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Abbreviated notes version for Test 3: just the definitions, theorem statements,

proofs on the list. I may possibly have made a mistake, so check it. Also, this is

not intended as a REPLACEMENT for your classnotes; the classnotes have lots of

other things that you may need for your understanding, like worked examples.

6. The derivative

6.1. Differentiation rules. Definition: Let f : (a, b) → R and c ∈ (a, b). If

the limit lim
x→c

f(x)−f(c)
x−c exists and is finite, then we say that f is differentiable at

c, and we write this limit as f ′(c) or df
dx (c). This is the derivative of f at c, and

also obviously equals lim
h→0

f(c+h)−f(c)
h by setting x = c + h or h = x − c. If f is

differentiable at every point in (a, b), then we say that f is differentiable on (a, b).

Theorem 6.1. If f : (a, b) → R is differentiable at at a point c ∈ (a, b), then f is

continuous at c.

Proof. If f is differentiable at c then

f(x) =
f(x)− f(c)

x− c
(x− c) + f(c)→ f ′(c)0 + f(c) = f(c),

as x→ c. So f is continuous at c. �

Theorem 6.2. (Calculus I differentiation laws) If f, g : (a, b)→ R is differentiable

at a point c ∈ (a, b), then

(1) f(x) + g(x) is differentiable at c and (f + g)′(c) = f ′(c) + g′(c).

(2) f(x)− g(x) is differentiable at c and (f − g)′(c) = f ′(c)− g′(c).
(3) Kf(x) is differentiable at c if K is a constant, and (Kf)′(c) = Kf ′(c).

(4) (Product rule) f(x)g(x) is differentiable at c, and (fg)′(c) = f ′(c)g(c) +

f(c)g′(c).

(5) (Quotient rule) f(x)
g(x) is differentiable at c if g(c) 6= 0, and ( fg )′(c) =

f ′(c)g(c)−f(c)g′(c)
g(c)2 .

Proof. In the last step of many of the proofs below we will be silently using the

definition of the derivative, and the ‘limit laws’ from Theorem 5.2.

(1) As x→ c we have

f(x) + g(x)− (f(c) + g(c)

x− c
=
f(x)− f(c)

x− c
+
g(x)− g(c)

x− c
→ f ′(c) + g′(c).

(4) We have

f(x)g(x)− f(c)g(c)

x− c
=
f(x)g(x)− f(x)g(c)

x− c
+
f(x)g(c)− f(c)g(c)

x− c
= f(x)

g(x)− g(c)

x− c
+g(c)

f(x)− f(c)

x− c
.

By Theorem 6.1, f is continuous at c, that is, limx→c f(x) = f(c). So

lim
x→c

f(x)g(x)− f(c)g(c)

x− c
= lim
x→c

f(x)
g(x)− g(c)

x− c
+g(c)

f(x)− f(c)

x− c
= f(c)g′(c)+g(c)f ′(c).
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(3) Set g(x) = K in (4), to get (Kf)′(c) = Kf ′(c) + 0f(c) = Kf ′(c).

(2) By (1) and (3), (f + (−g))′ = f ′ + (−g)′ = f ′ − g′.
(5) Since g(c) 6= 0, so that |g(c)| > 0, by Proposition 5.7 |g(x)|, and hence also

g(x), is nonzero on a neighborhood of c. So division by g(x) in what follows is

justified. We have
f(x)
g(x) −

f(c)
g(c)

x− c
=
f(x)g(c)− g(x)f(c)

g(x)g(c)(x− c)
=
f(x)g(c)− f(c)g(c) + f(c)g(c)− f(c)g(x)

g(x)g(c)(x− c)
.

