g(c)}{x - c} = \frac{f(x)g(x) - f(x)g(c)}{x - c} + \frac{f(x)g(c) - f(c)g(c)}{x - c} = f(x)\frac{g(x) - g(c)}{x - c} + g(c)\frac{f(x) - f(c)}{x - c}.$$

By Theorem 6.1, f is continuous at c, that is, $\lim_{x\to c} f(x) = f(c)$. So

$$\lim_{x \to c} \frac{f(x)g(x) - f(c)g(c)}{x - c} = \lim_{x \to c} f(x) \frac{g(x) - g(c)}{x - c} + g(c) \frac{f(x) - f(c)}{x - c} = f(c)g'(c) + g(c)f'(c)$$

- (3) Set g(x) = K in (4), to get (Kf)'(c) = Kf'(c) + 0f(c) = Kf'(c).
- (2) By (1) and (3), (f + (-g))' = f' + (-g)' = f' g'.

(5) Since $g(c) \neq 0$, so that |g(c)| > 0, by Proposition 5.7 |g(x)|, and hence also g(x), is nonzero on a neighborhood of c. So division by g(x) in what follows is justified. We have

$$\frac{\frac{f(x)}{g(x)} - \frac{f(c)}{g(c)}}{x - c} = \frac{f(x)g(c) - g(x)f(c)}{g(x)g(c)(x - c)} = \frac{f(x)g(c) - f(c)g(c) + f(c)g(c) - f(c)g(x)}{g(x)g(c)(x - c)}.$$

This equals

$$\frac{g(c) \frac{f(x) - f(c)}{x - c} - f(c) \frac{g(x) - g(c)}{x - c}}{g(x)g(c)} \to \frac{g(c)f'(c) - f(c)g'(c)}{(g(c))^2}$$

ince by Theorem 6.1, $\lim_{x \to c} g(x) = g(c)$.

as $x \to c$, s $a_{x \to c} g(x)$ g(c)

Theorem 6.3. (Calculus I chain rule) If $f : (a, b) \to \mathbb{R}$ is differentiable at a point $c \in (a,b)$, and if $g: I \to \mathbb{R}$ is differentiable at f(c), where I is an open interval containing f((a,b)), then the composition $g \circ f$ is differentiable at c and $(g \circ f)'(c) = g'(f(c))f'(c).$

As in Calculus, a point c is called a local minimum (resp. local maximum) point for a function f if \exists a neighborhood U of c s.t. $f(c) \leq f(x)$ (resp. $f(c) \geq f(x)$) $\forall x \in V$. In this case we say that f(c) is a local minimum (resp. maximum) value of f. As in Calculus I, the word 'extreme' means either 'minimum' or 'maximum'. So we have *local extreme points* and *local extreme values*, just as in Calculus I.

Recall from Calculus that a *critical point* is a point c s.t. f'(c) does not exist or f'(c) = 0.

Theorem 6.4. (First Derivative Test) If $f:(a,b) \to \mathbb{R}$ is differentiable at a local extremum point $c \in (a, b)$, then f'(c) = 0 (and so c is a critical point).

Proof. Suppose that c is a local maximum point of f, so $f(x) \leq f(c)$ for all x in a Proof. Suppose that c is a local maximum point of f, so f(x) = f(c) for an analysis of f(c) is a local maximum point of f, so f(x) = f(c) for an analysis of f(c) is a local maximum point of f(c) is the bullet just before Proposition 5.4 with g = 0). Similarly, $\lim_{x \to c-} \frac{f(x) - f(c)}{x - c} \ge 0$. Since f is differentiable $\sum_{i=0}^{n-1} \frac{f(x) - f(c)}{x - c} \ge 0$.

 $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exists, and so these two one-sided limits must be equal by Proposition 5.4, and hence must be 0. That is, $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = 0$. The local minimum case is similar.

