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Abbreviated notes version for Test 3: just the definitions, theorem statements,
proofs on the list. I may possibly have made a mistake, so check it. Also, this is
not intended as a REPLACEMENT for your classnotes; the classnotes have lots of

other things that you may need for your understanding, like worked examples.

6. THE DERIVATIVE

6.1. Differentiation rules. Definition: Let f : (a,b) — R and ¢ € (a,b). If
the limit };mc ! (m) (C) exists and is finite, then we say that f is differentiable at
¢, and we write thls limit as f/(¢) or %(c). This is the derivative of f at ¢, and
also obviously equals }LILI%) w by setting t = c+horh=x—c If fis

differentiable at every point in (a,b), then we say that f is differentiable on (a,b).

Theorem 6.1. If f : (a,b) — R is differentiable at at a point ¢ € (a,b), then f is

continuous at c.

Proof. If f is differentiable at ¢ then

£y = =IO 0oy 4 g0y 70+ 700 = 1(0)
as £ — c¢. So f is continuous at c. O

Theorem 6.2. (Calculus I differentiation laws) If f, g : (a,b) — R is differentiable
at a point ¢ € (a,b), then

(1) f(x)+ g(zx) is differentiable at ¢ and (f + g)'(c) = f'(c) + ¢'(¢).

(2) f(x) —g(zx) is differentiable at ¢ and (f — g)'(c) = f'(¢) — ¢'(¢).

(3) Kf(x) is differentiable at ¢ if K is a constant, and (K f)'(¢) = K f'(c).

(4) (Product rule) f(z)g(x) is differentiable at c, and (fg)'(c) = f'(c)g(c) +
1/ (c).

(5) (Quotient rule) ’;Eg is differentiable at c if g(c) # 0, and (%),(C) =

f’(C)g(Z)(;)J;(C)g/(C) '

Proof. In the last step of many of the proofs below we will be silently using the
definition of the derivative, and the ‘limit laws’ from Theorem 5.2.

(1) As x — ¢ we have

f(z) +9() = (fle) +9(c) _ flz) = fle) | g(x) —g(c)

= f'(e) + 4'(c).

(4) We have ) ) )
flz)g(x) = Fle)g(e) _ f@)g(x) = flz)g(e) | f(@)g(c) = fle)g(e) _ (@) 9(x) —g(c) (o) flx) = f(c)

By Theorem 6.1, f is continuous at ¢, that is, lim,_,. f(z) = f(¢). So

xT—cC xr —C xr—c xr —C xr —cC
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(3) Set g(z) = K in (4), to get (K f)'(c) = Kf'(c)+0f(c) = Kf'(c).

(2) By (1) and (3), (f +(=0))' = /' +(—g) = f' — "

(5) Since g(c) # 0, so that |g(c)| > 0, by Proposition 5.7 |g(z)|, and hence also
g(z), is nonzero on a neighborhood of ¢. So division by g(z) in what follows is
justified. We have

08 1@el) — g@)f(0) _ f@)gle) — F()g(e) + F(g(e) — fle)g(x)
ro g@)g()(x— 0 g@)g()(z— 0 '

This equals

9(e) D — 1) 0ED g(e)f'(e) = ()9 (0

g(x)g(c) (9(c))?

as  — ¢, since by Theorem 6.1, lim,_,. g(z) = g(c). O

Theorem 6.3. (Calculus I chain rule) If f : (a,b) = R is differentiable at a
point ¢ € (a,b), and if g : I — R is differentiable at f(c), where I is an open
interval containing f((a,b)), then the composition g o f is differentiable at ¢ and

(g0 f)(c) = g'(f(e)f'(c)-

As in Calculus, a point c is called a local minimum (resp. local maximum) point
for a function f if 3 a neighborhood U of ¢ s.t. f(c) < f(z) (resp. f(c) > f(x))
Vz € V. In this case we say that f(c) is a local minimum (resp. maximum) value
of f. As in Calculus I, the word ‘extreme’ means either ‘minimum’ or ‘maximum’.
So we have local extreme points and local extreme values, just as in Calculus I.

Recall from Calculus that a critical point is a point ¢ s.t. f’(c¢) does not exist or
f(e) =o.

Theorem 6.4. (First Derivative Test) If f : (a,b) — R is differentiable at a local

extremum point ¢ € (a,b), then f'(c) =0 (and so c is a critical point).