This equals

g(c) f(x)−f(c)x−c − f(c) g(x)−g(c)x−c
g(x)g(c)

→ g(c)f ′(c)− f(c)g′(c)

(g(c))2

as x→ c, since by Theorem 6.1, limx→c g(x) = g(c). �

Theorem 6.3. (Calculus I chain rule) If f : (a, b) → R is differentiable at a

point c ∈ (a, b), and if g : I → R is differentiable at f(c), where I is an open

interval containing f((a, b)), then the composition g ◦ f is differentiable at c and

(g ◦ f)′(c) = g′(f(c))f ′(c).

As in Calculus, a point c is called a local minimum (resp. local maximum) point

for a function f if ∃ a neighborhood U of c s.t. f(c) ≤ f(x) (resp. f(c) ≥ f(x))

∀x ∈ V . In this case we say that f(c) is a local minimum (resp. maximum) value

of f . As in Calculus I, the word ‘extreme’ means either ‘minimum’ or ‘maximum’.

So we have local extreme points and local extreme values, just as in Calculus I.

Recall from Calculus that a critical point is a point c s.t. f ′(c) does not exist or

f ′(c) = 0.

Theorem 6.4. (First Derivative Test) If f : (a, b)→ R is differentiable at a local

extremum point c ∈ (a, b), then f ′(c) = 0 (and so c is a critical point).

Proof. Suppose that c is a local maximum point of f , so f(x) ≤ f(c) for all x in a

neighborhood of c. Then lim
x→c+

f(x)− f(c)

x− c︸ ︷︷ ︸
≤0

≤ 0 (by the bullet just before Propo-

sition 5.4 with g = 0). Similarly, lim
x→c−

f(x)− f(c)

x− c︸ ︷︷ ︸
≥0

≥ 0. Since f is differentiable

f ′(c) = lim
x→c

f(x)−f(c)
x−c exists, and so these two one-sided limits must be equal by

Proposition 5.4, and hence must be 0. That is, f ′(c) = lim
x→c

f(x)−f(c)
x−c = 0. The

local minimum case is similar. �

6.2. The mean value theorem.

Lemma 6.5. (Rolle’s theorem) If f : [a, b]→ R is continuous, and f is differen-

tiable on (a, b), and f(a) = f(b) = 0, then there exists c ∈ (a, b) with f ′(c) = 0.
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Proof. To prove this, note that it is clearly true if f is constant. By the MAX-

MIN theorem f has a maximum and a minimum value on [a, b]. At least one of

these extreme values must be nonzero if f is not constant, and hence this value is

achieved at a point c which is not a or b. By the first derivative test (Theorem 6.4),

f ′(c) = 0. �

Theorem 6.6. (The mean value theorem) If f : [a, b]→ R is continuous, and f is

differentiable on (a, b), then there exists c ∈ (a, b) with f ′(c) = (f(b)−f(a))/(b−a).

Equivalently, f(b)− f(a) = f ′(c)(b− a).

Proof. Let g(x) = f(b)−f(a)
b−a (x− a) + f(a). Clearly g′ = f(b)−f(a)

b−a . Then h = f − g
is continuous on [a, b] and differentiable on (a, b). Also it is easy to check that

h(a) = h(b) = 0, so by Rolle’s theorem ∃c ∈ (a, b) s.t. h′(c) = f ′(c) − g′(c) = 0.

Hence f ′(c) = g′(c) = f(b)−f(a)
b−a . �

Corollary 6.7. If f : (a, b)→ R has f ′(x) = 0 for all x ∈ (a, b), then f is constant

on (a, b).

Proof. If a < x < y < b then by the MVT there exists c such that f(y) − f(x) =

f ′(c)(y − x) = 0. Thus f(x) = f(y). That is, f is constant. �

Corollary 6.8. If f : (a, b) → R has f ′(x) > 0 for all x ∈ (a, b) then f(x) is

strictly increasing on (a, b). Similarly, if f ′(x) ≥ 0 (resp. f ′(x) < 0, f ′(x) ≤ 0) for

all x ∈ (a, b) then f(x) is increasing (resp. strictly decreasing, decreasing) on (a, b).