6.2. The mean value theorem.

Lemma 6.5. (Rolle's theorem) If $f : [a, b] \to \mathbb{R}$ is continuous, and f is differentiable on (a, b), and f(a) = f(b) = 0, then there exists $c \in (a, b)$ with f'(c) = 0.

56

Proof. To prove this, note that it is clearly true if f is constant. By the MAX-MIN theorem f has a maximum and a minimum value on [a, b]. At least one of these extreme values must be nonzero if f is not constant, and hence this value is achieved at a point c which is not a or b. By the first derivative test (Theorem 6.4), f'(c) = 0.

Theorem 6.6. (The mean value theorem) If $f : [a, b] \to \mathbb{R}$ is continuous, and f is differentiable on (a, b), then there exists $c \in (a, b)$ with f'(c) = (f(b) - f(a))/(b-a). Equivalently, f(b) - f(a) = f'(c)(b-a).

Proof. Let $g(x) = \frac{f(b)-f(a)}{b-a}(x-a) + f(a)$. Clearly $g' = \frac{f(b)-f(a)}{b-a}$. Then h = f - g is continuous on [a, b] and differentiable on (a, b). Also it is easy to check that h(a) = h(b) = 0, so by Rolle's theorem $\exists c \in (a, b)$ s.t. h'(c) = f'(c) - g'(c) = 0. Hence $f'(c) = g'(c) = \frac{f(b)-f(a)}{b-a}$.

Corollary 6.7. If $f:(a,b) \to \mathbb{R}$ has f'(x) = 0 for all $x \in (a,b)$, then f is constant on (a,b).

Proof. If a < x < y < b then by the MVT there exists c such that f(y) - f(x) = f'(c)(y - x) = 0. Thus f(x) = f(y). That is, f is constant.

Corollary 6.8. If $f : (a,b) \to \mathbb{R}$ has f'(x) > 0 for all $x \in (a,b)$ then f(x) is strictly increasing on (a,b). Similarly, if $f'(x) \ge 0$ (resp. $f'(x) < 0, f'(x) \le 0$) for all $x \in (a,b)$ then f(x) is increasing (resp. strictly decreasing, decreasing) on (a,b).

Proof. We just prove one, the others are similar. Suppose that f'(x) > 0 for all $x \in (a, b)$. If a < x < y < b then by the MVT there exists c such that f(y) - f(x) = f'(c)(y - x) > 0, since f'(c) > 0. Thus f(x) < f(y). So f is strictly increasing on (a, b).

Corollary 6.9. If f'(x) = g'(x) for all $x \in (a, b)$ then there exists a constant C such that f(x) = g(x) + C for all $x \in (a, b)$.

6.3. Taylors theorem and the second derivative test. Here is a version of the Calculus II Taylor's theorem:

Theorem 6.10. Suppose that $n \in \mathbb{N}$ (or n = 0). If $f : (a, b) \to \mathbb{R}$ is n + 1 times differentiable, and the first n of these derivatives are continuous on (a, b), and if $x_0 \in (a, b)$, then for every $x \in (a, b)$ with $x \neq x_0$ there is a number c between x_0 and x such that

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}.$$

Remark. Note that the MVT 6.6 is essentially the case n = 0 of the last theorem.

A number c is a strict local minimum (resp. local maximum) point for a function f if \exists a deleted neighborhood U of c s.t. f(c) < f(x) (resp. f(c) > f(x)) $\forall x \in U$.

Theorem 6.11. (The second derivative test (Calculus I)) Suppose that f''' is continuous on a neighborhood of c. If f'(c) = 0 and f''(c) > 0 then f has a strict local minimum at x = c. If f'(c) = 0 and f''(c) < 0 then f has a strict local maximum at x = c.

