Abbreviated notes version for Test 3: just the definitions, theorem statements, proofs on the list. I may possibly have made a mistake, so check it. Also, this is not intended as a REPLACEMENT for your classnotes; the classnotes have lots of other things that you may need for your understanding, like worked examples.

6. The derivative

6.1. Differentiation rules. Definition: Let $f:(a, b) \rightarrow \mathbb{R}$ and $c \in(a, b)$. If the limit $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ exists and is finite, then we say that f is differentiable at c, and we write this limit as $f^{\prime}(c)$ or $\frac{d f}{d x}(c)$. This is the derivative of f at c, and also obviously equals $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$ by setting $x=c+h$ or $h=x-c$. If f is differentiable at every point in (a, b), then we say that f is differentiable on (a, b).

Theorem 6.1. If $f:(a, b) \rightarrow \mathbb{R}$ is differentiable at at a point $c \in(a, b)$, then f is continuous at c.

Proof. If f is differentiable at c then

$$
f(x)=\frac{f(x)-f(c)}{x-c}(x-c)+f(c) \rightarrow f^{\prime}(c) 0+f(c)=f(c),
$$

as $x \rightarrow c$. So f is continuous at c.
Theorem 6.2. (Calculus I differentiation laws) If $f, g:(a, b) \rightarrow \mathbb{R}$ is differentiable at a point $c \in(a, b)$, then
(1) $f(x)+g(x)$ is differentiable at c and $(f+g)^{\prime}(c)=f^{\prime}(c)+g^{\prime}(c)$.
(2) $f(x)-g(x)$ is differentiable at c and $(f-g)^{\prime}(c)=f^{\prime}(c)-g^{\prime}(c)$.
(3) $K f(x)$ is differentiable at c if K is a constant, and $(K f)^{\prime}(c)=K f^{\prime}(c)$.
(4) (Product rule) $f(x) g(x)$ is differentiable at c, and $(f g)^{\prime}(c)=f^{\prime}(c) g(c)+$ $f(c) g^{\prime}(c)$.
(5) (Quotient rule) $\frac{f(x)}{g(x)}$ is differentiable at c if $g(c) \neq 0$, and $\left(\frac{f}{g}\right)^{\prime}(c)=$ $\frac{f^{\prime}(c) g(c)-f(c) g^{\prime}(c)}{g(c)^{2}}$.

Proof. In the last step of many of the proofs below we will be silently using the definition of the derivative, and the 'limit laws' from Theorem 5.2.
(1) As $x \rightarrow c$ we have

$$
\frac{f(x)+g(x)-(f(c)+g(c)}{x-c}=\frac{f(x)-f(c)}{x-c}+\frac{g(x)-g(c)}{x-c} \rightarrow f^{\prime}(c)+g^{\prime}(c) .
$$

(4) We have
$\frac{f(x) g(x)-f(c) g(c)}{x-c}=\frac{f(x) g(x)-f(x) g(c)}{x-c}+\frac{f(x) g(c)-f(c) g(c)}{x-c}=f(x) \frac{g(x)-g(c)}{x-c}+g(c) \frac{f(x)-f(c)}{x-c}$.
By Theorem 6.1, f is continuous at c, that is, $\lim _{x \rightarrow c} f(x)=f(c)$. So
$\lim _{x \rightarrow c} \frac{f(x) g(x)-f(c) g(c)}{x-c}=\lim _{x \rightarrow c} f(x) \frac{g(x)-g(c)}{x-c}+g(c) \frac{f(x)-f(c)}{x-c}=f(c) g^{\prime}(c)+g(c) f^{\prime}(c)$.
(3) Set $g(x)=K$ in (4), to get $(K f)^{\prime}(c)=K f^{\prime}(c)+0 f(c)=K f^{\prime}(c)$.
(2) By (1) and (3), $(f+(-g))^{\prime}=f^{\prime}+(-g)^{\prime}=f^{\prime}-g^{\prime}$.
(5) Since $g(c) \neq 0$, so that $|g(c)|>0$, by Proposition $5.7|g(x)|$, and hence also $g(x)$, is nonzero on a neighborhood of c. So division by $g(x)$ in what follows is justified. We have

$$
\frac{\frac{f(x)}{g(x)}-\frac{f(c)}{g(c)}}{x-c}=\frac{f(x) g(c)-g(x) f(c)}{g(x) g(c)(x-c)}=\frac{f(x) g(c)-f(c) g(c)+f(c) g(c)-f(c) g(x)}{g(x) g(c)(x-c)} .
$$