Proof. We just prove one, the others are similar. Suppose that f ′(x) > 0 for

all x ∈ (a, b). If a < x < y < b then by the MVT there exists c such that

f(y)− f(x) = f ′(c)(y − x) > 0, since f ′(c) > 0. Thus f(x) < f(y). So f is strictly

increasing on (a, b). �

Corollary 6.9. If f ′(x) = g′(x) for all x ∈ (a, b) then there exists a constant C

such that f(x) = g(x) + C for all x ∈ (a, b).

6.3. Taylors theorem and the second derivative test. Here is a version of the

Calculus II Taylor’s theorem:

Theorem 6.10. Suppose that n ∈ N (or n = 0). If f : (a, b) → R is n + 1 times

differentiable, and the first n of these derivatives are continuous on (a, b), and if

x0 ∈ (a, b), then for every x ∈ (a, b) with x 6= x0 there is a number c between x0

and x such that

f(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)k +

f (n+1)(c)

(n+ 1)!
(x− x0)n+1.
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Remark. Note that the MVT 6.6 is essentially the case n = 0 of the last

theorem.

A number c is a strict local minimum (resp. local maximum) point for a function

f if ∃ a deleted neighborhood U of c s.t. f(c) < f(x) (resp. f(c) > f(x)) ∀x ∈ U .

Theorem 6.11. (The second derivative test (Calculus I)) Suppose that f ′′′ is

continuous on a neighborhood of c. If f ′(c) = 0 and f ′′(c) > 0 then f has a strict

local minimum at x = c. If f ′(c) = 0 and f ′′(c) < 0 then f has a strict local

maximum at x = c.

Proof. Suppose f ′′(c) > 0. Setting n = 2 and x = c+ h, x0 = c in Taylors theorem

above, we have

f(c+ h)− f(c) = f ′(c)h+
f ′′(c)

2
h2 +

f ′′′(d)

6
h3,

where d is a number between c and c + h. As h → 0 we have d → c, so that

f ′′′(d)→ f ′′′(c) and f ′′′(d)h→ f ′′′(c) · 0 = 0. So since f ′(c) = 0,

f(c+ h)− f(c)

h2
=
f ′′(c)

2
+
f ′′′(d)

6
h → f ′′(c)

2
> 0,

as h → 0. By Proposition 5.3, there exists δ > 0, such that f(c+h)−f(c)
h2 > 0 for

h ∈ (−δ, δ). So f(c + h)− f(c) > 0, or f(c + h) > f(c), for h ∈ (−δ, δ). This says

that f has a strict local minimum at x = c.

The case f ′′(c) < 0 is similar, except

f(c+ h)− f(c)

h2
=
f ′′(c)

2
+
f ′′′(d)

6
h → f ′′(c)

2
< 0,

as h → 0. This implies that there exists δ > 0, such that f(c+h)−f(c)
h2 < 0 for

h ∈ (−δ, δ), and so as above f(c+ h) < f(c), for h ∈ (−δ, δ). This says that f has

a strict local maximum at x = c. �

6.4. The open mapping/Inverse function theorems.

Theorem 6.12. Suppose that f : (a, b) → R is a one-to-one continuous function.

Then f is either strictly increasing on (a, b), or it is strictly decreasing on (a, b).

Recall that the notation f(E) means {f(x) : x ∈ E}.

Proposition 6.13. Suppose that f : (a, b) → R is a one-to-one continuous func-

tion. Then f((a, b)) is an open interval.

Theorem 6.14. Suppose that f : (a, b) → R is a one-to-one continuous function.

Then f−1 is continuous.
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Theorem 6.15. (The inverse function theorem) Suppose that f : (a, b)→ R is a

differentiable function with f ′(x) 6= 0 for all x ∈ (a, b). Then f is one-to-one, its

range f((a, b)) is an open interval (c, d), and for any y ∈ (c, d), we have

(f−1)′(y) =
1

f ′(x)
, f(x) = y.