Proof. Suppose f''(c) > 0. Setting n = 2 and x = c + h, $x_0 = c$ in Taylors theorem above, we have

$$f(c+h) - f(c) = f'(c)h + \frac{f''(c)}{2}h^2 + \frac{f'''(d)}{6}h^3$$

where d is a number between c and c + h. As $h \to 0$ we have $d \to c$, so that $f'''(d) \to f'''(c)$ and $f'''(d)h \to f'''(c) \cdot 0 = 0$. So since f'(c) = 0,

$$\frac{f(c+h) - f(c)}{h^2} = \frac{f''(c)}{2} + \frac{f'''(d)}{6}h \to \frac{f''(c)}{2} > 0,$$

as $h \to 0$. By Proposition 5.3, there exists $\delta > 0$, such that $\frac{f(c+h)-f(c)}{h^2} > 0$ for $h \in (-\delta, \delta)$. So f(c+h) - f(c) > 0, or f(c+h) > f(c), for $h \in (-\delta, \delta)$. This says that f has a strict local minimum at x = c.

The case f''(c) < 0 is similar, except

$$\frac{f(c+h) - f(c)}{h^2} = \frac{f''(c)}{2} + \frac{f'''(d)}{6}h \to \frac{f''(c)}{2} < 0,$$

as $h \to 0$. This implies that there exists $\delta > 0$, such that $\frac{f(c+h)-f(c)}{h^2} < 0$ for $h \in (-\delta, \delta)$, and so as above f(c+h) < f(c), for $h \in (-\delta, \delta)$. This says that f has a strict local maximum at x = c.

6.4. The open mapping/Inverse function theorems.

Theorem 6.12. Suppose that $f : (a, b) \to \mathbb{R}$ is a one-to-one continuous function. Then f is either strictly increasing on (a, b), or it is strictly decreasing on (a, b).

Recall that the notation f(E) means $\{f(x) : x \in E\}$.

Proposition 6.13. Suppose that $f : (a,b) \to \mathbb{R}$ is a one-to-one continuous function. Then f((a,b)) is an open interval.

Theorem 6.14. Suppose that $f : (a, b) \to \mathbb{R}$ is a one-to-one continuous function. Then f^{-1} is continuous. **Theorem 6.15.** (The inverse function theorem) Suppose that $f:(a,b) \to \mathbb{R}$ is a differentiable function with $f'(x) \neq 0$ for all $x \in (a,b)$. Then f is one-to-one, its range f((a,b)) is an open interval (c,d), and for any $y \in (c,d)$, we have

$$(f^{-1})'(y) = \frac{1}{f'(x)}, \qquad f(x) = y.$$

7. INTEGRATION-THE RIEMANN INTEGRAL

Throughout this chapter $f : [a, b] \to \mathbb{R}$ is a bounded function. That is, there are two constants m and M such that $m \leq f(x) \leq M$ for all $x \in [a, b]$. Equivalently, there is a constant K such that $|f(x)| \leq K$ for all $x \in [a, b]$, or equivalently, Range(f) is a bounded set.

Main definitions for this Chapter (from Calculus 1): [Pictures drawn in class.]

- A partition P of [a, b] is an ordered set $\{x_0, x_1, \dots, x_n\}$ where $a = x_0 < x_1 < x_2 < \dots < x_n = b$.
- Let \mathcal{P} be the set of all partitions P of [a, b].
- We define $\Delta x_k = x_k x_{k-1}$, for each $k = 1, 2, \cdots, n$.
- We define $M_k = \sup\{f(t) : x_{k-1} \le t \le x_k\}$ and $m_k = \inf\{f(t) : x_{k-1} \le t \le x_k\}$, for each $k = 1, 2, \dots, n$.
- We define the upper sum $U(f, P) = \sum_{k=1}^{n} M_k \Delta x_k$. This is the sum of the areas of the red rectangles in picture.
- We define the *lower sum* $L(f, P) = \sum_{k=1}^{n} m_k \Delta x_k$. This is the sum of the areas of the green rectangles in picture.
- We define the upper integral $U(f) = \inf\{U(f, P) : P \in \mathcal{P}\}.$
- We define the lower integral $L(f) = \sup\{L(f, P) : P \in \mathcal{P}\}.$
- We say that a bounded function $f : [a, b] \to \mathbb{R}$ is *integrable* if L(f) = U(f). In this case we write $\int_a^b f \, dx$ for the number L(f) = U(f).