This equals

$$
\frac{g(c) \frac{f(x)-f(c)}{x-c}-f(c) \frac{g(x)-g(c)}{x-c}}{g(x) g(c)} \rightarrow \frac{g(c) f^{\prime}(c)-f(c) g^{\prime}(c)}{(g(c))^{2}}
$$

as $x \rightarrow c$, since by Theorem $6.1, \lim _{x \rightarrow c} g(x)=g(c)$.
Theorem 6.3. (Calculus I chain rule) If $f:(a, b) \rightarrow \mathbb{R}$ is differentiable at a point $c \in(a, b)$, and if $g: I \rightarrow \mathbb{R}$ is differentiable at $f(c)$, where I is an open interval containing $f((a, b))$, then the composition $g \circ f$ is differentiable at c and $(g \circ f)^{\prime}(c)=g^{\prime}(f(c)) f^{\prime}(c)$.

As in Calculus, a point c is called a local minimum (resp. local maximum) point for a function f if \exists a neighborhood U of c s.t. $f(c) \leq f(x)$ (resp. $f(c) \geq f(x)$) $\forall x \in V$. In this case we say that $f(c)$ is a local minimum (resp. maximum) value of f. As in Calculus I , the word 'extreme' means either 'minimum' or 'maximum'. So we have local extreme points and local extreme values, just as in Calculus I.

Recall from Calculus that a critical point is a point c s.t. $f^{\prime}(c)$ does not exist or $f^{\prime}(c)=0$.

Theorem 6.4. (First Derivative Test) If $f:(a, b) \rightarrow \mathbb{R}$ is differentiable at a local extremum point $c \in(a, b)$, then $f^{\prime}(c)=0$ (and so c is a critical point).

Proof. Suppose that c is a local maximum point of f, so $f(x) \leq f(c)$ for all x in a neighborhood of c. Then $\lim _{x \rightarrow c+} \underbrace{\frac{f(x)-f(c)}{x-c}}_{\leq 0} \leq 0$ (by the bullet just before Proposition 5.4 with $g=0$). Similarly, $\lim _{x \rightarrow c-} \underbrace{\frac{f(x)-f(c)}{x-c}}_{\geq 0} \geq 0$. Since f is differentiable $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ exists, and so these two one-sided limits must be equal by Proposition 5.4, and hence must be 0. That is, $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=0$. The local minimum case is similar.

6.2. The mean value theorem.

Lemma 6.5. (Rolle's theorem) If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, and f is differentiable on (a, b), and $f(a)=f(b)=0$, then there exists $c \in(a, b)$ with $f^{\prime}(c)=0$.

Proof. To prove this, note that it is clearly true if f is constant. By the MAXMIN theorem f has a maximum and a minimum value on $[a, b]$. At least one of these extreme values must be nonzero if f is not constant, and hence this value is achieved at a point c which is not a or b. By the first derivative test (Theorem 6.4), $f^{\prime}(c)=0$.

Theorem 6.6. (The mean value theorem) If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, and f is differentiable on (a, b), then there exists $c \in(a, b)$ with $f^{\prime}(c)=(f(b)-f(a)) /(b-a)$. Equivalently, $f(b)-f(a)=f^{\prime}(c)(b-a)$.

Proof. Let $g(x)=\frac{f(b)-f(a)}{b-a}(x-a)+f(a)$. Clearly $g^{\prime}=\frac{f(b)-f(a)}{b-a}$. Then $h=f-g$ is continuous on $[a, b]$ and differentiable on (a, b). Also it is easy to check that $h(a)=h(b)=0$, so by Rolle's theorem $\exists c \in(a, b)$ s.t. $h^{\prime}(c)=f^{\prime}(c)-g^{\prime}(c)=0$. Hence $f^{\prime}(c)=g^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Corollary 6.7. If $f:(a, b) \rightarrow \mathbb{R}$ has $f^{\prime}(x)=0$ for all $x \in(a, b)$, then f is constant on (a, b).