7. Integration–the Riemann integral

Throughout this chapter f : [a, b]→ R is a bounded function. That is, there are

two constants m and M such that m ≤ f(x) ≤ M for all x ∈ [a, b]. Equivalently,

there is a constant K such that |f(x)| ≤ K for all x ∈ [a, b], or equivalently,

Range(f) is a bounded set.

Main definitions for this Chapter (from Calculus 1): [Pictures drawn in

class.]

• A partition P of [a, b] is an ordered set {x0, x1, · · · , xn} where a = x0 <

x1 < x2 < · · · < xn = b.

• Let P be the set of all partitions P of [a, b].

• We define ∆xk = xk − xk−1, for each k = 1, 2, · · · , n.

• We define Mk = sup{f(t) : xk−1 ≤ t ≤ xk} and mk = inf{f(t) : xk−1 ≤
t ≤ xk}, for each k = 1, 2, · · · , n.

• We define the upper sum U(f, P ) =
∑n
k=1 Mk ∆xk. This is the sum of the

areas of the red rectangles in picture.

• We define the lower sum L(f, P ) =
∑n
k=1 mk ∆xk. This is the sum of the

areas of the green rectangles in picture.

• We define the upper integral U(f) = inf{U(f, P ) : P ∈ P}.
• We define the lower integral L(f) = sup{L(f, P ) : P ∈ P}.
• We say that a bounded function f : [a, b]→ R is integrable if L(f) = U(f).

In this case we write
∫ b
a
f dx for the number L(f) = U(f).

Some observations:

Observation 1: If m ≤ f(x) ≤M for all x ∈ [a, b], then m(b− a) ≤ L(f, P ) ≤
U(f, P ) ≤M(b− a), for any partition P of [a, b].

Proof. Since mk ≤Mk clearly for each k = 1, 2, · · · , n, we have

L(f, P ) =

n∑
k=1

mk ∆xk ≤
n∑
k=1

Mk ∆xk = U(f, P ).

Since mk ≥ m clearly for each k = 1, 2, · · · , n, we have

L(f, P ) =

n∑
k=1

mk ∆xk ≥
n∑
k=1

m∆xk = m(b− a).

Similarly, U(f, P ) =
∑n
k=1 Mk ∆xk ≤

∑n
k=1 M ∆xk = m(b− a). �
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Definition. If P,Q are two partitions of [a, b], then we say that P refines Q, or

that P is finer than Q, if Q ⊆ P . That is, P consists of Q with some additional

points added.

Observation 2: If P refines Q then L(f,Q) ≤ L(f, P ) ≤ U(f, P ) ≤ U(f,Q).

Observation 3: If P,Q are two partitions of [a, b] then L(f, P ) ≤ U(f,Q).

Observation 4: L(f) ≤ U(f).

Proof. If P,Q are two partitions of [a, b] then by Observation 3, L(f, P ) ≤
U(f,Q). So for fixed Q, U(f,Q) is an upper bound for {L(f, P ) : P ∈ P}. Thus

L(f) ≤ U(f,Q), by definition of L(f). Hence L(f) is a lower bound for {U(f,Q) :

Q ∈ P}. Thus L(f) ≤ U(f) by definition of U(f). �

Observation 5: L(f, P ) ≤ L(f) ≤ U(f) ≤ U(f, P ) for all partitions P of [a, b].

In particular, if f is integrable, then L(f, P ) ≤
∫ b
a
f dx ≤ U(f, P ).

Theorem 7.1. (Riemann condition) A bounded function f : [a, b]→ R is integrable

if and only if ∀ ε > 0, ∃ a partition P of [a, b] such that U(f, P )− L(f, P ) < ε.

Proof. By definition, f is integrable if and only if U(f) = L(f).

(⇐) Suppose that ∀ ε > 0, ∃ a partition P of [a, b] such that U(f, P )−L(f, P ) <

ε. Using this, and the definition of L(f) and U(f),

U(f) ≤ U(f, P ) < L(f, P ) + ε ≤ L(f) + ε.