Proof. Suppose that c is a local maximum point of f, so f(z) < f(c) for all z in a

neighborhood of ¢. Then lim M

< 0 (by the bullet just before Propo-
T—rct xr—c

<0

sition 5.4 with g = 0). Similarly, lim 22 —=7(9)

T—c— T —cC

> 0. Since f is differentiable

>0
f'(¢) = lim %:f(c) exists, and so these two one-sided limits must be equal by
r—rc

Proposition 5.4, and hence must be 0. That is, f'(c) = lim w = 0. The

xr—c
local minimum case is similar. O

6.2. The mean value theorem.

Lemma 6.5. (Rolle’s theorem) If f : [a,b] — R is continuous, and f is differen-
tiable on (a,b), and f(a) = f(b) =0, then there exists ¢ € (a,b) with f'(c) = 0.
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Proof. To prove this, note that it is clearly true if f is constant. By the MAX-
MIN theorem f has a maximum and a minimum value on [a,b]. At least one of
these extreme values must be nonzero if f is not constant, and hence this value is
achieved at a point ¢ which is not a or b. By the first derivative test (Theorem 6.4),
f'(e)=0. O

Theorem 6.6. (The mean value theorem) If f : [a,b] — R is continuous, and f is
differentiable on (a,b), then there exists ¢ € (a,b) with f'(c) = (f(b)— f(a))/(b—a).
FEquivalently, f(b) — f(a) = f'(c)(b— a).

Proof. Let g(x) = W(m —a)+ f(a). Clearly ¢’ = %. Then h=f—g
is continuous on [a,b] and differentiable on (a,b). Also it is easy to check that
h(a) = h(b) = 0, so by Rolle’s theorem Jc € (a,bd) s.t. h'(c) = f'(c) — ¢'(c) = 0.

Hence f'(c) = ¢/(c) = =0, 0

a

Corollary 6.7. If f : (a,b) = R has f'(z) =0 for all x € (a,b), then f is constant
on (a,b).

Proof. If a < x < y < b then by the MVT there exists ¢ such that f(y) — f(x) =
f'(e)(y —x) =0. Thus f(x) = f(y). That is, f is constant. O

Corollary 6.8. If f : (a,b) — R has f'(x) > 0 for all z € (a,b) then f(x) is
strictly increasing on (a,b). Similarly, if f'(x) >0 (resp. f'(z) <0, f'(z) <0) for

all x € (a,b) then f(x) is increasing (resp. strictly decreasing, decreasing) on (a,b).

Proof. We just prove one, the others are similar. Suppose that f'(z) > 0 for
all z € (a,b). If a < x < y < b then by the MVT there exists ¢ such that
fly) = f(z) = f'(e)(y — ) > 0, since f'(c) > 0. Thus f(z) < f(y). So f is strictly
increasing on (a, b). O

Corollary 6.9. If f'(x) = ¢'(x) for all x € (a,b) then there exists a constant C
such that f(x) = g(x) + C for all x € (a,b).

6.3. Taylors theorem and the second derivative test. Here is a version of the

Calculus II Taylor’s theorem:

Theorem 6.10. Suppose thatn € N (orn =0). If f : (a,b) = R is n+ 1 times
differentiable, and the first n of these derivatives are continuous on (a,b), and if
xo € (a,b), then for every x € (a,b) with x # xo there is a number ¢ between x

and x such that

. = f(k)(xo) f(nﬂ)(c) n
f(z) _kZ:O T(iﬂ—xo)k + m(fﬂ—xo) i
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Remark. Note that the MVT 6.6 is essentially the case n = 0 of the last

theorem.

A number ¢ is a strict local minimum (resp. local mazimum,) point for a function

f if 3 a deleted neighborhood U of ¢ s.t. f(¢) < f(x) (resp. f(c) > f(x)) Vx € U.

Theorem 6.11. (The second derivative test (Calculus I))  Suppose that f" is
continuous on a neighborhood of c. If f'(c) =0 and f"(c) > 0 then f has a strict
local minimum ot x = c. If f'(¢) = 0 and f"(c) < 0 then f has a strict local

mazimum at x = c.

Proof. Suppose f”(¢) > 0. Setting n =2 and z = ¢+ h,x9 = ¢ in Taylors theorem
above, we have
f///(d)
6
where d is a number between ¢ and ¢+ h. As h — 0 we have d — ¢, so that
f"(d) — f"(c) and f"(d)h — f"'(c)-0=0. So since f'(c) =0,
fleth)—fle) _ f"(e) | f"(d) f"(c)
E = T T
as h — 0. By Proposition 5.3, there exists 6 > 0, such that w > 0 for
h € (=8,8). So f(c+h)— f(c) >0, or f(c+h) > f(c), for h € (—6,6). This says

that f has a strict local minimum at z = c.

h3

Fleth) - £e) = Pleyh+ LD pe

>0,

The case f’(c) < 0 is similar, except
fleth) = fle) _ () | f"(d) f"(¢)
= h
n > T T 2
as h — 0. This implies that there exists § > 0, such that W < 0 for
h € (=4,0), and so as above f(c+ h) < f(c), for h € (—6,9). This says that f has

a strict local maximum at x = c. O

<0,

6.4. The open mapping/Inverse function theorems.

Theorem 6.12. Suppose that f : (a,b) — R is a one-to-one continuous function.