Proof. If $a<x<y<b$ then by the MVT there exists c such that $f(y)-f(x)=$ $f^{\prime}(c)(y-x)=0$. Thus $f(x)=f(y)$. That is, f is constant.

Corollary 6.8. If $f:(a, b) \rightarrow \mathbb{R}$ has $f^{\prime}(x)>0$ for all $x \in(a, b)$ then $f(x)$ is strictly increasing on (a, b). Similarly, if $f^{\prime}(x) \geq 0$ (resp. $\left.f^{\prime}(x)<0, f^{\prime}(x) \leq 0\right)$ for all $x \in(a, b)$ then $f(x)$ is increasing (resp. strictly decreasing, decreasing) on (a, b).

Proof. We just prove one, the others are similar. Suppose that $f^{\prime}(x)>0$ for all $x \in(a, b)$. If $a<x<y<b$ then by the MVT there exists c such that $f(y)-f(x)=f^{\prime}(c)(y-x)>0$, since $f^{\prime}(c)>0$. Thus $f(x)<f(y)$. So f is strictly increasing on (a, b).

Corollary 6.9. If $f^{\prime}(x)=g^{\prime}(x)$ for all $x \in(a, b)$ then there exists a constant C such that $f(x)=g(x)+C$ for all $x \in(a, b)$.
6.3. Taylors theorem and the second derivative test. Here is a version of the Calculus II Taylor's theorem:

Theorem 6.10. Suppose that $n \in \mathbb{N}$ (or $n=0$). If $f:(a, b) \rightarrow \mathbb{R}$ is $n+1$ times differentiable, and the first n of these derivatives are continuous on (a, b), and if $x_{0} \in(a, b)$, then for every $x \in(a, b)$ with $x \neq x_{0}$ there is a number c between x_{0} and x such that

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1} .
$$

Remark. Note that the MVT 6.6 is essentially the case $n=0$ of the last theorem.

A number c is a strict local minimum (resp. local maximum) point for a function f if \exists a deleted neighborhood U of c s.t. $f(c)<f(x)$ (resp. $f(c)>f(x)) \forall x \in U$.

Theorem 6.11. (The second derivative test (Calculus I)) Suppose that $f^{\prime \prime \prime}$ is continuous on a neighborhood of c. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$ then f has a strict local minimum at $x=c$. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$ then f has a strict local maximum at $x=c$.

Proof. Suppose $f^{\prime \prime}(c)>0$. Setting $n=2$ and $x=c+h, x_{0}=c$ in Taylors theorem above, we have

$$
f(c+h)-f(c)=f^{\prime}(c) h+\frac{f^{\prime \prime}(c)}{2} h^{2}+\frac{f^{\prime \prime \prime}(d)}{6} h^{3},
$$

where d is a number between c and $c+h$. As $h \rightarrow 0$ we have $d \rightarrow c$, so that $f^{\prime \prime \prime}(d) \rightarrow f^{\prime \prime \prime}(c)$ and $f^{\prime \prime \prime}(d) h \rightarrow f^{\prime \prime \prime}(c) \cdot 0=0$. So since $f^{\prime}(c)=0$,

$$
\frac{f(c+h)-f(c)}{h^{2}}=\frac{f^{\prime \prime}(c)}{2}+\frac{f^{\prime \prime \prime}(d)}{6} h \rightarrow \frac{f^{\prime \prime}(c)}{2}>0,
$$

as $h \rightarrow 0$. By Proposition 5.3, there exists $\delta>0$, such that $\frac{f(c+h)-f(c)}{h^{2}}>0$ for $h \in(-\delta, \delta)$. So $f(c+h)-f(c)>0$, or $f(c+h)>f(c)$, for $h \in(-\delta, \delta)$. This says that f has a strict local minimum at $x=c$.