Since this is true for every ε > 0, we have U(f) ≤ L(f), by Theorem 3.6. But

L(f) ≤ U(f) by Observation 4, so L(f) = U(f).

(⇒) If U(f) = L(f), and if ε > 0 is given, choose (by definition of L(f) and

U(f), and the ‘principles in terms of ε’ on page 18 of these notes), partitions Q

and R such that L(f,Q) > L(f) − ε
2 , and U(f,R) < U(f) + ε

2 . Let P = Q ∪ R,

the refinement of both Q and R obtained by taking their union. Then by the last

equations, and Observation 2, we have

U(f, P ) ≤ U(f,R) < U(f) +
ε

2
= L(f) +

ε

2
< L(f,Q) +

ε

2
+
ε

2
≤ L(f, P ) + ε.

Looking at the left and right side of the last line, we see that U(f, P )−L(f, P ) < ε,

which is what was required. �

Definition. A function f : D → R is called uniformly continuous if ∀ ε > 0,

∃ δ > 0 such that |f(x)− f(y)| < ε whenever x, y ∈ D, and |x− y| < δ.

Any uniformly continuous function is clearly continuous.
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Theorem 7.2. If D is compact, and f : D → R is continuous, then f is uniformly

continuous.

Theorem 7.3. If f : [a, b]→ R is continuous, then f is integrable.

Proof. By the last theorem, f is uniformly continuous. Thus given ε > 0, there is a

number δ > 0 such that |f(x)− f(y)| < ε
b−a whenever x, y ∈ [a, b] and |x− y| < δ.

Choose a partition P = {x0, x1, · · · , xn} of [a, b] such that ∆xk = xk−xk−1 < δ for

every k = 1, 2, · · · , n. Consider the interval [xk−1, xk]. By the Min-Max theorem

5.8, f has a maximum value Mk and a minimum value mk on this interval; so there

are numbers s and t in [xk−1, xk] with f(s) = Mk, f(t) = mk. Since |s−t| ≤ ∆xk <

δ, we conclude that

Mk −mk = |f(s)− f(t)| < ε

b− a
.

Now

U(f, P )− L(f, P ) =
n∑
k=1

∆xkMk −
n∑
k=1

∆xkmk =
n∑
k=1

∆xk (Mk −mk),

and so

U(f, P )− L(f, P ) <

n∑
k=1

∆xk
ε

b− a
= (b− a)

ε

b− a
= ε.

Thus f satisfies the ‘Riemann condition’ 7.1, and so f is integrable. �

Fact I1: If f is integrable on [a, b], and if K is a constant, then
∫ b
a
Kf dx =

K
∫ b
a
f dx.

Fact I2: If f : [a, b] → R is integrable, and if m ≤ f(x) ≤ M for all x ∈ [a, b],

then

m(b− a) ≤
∫ b

a

f dx ≤M(b− a).

From this it is easy to deduce that if f : [a, b]→ R is integrable, and if f(x) ≥ 0

for all x ∈ [a, b], then
∫ b
a
f dx ≥ 0. Indeed, simply take m = 0 in Fact I2.

Fact I3:
∫ b
a
K dx = K(b− a), if K is a constant.

In the following we will use a simple fact about supremums: if A and B are two

sets of numbers, and if for every element x ∈ A there exists some element y in B

with x ≤ y, then sup A ≤ sup B.

Fact I4: If f and g are integrable on [a, b], and if f(x) ≤ g(x) for all x ∈ [a, b],

then
∫ b
a
f dx ≤

∫ b
a
g dx.

Proof: If we take a partition P of [a, b], and if mk are the infimums used in the

definition of L(f, P ), and if m′k are the infimums used in the definition of L(g, P ),

then by the fact mentioned above I4,

mk = inf{f(x) : x ∈ [xk−1, xk]} ≤ inf{g(x) : x ∈ [xk−1, xk]} = m′k.
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Thus

L(f, P ) =

n∑
k=1

mk ∆xk ≤
n∑
k=1

m′k ∆xk = L(g, P ) ≤ L(g) =

∫ b

a

g dx.