Some observations:

Observation 1: If $m \leq f(x) \leq M$ for all $x \in [a, b]$, then $m(b-a) \leq L(f, P) \leq U(f, P) \leq M(b-a)$, for any partition P of [a, b].

Proof. Since $m_k \leq M_k$ clearly for each $k = 1, 2, \cdots, n$, we have

$$L(f,P) = \sum_{k=1}^{n} m_k \Delta x_k \le \sum_{k=1}^{n} M_k \Delta x_k = U(f,P).$$

Since $m_k \ge m$ clearly for each $k = 1, 2, \cdots, n$, we have

$$L(f,P) = \sum_{k=1}^{n} m_k \Delta x_k \ge \sum_{k=1}^{n} m \Delta x_k = m(b-a).$$

Similarly, $U(f, P) = \sum_{k=1}^{n} M_k \Delta x_k \leq \sum_{k=1}^{n} M \Delta x_k = m(b-a).$

Definition. If P, Q are two partitions of [a, b], then we say that P refines Q, or that P is finer than Q, if $Q \subseteq P$. That is, P consists of Q with some additional points added.

Observation 2: If P refines Q then $L(f,Q) \leq L(f,P) \leq U(f,P) \leq U(f,Q)$.

Observation 3: If P, Q are two partitions of [a, b] then $L(f, P) \leq U(f, Q)$.

Observation 4: $L(f) \leq U(f)$.

Proof. If P, Q are two partitions of [a, b] then by Observation 3, $L(f, P) \leq U(f, Q)$. So for fixed Q, U(f, Q) is an upper bound for $\{L(f, P) : P \in \mathcal{P}\}$. Thus $L(f) \leq U(f, Q)$, by definition of L(f). Hence L(f) is a lower bound for $\{U(f, Q) : Q \in \mathcal{P}\}$. Thus $L(f) \leq U(f)$ by definition of U(f). \Box

Observation 5: $L(f, P) \leq L(f) \leq U(f) \leq U(f, P)$ for all partitions P of [a, b]. In particular, if f is integrable, then $L(f, P) \leq \int_a^b f \, dx \leq U(f, P)$.

Theorem 7.1. (Riemann condition) A bounded function $f : [a, b] \to \mathbb{R}$ is integrable if and only if $\forall \epsilon > 0$, \exists a partition P of [a, b] such that $U(f, P) - L(f, P) < \epsilon$.

Proof. By definition, f is integrable if and only if U(f) = L(f).

(⇐) Suppose that $\forall \epsilon > 0$, \exists a partition P of [a, b] such that $U(f, P) - L(f, P) < \epsilon$. Using this, and the definition of L(f) and U(f),

$$U(f) \le U(f, P) < L(f, P) + \epsilon \le L(f) + \epsilon.$$

Since this is true for every $\epsilon > 0$, we have $U(f) \le L(f)$, by Theorem 3.6. But $L(f) \le U(f)$ by Observation 4, so L(f) = U(f).

 (\Rightarrow) If U(f) = L(f), and if $\epsilon > 0$ is given, choose (by definition of L(f) and U(f), and the 'principles in terms of ϵ ' on page 18 of these notes), partitions Q and R such that $L(f,Q) > L(f) - \frac{\epsilon}{2}$, and $U(f,R) < U(f) + \frac{\epsilon}{2}$. Let $P = Q \cup R$, the refinement of both Q and R obtained by taking their union. Then by the last equations, and Observation 2, we have

$$U(f,P) \le U(f,R) < U(f) + \frac{\epsilon}{2} = L(f) + \frac{\epsilon}{2} < L(f,Q) + \frac{\epsilon}{2} + \frac{\epsilon}{2} \le L(f,P) + \epsilon.$$

Looking at the left and right side of the last line, we see that $U(f, P) - L(f, P) < \epsilon$, which is what was required.