The case $f^{\prime \prime}(c)<0$ is similar, except

$$
\frac{f(c+h)-f(c)}{h^{2}}=\frac{f^{\prime \prime}(c)}{2}+\frac{f^{\prime \prime \prime}(d)}{6} h \rightarrow \frac{f^{\prime \prime}(c)}{2}<0
$$

as $h \rightarrow 0$. This implies that there exists $\delta>0$, such that $\frac{f(c+h)-f(c)}{h^{2}}<0$ for $h \in(-\delta, \delta)$, and so as above $f(c+h)<f(c)$, for $h \in(-\delta, \delta)$. This says that f has a strict local maximum at $x=c$.

6.4. The open mapping/Inverse function theorems.

Theorem 6.12. Suppose that $f:(a, b) \rightarrow \mathbb{R}$ is a one-to-one continuous function. Then f is either strictly increasing on (a, b), or it is strictly decreasing on (a, b).

Recall that the notation $f(E)$ means $\{f(x): x \in E\}$.
Proposition 6.13. Suppose that $f:(a, b) \rightarrow \mathbb{R}$ is a one-to-one continuous function. Then $f((a, b))$ is an open interval.

Theorem 6.14. Suppose that $f:(a, b) \rightarrow \mathbb{R}$ is a one-to-one continuous function. Then f^{-1} is continuous.

Theorem 6.15. (The inverse function theorem) Suppose that $f:(a, b) \rightarrow \mathbb{R}$ is a differentiable function with $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Then f is one-to-one, its range $f((a, b))$ is an open interval (c, d), and for any $y \in(c, d)$, we have

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}(x)}, \quad f(x)=y
$$

7. Integration-the Riemann integral

Throughout this chapter $f:[a, b] \rightarrow \mathbb{R}$ is a bounded function. That is, there are two constants m and M such that $m \leq f(x) \leq M$ for all $x \in[a, b]$. Equivalently, there is a constant K such that $|f(x)| \leq K$ for all $x \in[a, b]$, or equivalently, Range (f) is a bounded set.

Main definitions for this Chapter (from Calculus 1): [Pictures drawn in class.]

- A partition P of $[a, b]$ is an ordered set $\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ where $a=x_{0}<$ $x_{1}<x_{2}<\cdots<x_{n}=b$.
- Let \mathcal{P} be the set of all partitions P of $[a, b]$.
- We define $\Delta x_{k}=x_{k}-x_{k-1}$, for each $k=1,2, \cdots, n$.
- We define $M_{k}=\sup \left\{f(t): x_{k-1} \leq t \leq x_{k}\right\}$ and $m_{k}=\inf \left\{f(t): x_{k-1} \leq\right.$ $\left.t \leq x_{k}\right\}$, for each $k=1,2, \cdots, n$.
- We define the upper sum $U(f, P)=\sum_{k=1}^{n} M_{k} \Delta x_{k}$. This is the sum of the areas of the red rectangles in picture.
- We define the lower sum $L(f, P)=\sum_{k=1}^{n} m_{k} \Delta x_{k}$. This is the sum of the areas of the green rectangles in picture.
- We define the upper integral $U(f)=\inf \{U(f, P): P \in \mathcal{P}\}$.
- We define the lower integral $L(f)=\sup \{L(f, P): P \in \mathcal{P}\}$.
- We say that a bounded function $f:[a, b] \rightarrow \mathbb{R}$ is integrable if $L(f)=U(f)$. In this case we write $\int_{a}^{b} f d x$ for the number $L(f)=U(f)$.

Some observations:

Observation 1: If $m \leq f(x) \leq M$ for all $x \in[a, b]$, then $m(b-a) \leq L(f, P) \leq$ $U(f, P) \leq M(b-a)$, for any partition P of $[a, b]$.