Taking the supremum over all partitions P we deduce that L(f) ≤
∫ b
a
g dx, which

is what we need since L(f) =
∫ b
a
f dx. �

Fact I5:
∫ b
a

(f + g) dx =
∫ b
a
f dx+

∫ b
a
g dx, if f and g are integrable on [a, b].

Fact I6: If f is integrable on [a, b], then so is |f(x)|, and |
∫ b
a
f dx| ≤

∫ b
a
|f | dx.

Fact I7:
∫ b
a
f dx =

∫ c
a
f dx+

∫ b
c
f dx if a ≤ c ≤ b, and if f is integrable on [a, c]

and on [c, b].

Fact I8: If f is monotone on [a, b], then f is integrable on [a, b].

Fact I9: (The first fundamental theorem of Calculus) If f is integrable on [a, b],

define F (x) =
∫ x
a
f(t) dt, for x ∈ [a, b]. If f is continuous at a point c ∈ (a, b), then

F ′(c) = f(c).

We mention Riemann sums briefly. Suppose that P = {x0, x1, · · · , xn} is a parti-

tion of [a, b], and that tk ∈ [xk−1, xk] for every k = 1, 2, · · · , n. Then
∑n
k=1 f(tk) ∆xk

is called a Riemann sum for f , and is sometimes written as R(f, P ). Note that be-

cause mk ≤ f(tk) ≤Mk for every k = 1, 2, · · · , n (by definition of mk and Mk), we

have

L(f, P ) =

n∑
k=1

mk ∆xk ≤
n∑
k=1

f(tk) ∆xk ≤
n∑
k=1

Mk ∆xk ≤ U(f, P ).

That is, any Riemann sum R(f, P ) lies between L(f, P ) and U(f, P ).

Fact I10: (The second fundamental theorem of Calculus) If f : [a, b] → R
is continuous, and is differentiable on (a, b), and if f ′ is integrable on [a, b] (set

f ′(a) = f ′(b) = 0 if they are not already defined), then
∫ b
a
f ′ dx = f(b)− f(a).

Proof: Suppose that P = {x0, x1, · · · , xn} is a partition of [a, b]. By the MVT on

[xk−1, xk] there is a number tk ∈ (xk−1, xk) such that f(xk)−f(xk−1) = f ′(tk)(xk−
xk−1). Thus

f(b)− f(a) =

n∑
k=1

(f(xk)− f(xk−1)) =

n∑
k=1

f ′(tk)(xk − xk−1).

On the other hand, we have by the fact above the theorem we are proving,

L(f ′, P ) ≤
n∑
k=1

f ′(tk)(xk − xk−1) ≤ U(f ′, P ),

and so

L(f ′, P ) ≤ f(b)− f(a) ≤ U(f ′, P ).
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Taking the supremum over partitions P we get∫ b

a

f ′ dx = L(f ′) = sup{L(f ′, P ) : partitions P} ≤ f(b)− f(a).

Similarly, taking the infimum over partitions P we get

f(b)− f(a) ≤ U(f ′) =

∫ b

a

f ′ dx.

Thus
∫ b
a
f ′ dx = f(b)− f(a). �

Fact I11: (Integration by parts) If f ′ and g′ are continuous on an open interval

containing [a, b] then
∫ b
a
f g′ dx = f(b)g(b)− f(a)g(a)−

∫ b
a
f ′ g dx.

Fact I12: (‘change of variable’/‘substitution’) If g is a differentiable function

defined on an open interval containing numbers c < d, with g′ integrable on [c, d],

and if f is a continuous function on an open interval I containing the range of g,

then
∫ d
c
f(g(x)) g′(x) dx =

∫ g(d)
g(c)

f(x) dx.