Definition. A function $f : D \to \mathbb{R}$ is called *uniformly continuous* if $\forall \epsilon > 0$, $\exists \delta > 0$ such that $|f(x) - f(y)| < \epsilon$ whenever $x, y \in D$, and $|x - y| < \delta$.

Any uniformly continuous function is clearly continuous.

Theorem 7.2. If D is compact, and $f : D \to \mathbb{R}$ is continuous, then f is uniformly continuous.

Theorem 7.3. If $f : [a, b] \to \mathbb{R}$ is continuous, then f is integrable.

Proof. By the last theorem, f is uniformly continuous. Thus given $\epsilon > 0$, there is a number $\delta > 0$ such that $|f(x) - f(y)| < \frac{\epsilon}{b-a}$ whenever $x, y \in [a, b]$ and $|x - y| < \delta$. Choose a partition $P = \{x_0, x_1, \dots, x_n\}$ of [a, b] such that $\Delta x_k = x_k - x_{k-1} < \delta$ for every $k = 1, 2, \dots, n$. Consider the interval $[x_{k-1}, x_k]$. By the Min-Max theorem 5.8, f has a maximum value M_k and a minimum value m_k on this interval; so there are numbers s and t in $[x_{k-1}, x_k]$ with $f(s) = M_k, f(t) = m_k$. Since $|s-t| \leq \Delta x_k < \delta$, we conclude that

$$M_k - m_k = |f(s) - f(t)| < \frac{\epsilon}{b-a}.$$

Now

$$U(f,P) - L(f,P) = \sum_{k=1}^{n} \Delta x_k M_k - \sum_{k=1}^{n} \Delta x_k m_k = \sum_{k=1}^{n} \Delta x_k (M_k - m_k),$$

and so

$$U(f,P) - L(f,P) < \sum_{k=1}^{n} \Delta x_k \frac{\epsilon}{b-a} = (b-a) \frac{\epsilon}{b-a} = \epsilon$$

Thus f satisfies the 'Riemann condition' 7.1, and so f is integrable.

Fact I1: If f is integrable on [a, b], and if K is a constant, then $\int_a^b Kf dx = K \int_a^b f dx$.

Fact I2: If $f : [a, b] \to \mathbb{R}$ is integrable, and if $m \leq f(x) \leq M$ for all $x \in [a, b]$, then

$$m(b-a) \le \int_{a}^{b} f \, dx \le M(b-a).$$

From this it is easy to deduce that if $f:[a,b] \to \mathbb{R}$ is integrable, and if $f(x) \ge 0$ for all $x \in [a,b]$, then $\int_a^b f \, dx \ge 0$. Indeed, simply take m = 0 in Fact I2.

Fact I3: $\int_{a}^{b} K dx = K(b-a)$, if K is a constant.

In the following we will use a simple fact about supremums: if A and B are two sets of numbers, and if for every element $x \in A$ there exists some element y in B with $x \leq y$, then $\sup A \leq \sup B$.

Fact I4: If f and g are integrable on [a, b], and if $f(x) \leq g(x)$ for all $x \in [a, b]$, then $\int_a^b f \, dx \leq \int_a^b g \, dx$.

Proof: If we take a partition P of [a, b], and if m_k are the infimums used in the definition of L(f, P), and if m'_k are the infimums used in the definition of L(g, P), then by the fact mentioned above I4,

$$m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\} \le \inf\{g(x) : x \in [x_{k-1}, x_k]\} = m'_k$$

Thus

$$L(f, P) = \sum_{k=1}^{n} m_k \,\Delta x_k \le \sum_{k=1}^{n} m'_k \,\Delta x_k = L(g, P) \le L(g) = \int_a^b g \,dx_k$$

Taking the supremum over all partitions P we deduce that $L(f) \leq \int_a^b g \, dx$, which is what we need since $L(f) = \int_a^b f \, dx$. \Box