Then f is either strictly increasing on (a,b), or it is strictly decreasing on (a,b).
Recall that the notation f(E) means {f(z): z € E}.

Proposition 6.13. Suppose that f : (a,b) = R is a one-to-one continuous func-

tion. Then f((a,b)) is an open interval.

Theorem 6.14. Suppose that f : (a,b) — R is a one-to-one continuous function.

Then =1 is continuous.
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Theorem 6.15. (The inverse function theorem) Suppose that f : (a,b) = R is a
differentiable function with f'(x) # 0 for all x € (a,b). Then f is one-to-one, its

range f((a,b)) is an open interval (c,d), and for any y € (c,d), we have
f(x) =y.
7. INTEGRATION-THE RIEMANN INTEGRAL

Throughout this chapter f : [a,b] — R is a bounded function. That is, there are
two constants m and M such that m < f(z) < M for all = € [a,b]. Equivalently,
there is a constant K such that |f(x)| < K for all z € [a,b], or equivalently,
Range(f) is a bounded set.

Main definitions for this Chapter (from Calculus 1): [Pictures drawn in
class.|

e A partition P of [a,b] is an ordered set {xg,z1, -+ ,z,} where a = 2o <
T <x9 << xy =0

e Let P be the set of all partitions P of [a, b].

e We define Axy = xp — xp_1, for each k =1,2,--- . n.

o We define My, = sup{f(t) : zx—1 <t < x} and my = inf{f(¢) : zp_1 <
t < ap}, foreach k=1,2,-- n.

o We define the upper sum U(f, P) =Y ._, My Axj. This is the sum of the
areas of the red rectangles in picture.

e We define the lower sum L(f,P) = >_}_; my Azy. This is the sum of the
areas of the green rectangles in picture.

o We define the upper integral U(f) = inf{U(f,P) : P € P}.

o We define the lower integral L(f) = sup{L(f,P) : P € P}.

e We say that a bounded function f : [a,b] — R is integrable if L(f) = U(f).
In this case we write fab f dz for the number L(f) = U(f).

Some observations:

Observation 1: If m < f(x) < M for all z € [a,b], then m(b—a) < L(f, P) <
U(f,P) < M(b— a), for any partition P of [a,b].

Proof. Since my < Mj, clearly for each k =1,2,---  n, we have
n n
L(f,P) =) mi Az, <> My Az, =U(f, P).
k=1 k=1
Since my > m clearly for each k =1,2,--- ,n, we have
L(f,P)= Z my Axyg > Z m Az, =m(b— a).
k=1 k=1

Similarly, U(f, P) = >y My Az <30, M Az =m(b—a). O
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Definition. If P,@Q are two partitions of [a, b], then we say that P refines Q, or
that P is finer than @, if @ C P. That is, P consists of () with some additional
points added.

Observation 2: If P refines @ then L(f,Q) < L(f,P) <U(f,P) < U(f,Q).
Observation 3: If P,Q are two partitions of [a, b] then L(f, P) < U(f, Q).
Observation 4: L(f) < U(f).

Proof. 1f P,Q are two partitions of [a,b] then by Observation 3, L(f,P) <
U(f,Q). So for fixed Q, U(f,Q) is an upper bound for {L(f,P) : P € P}. Thus
L(f) <U(f,Q), by definition of L(f). Hence L(f) is a lower bound for {U(f, Q) :
Q € P}. Thus L(f) < U(f) by definition of U(f). O

Observation 5: L(f, P) < L(f) <U(f) < U(f, P) for all partitions P of [a, b].
In particular, if f is integrable, then L(f, P) < fab fdx <U(f,P).

Theorem 7.1. (Riemann condition) A bounded function f : [a,b] — R is integrable
if and only if Ve >0, 3 a partition P of [a,b] such that U(f, P) — L(f, P) < e.

Proof. By definition, f is integrable if and only if U(f) = L(f).
(<) Suppose that Ve > 0, 3 a partition P of [a, b] such that U(f, P)—L(f, P) <
e. Using this, and the definition of L(f) and U(f),
U(f) SU(f, P) <L(f, P) + e < L(f) +e
Since this is true for every € > 0, we have U(f) < L(f), by Theorem 3.6. But
L(f) < U(f) by Observation 4, so L(f) = U(f).