Proof. Since $m_{k} \leq M_{k}$ clearly for each $k=1,2, \cdots, n$, we have

$$
L(f, P)=\sum_{k=1}^{n} m_{k} \Delta x_{k} \leq \sum_{k=1}^{n} M_{k} \Delta x_{k}=U(f, P) .
$$

Since $m_{k} \geq m$ clearly for each $k=1,2, \cdots, n$, we have

$$
L(f, P)=\sum_{k=1}^{n} m_{k} \Delta x_{k} \geq \sum_{k=1}^{n} m \Delta x_{k}=m(b-a)
$$

Similarly, $U(f, P)=\sum_{k=1}^{n} M_{k} \Delta x_{k} \leq \sum_{k=1}^{n} M \Delta x_{k}=m(b-a)$.

Definition. If P, Q are two partitions of $[a, b]$, then we say that P refines Q, or that P is finer than Q, if $Q \subseteq P$. That is, P consists of Q with some additional points added.

Observation 2: If P refines Q then $L(f, Q) \leq L(f, P) \leq U(f, P) \leq U(f, Q)$.
Observation 3: If P, Q are two partitions of $[a, b]$ then $L(f, P) \leq U(f, Q)$.
Observation 4: $L(f) \leq U(f)$.
Proof. If P, Q are two partitions of $[a, b]$ then by Observation $3, L(f, P) \leq$ $U(f, Q)$. So for fixed $Q, U(f, Q)$ is an upper bound for $\{L(f, P): P \in \mathcal{P}\}$. Thus $L(f) \leq U(f, Q)$, by definition of $L(f)$. Hence $L(f)$ is a lower bound for $\{U(f, Q)$: $Q \in \mathcal{P}\}$. Thus $L(f) \leq U(f)$ by definition of $U(f)$.

Observation 5: $L(f, P) \leq L(f) \leq U(f) \leq U(f, P)$ for all partitions P of $[a, b]$. In particular, if f is integrable, then $L(f, P) \leq \int_{a}^{b} f d x \leq U(f, P)$.

Theorem 7.1. (Riemann condition) A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is integrable if and only if $\forall \epsilon>0, \exists$ a partition P of $[a, b]$ such that $U(f, P)-L(f, P)<\epsilon$.

Proof. By definition, f is integrable if and only if $U(f)=L(f)$.
(\Leftarrow) Suppose that $\forall \epsilon>0, \exists$ a partition P of $[a, b]$ such that $U(f, P)-L(f, P)<$
ϵ. Using this, and the definition of $L(f)$ and $U(f)$,

$$
U(f) \leq U(f, P)<L(f, P)+\epsilon \leq L(f)+\epsilon
$$

Since this is true for every $\epsilon>0$, we have $U(f) \leq L(f)$, by Theorem 3.6. But $L(f) \leq U(f)$ by Observation 4 , so $L(f)=U(f)$.
(\Rightarrow) If $U(f)=L(f)$, and if $\epsilon>0$ is given, choose (by definition of $L(f)$ and $U(f)$, and the 'principles in terms of ϵ ' on page 18 of these notes), partitions Q and R such that $L(f, Q)>L(f)-\frac{\epsilon}{2}$, and $U(f, R)<U(f)+\frac{\epsilon}{2}$. Let $P=Q \cup R$, the refinement of both Q and R obtained by taking their union. Then by the last equations, and Observation 2, we have

$$
U(f, P) \leq U(f, R)<U(f)+\frac{\epsilon}{2}=L(f)+\frac{\epsilon}{2}<L(f, Q)+\frac{\epsilon}{2}+\frac{\epsilon}{2} \leq L(f, P)+\epsilon
$$

Looking at the left and right side of the last line, we see that $U(f, P)-L(f, P)<\epsilon$, which is what was required.

Definition. A function $f: D \rightarrow \mathbb{R}$ is called uniformly continuous if $\forall \epsilon>0$, $\exists \delta>0$ such that $|f(x)-f(y)|<\epsilon$ whenever $x, y \in D$, and $|x-y|<\delta$.

Any uniformly continuous function is clearly continuous.

Theorem 7.2. If D is compact, and $f: D \rightarrow \mathbb{R}$ is continuous, then f is uniformly continuous.