Fact I5: $\int_{a}^{b} (f+g) dx = \int_{a}^{b} f dx + \int_{a}^{b} g dx$, if f and g are integrable on [a, b]. Fact I6: If f is integrable on [a, b], then so is |f(x)|, and $|\int_{a}^{b} f dx| \le \int_{a}^{b} |f| dx$. Fact I7: $\int_{a}^{b} f dx = \int_{a}^{c} f dx + \int_{c}^{b} f dx$ if $a \le c \le b$, and if f is integrable on [a, c]

Fact 17: $\int_a \int dx = \int_a \int dx + \int_c \int dx$ if $a \le c \le b$, and if f is integrable on [and on [c, b].

Fact I8: If f is monotone on [a, b], then f is integrable on [a, b].

Fact I9: (The first fundamental theorem of Calculus) If f is integrable on [a, b], define $F(x) = \int_a^x f(t) dt$, for $x \in [a, b]$. If f is continuous at a point $c \in (a, b)$, then F'(c) = f(c).

We mention Riemann sums briefly. Suppose that $P = \{x_0, x_1, \dots, x_n\}$ is a partition of [a, b], and that $t_k \in [x_{k-1}, x_k]$ for every $k = 1, 2, \dots, n$. Then $\sum_{k=1}^n f(t_k) \Delta x_k$ is called a Riemann sum for f, and is sometimes written as R(f, P). Note that because $m_k \leq f(t_k) \leq M_k$ for every $k = 1, 2, \dots, n$ (by definition of m_k and M_k), we have

$$L(f,P) = \sum_{k=1}^{n} m_k \Delta x_k \le \sum_{k=1}^{n} f(t_k) \Delta x_k \le \sum_{k=1}^{n} M_k \Delta x_k \le U(f,P).$$

That is, any Riemann sum R(f, P) lies between L(f, P) and U(f, P).

Fact I10: (The second fundamental theorem of Calculus) If $f : [a, b] \to \mathbb{R}$ is continuous, and is differentiable on (a, b), and if f' is integrable on [a, b] (set f'(a) = f'(b) = 0 if they are not already defined), then $\int_a^b f' dx = f(b) - f(a)$.

Proof: Suppose that $P = \{x_0, x_1, \dots, x_n\}$ is a partition of [a, b]. By the MVT on $[x_{k-1}, x_k]$ there is a number $t_k \in (x_{k-1}, x_k)$ such that $f(x_k) - f(x_{k-1}) = f'(t_k)(x_k - x_{k-1})$. Thus

$$f(b) - f(a) = \sum_{k=1}^{n} \left(f(x_k) - f(x_{k-1}) \right) = \sum_{k=1}^{n} f'(t_k) (x_k - x_{k-1}).$$

On the other hand, we have by the fact above the theorem we are proving,

$$L(f', P) \le \sum_{k=1}^{n} f'(t_k)(x_k - x_{k-1}) \le U(f', P),$$

and so

$$L(f', P) \le f(b) - f(a) \le U(f', P).$$

62

Taking the supremum over partitions P we get

$$\int_{a}^{b} f' dx = L(f') = \sup\{L(f', P) : \text{partitions } P\} \le f(b) - f(a)$$

Similarly, taking the infimum over partitions P we get

$$f(b) - f(a) \le U(f') = \int_a^b f' \, dx.$$

Thus $\int_a^b f' dx = f(b) - f(a)$. \Box

Fact I11: (Integration by parts) If f' and g' are continuous on an open interval containing [a, b] then $\int_a^b f g' dx = f(b)g(b) - f(a)g(a) - \int_a^b f' g dx$.

Fact I12: ('change of variable'/'substitution') If g is a differentiable function defined on an open interval containing numbers c < d, with g' integrable on [c, d], and if f is a continuous function on an open interval I containing the range of g, then $\int_c^d f(g(x)) g'(x) dx = \int_{g(c)}^{g(d)} f(x) dx$.