Theorem 7.3. If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then f is integrable.
Proof. By the last theorem, f is uniformly continuous. Thus given $\epsilon>0$, there is a number $\delta>0$ such that $|f(x)-f(y)|<\frac{\epsilon}{b-a}$ whenever $x, y \in[a, b]$ and $|x-y|<\delta$. Choose a partition $P=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ of $[a, b]$ such that $\Delta x_{k}=x_{k}-x_{k-1}<\delta$ for every $k=1,2, \cdots, n$. Consider the interval $\left[x_{k-1}, x_{k}\right]$. By the Min-Max theorem 5.8, f has a maximum value M_{k} and a minimum value m_{k} on this interval; so there are numbers s and t in $\left[x_{k-1}, x_{k}\right]$ with $f(s)=M_{k}, f(t)=m_{k}$. Since $|s-t| \leq \Delta x_{k}<$ δ, we conclude that

$$
M_{k}-m_{k}=|f(s)-f(t)|<\frac{\epsilon}{b-a} .
$$

Now

$$
U(f, P)-L(f, P)=\sum_{k=1}^{n} \Delta x_{k} M_{k}-\sum_{k=1}^{n} \Delta x_{k} m_{k}=\sum_{k=1}^{n} \Delta x_{k}\left(M_{k}-m_{k}\right)
$$

and so

$$
U(f, P)-L(f, P)<\sum_{k=1}^{n} \Delta x_{k} \frac{\epsilon}{b-a}=(b-a) \frac{\epsilon}{b-a}=\epsilon
$$

Thus f satisfies the 'Riemann condition' 7.1, and so f is integrable.
Fact I1: If f is integrable on $[a, b]$, and if K is a constant, then $\int_{a}^{b} K f d x=$ $K \int_{a}^{b} f d x$.

Fact I2: If $f:[a, b] \rightarrow \mathbb{R}$ is integrable, and if $m \leq f(x) \leq M$ for all $x \in[a, b]$, then

$$
m(b-a) \leq \int_{a}^{b} f d x \leq M(b-a)
$$

From this it is easy to deduce that if $f:[a, b] \rightarrow \mathbb{R}$ is integrable, and if $f(x) \geq 0$ for all $x \in[a, b]$, then $\int_{a}^{b} f d x \geq 0$. Indeed, simply take $m=0$ in Fact I2.

Fact I3: $\int_{a}^{b} K d x=K(b-a)$, if K is a constant.
In the following we will use a simple fact about supremums: if A and B are two sets of numbers, and if for every element $x \in A$ there exists some element y in B with $x \leq y$, then $\sup A \leq \sup B$.

Fact I4: If f and g are integrable on $[a, b]$, and if $f(x) \leq g(x)$ for all $x \in[a, b]$, then $\int_{a}^{b} f d x \leq \int_{a}^{b} g d x$.

Proof: If we take a partition P of $[a, b]$, and if m_{k} are the infimums used in the definition of $L(f, P)$, and if m_{k}^{\prime} are the infimums used in the definition of $L(g, P)$, then by the fact mentioned above I4,

$$
m_{k}=\inf \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\} \leq \inf \left\{g(x): x \in\left[x_{k-1}, x_{k}\right]\right\}=m_{k}^{\prime}
$$

Thus

$$
L(f, P)=\sum_{k=1}^{n} m_{k} \Delta x_{k} \leq \sum_{k=1}^{n} m_{k}^{\prime} \Delta x_{k}=L(g, P) \leq L(g)=\int_{a}^{b} g d x
$$

Taking the supremum over all partitions P we deduce that $L(f) \leq \int_{a}^{b} g d x$, which is what we need since $L(f)=\int_{a}^{b} f d x$.

Fact I5: $\int_{a}^{b}(f+g) d x=\int_{a}^{b} f d x+\int_{a}^{b} g d x$, if f and g are integrable on $[a, b]$.
Fact I6: If f is integrable on $[a, b]$, then so is $|f(x)|$, and $\left|\int_{a}^{b} f d x\right| \leq \int_{a}^{b}|f| d x$.
Fact I7: $\int_{a}^{b} f d x=\int_{a}^{c} f d x+\int_{c}^{b} f d x$ if $a \leq c \leq b$, and if f is integrable on [a, c] and on $[c, b]$.

Fact I8: If f is monotone on $[a, b]$, then f is integrable on $[a, b]$.
Fact 19: (The first fundamental theorem of Calculus) If f is integrable on $[a, b]$, define $F(x)=\int_{a}^{x} f(t) d t$, for $x \in[a, b]$. If f is continuous at a point $c \in(a, b)$, then $F^{\prime}(c)=f(c)$.

We mention Riemann sums briefly. Suppose that $P=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ is a partition of $[a, b]$, and that $t_{k} \in\left[x_{k-1}, x_{k}\right]$ for every $k=1,2, \cdots, n$. Then $\sum_{k=1}^{n} f\left(t_{k}\right) \Delta x_{k}$ is called a Riemann sum for f, and is sometimes written as $R(f, P)$. Note that because $m_{k} \leq f\left(t_{k}\right) \leq M_{k}$ for every $k=1,2, \cdots, n$ (by definition of m_{k} and M_{k}), we have

$$
L(f, P)=\sum_{k=1}^{n} m_{k} \Delta x_{k} \leq \sum_{k=1}^{n} f\left(t_{k}\right) \Delta x_{k} \leq \sum_{k=1}^{n} M_{k} \Delta x_{k} \leq U(f, P)
$$

That is, any Riemann sum $R(f, P)$ lies between $L(f, P)$ and $U(f, P)$.
Fact I10: (The second fundamental theorem of Calculus) If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, and is differentiable on (a, b), and if f^{\prime} is integrable on $[a, b]$ (set $f^{\prime}(a)=f^{\prime}(b)=0$ if they are not already defined), then $\int_{a}^{b} f^{\prime} d x=f(b)-f(a)$.

Proof: Suppose that $P=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ is a partition of $[a, b]$. By the MVT on $\left[x_{k-1}, x_{k}\right]$ there is a number $t_{k} \in\left(x_{k-1}, x_{k}\right)$ such that $f\left(x_{k}\right)-f\left(x_{k-1}\right)=f^{\prime}\left(t_{k}\right)\left(x_{k}-\right.$ x_{k-1}). Thus

$$
f(b)-f(a)=\sum_{k=1}^{n}\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right)=\sum_{k=1}^{n} f^{\prime}\left(t_{k}\right)\left(x_{k}-x_{k-1}\right)
$$

On the other hand, we have by the fact above the theorem we are proving,

$$
L\left(f^{\prime}, P\right) \leq \sum_{k=1}^{n} f^{\prime}\left(t_{k}\right)\left(x_{k}-x_{k-1}\right) \leq U\left(f^{\prime}, P\right)
$$

and so

$$
L\left(f^{\prime}, P\right) \leq f(b)-f(a) \leq U\left(f^{\prime}, P\right)
$$

Taking the supremum over partitions P we get

$$
\int_{a}^{b} f^{\prime} d x=L\left(f^{\prime}\right)=\sup \left\{L\left(f^{\prime}, P\right): \text { partitions } P\right\} \leq f(b)-f(a)
$$

Similarly, taking the infimum over partitions P we get

$$
f(b)-f(a) \leq U\left(f^{\prime}\right)=\int_{a}^{b} f^{\prime} d x
$$

Thus $\int_{a}^{b} f^{\prime} d x=f(b)-f(a)$.
Fact I11: (Integration by parts) If f^{\prime} and g^{\prime} are continuous on an open interval containing $[a, b]$ then $\int_{a}^{b} f g^{\prime} d x=f(b) g(b)-f(a) g(a)-\int_{a}^{b} f^{\prime} g d x$.

Fact I12: ('change of variable'/'substitution') If g is a differentiable function defined on an open interval containing numbers $c<d$, with g^{\prime} integrable on $[c, d]$, and if f is a continuous function on an open interval I containing the range of g, then $\int_{c}^{d} f(g(x)) g^{\prime}(x) d x=\int_{g(c)}^{g(d)} f(x) d x$.