(=) It U(f) = L(f), and if € > 0 is given, choose (by definition of L(f) and
U(f), and the ‘principles in terms of ¢ on page 18 of these notes), partitions @
and R such that L(f,Q) > L(f) — 5, and U(f,R) < U(f) + 5. Let P = QUR,

29
the refinement of both  and R obtained by taking their union. Then by the last

equations, and Observation 2, we have
U(,P)SU(f.R) <U() + 5 = L) + 5 < Lf.Q) + 5 + 5 S LU, P) +e.

Looking at the left and right side of the last line, we see that U(f, P) — L(f, P) < ¢,

which is what was required. O

Definition. A function f : D — R is called uniformly continuous if Ve > 0,
3§ > 0 such that |f(z) — f(y)| < € whenever z,y € D, and |z — y| < 6.

Any uniformly continuous function is clearly continuous.
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Theorem 7.2. If D is compact, and f : D — R is continuous, then f is uniformly

continuous.
Theorem 7.3. If f : [a,b] — R is continuous, then f is integrable.

Proof. By the last theorem, f is uniformly continuous. Thus given € > 0, there is a
number § > 0 such that |f(z) — f(y)| < = whenever z,y € [a,b] and |z — y| < J.

b—a
Choose a partition P = {xg,z1," -, 2z} of [a, ] such that Az = 2 — a1 < J for
every k = 1,2,--- ,n. Consider the interval [z_1,2z)]. By the Min-Max theorem

5.8, f has a maximum value M} and a minimum value my, on this interval; so there
are numbers s and ¢ in [zy_1, xx] with f(s) = My, f(t) = my. Since [s—t| < Az <

6§, we conclude that
€

My —my = [f(s) = f(t)] <

b—a
Now

U(f,P) = L(f,P) = Y Axp My = Y Azpmp = Y Axzy (M, — my),
k=1 k=1 k=1

and so .
€ €
U(f,P)— L(f,P A = (b— = e
(fa ) (fa ) <; xkb—a ( a>b*a €
Thus f satisfies the ‘Riemann condition’ 7.1, and so f is integrable. (]

Fact I1: If f is integrable on [a,b], and if K is a constant, then ff Kfde =
K[ fda.
Fact I2: If f : [a,b] — R is integrable, and if m < f(z) < M for all = € [a, ],
then .
m(b—a) S/ fdx < M(b—a).

From this it is easy to deduce that if f : [a,b] — R is integrable, and if f(z) >0
for all z € [a, b], then f; fdx > 0. Indeed, simply take m = 0 in Fact 12.

Fact I3: ff Kdx = K(b—a),if K is a constant.

In the following we will use a simple fact about supremums: if A and B are two
sets of numbers, and if for every element z € A there exists some element y in B
with <y, then sup A < sup B.

Fact I4: If f and g are integrable on [a,b], and if f(x) < g(x) for all = € [a, b],
then ff fdx < f; gdx.

Proof: If we take a partition P of [a,b], and if mj, are the infimums used in the
definition of L(f, P), and if m) are the infimums used in the definition of L(g, P),
then by the fact mentioned above 14,

my = inf{f(z): 2z € [xp_1, 2]} <inf{g(z) : x € [wp_1,2k]} = M.
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Thus

n b
kaAkaZ wAxy =L g7P)§L(g):/ gdx.
=1 a
Taking the supremum over all partitions P we deduce that L(f) < fab g dx, which
is what we need since L(f) = fj fdx. O
Fact I5: fab (f+g)de = fab fdx+ fab gdz, if f and g are integrable on [a, b].
Fact 16: If f is integrable on [a, b], then so is | f(x)|, and |f fdx] < f |f| dex.

Fact I7: fa fdx = [° fdx—i—fc fdxif a < c<b,and if f is integrable on [a, (]

and on [c, b].
Fact I8: If f is monotone on [a,b], then f is integrable on [a, b].

Fact I9: (The first fundamental theorem of Calculus) If f is integrable on [a, ],

define F'(x f f(®)dt, for = € [a,b]. If f is continuous at a point ¢ € (a,b), then
Fl(c)=f (C)~
We mention Riemann sums briefly. Suppose that P = {zq, z1, - ,2,} is a parti-

tion of [a, b], and that t;, € [zy_1, 2] forevery k =1,2,--- ,n. Then Y ,_, f(tx)Azy,
is called a Riemann sum for f, and is sometimes written as R(f, P). Note that be-
cause my < f(tx) < My, for every k =1,2,---  n (by definition of my, and My), we

have

P) = Z my Axy < Z flr) Az < Z My, Az, < U(f,P).

k=1 k=1 k=1
That is, any Riemann sum R(f, P) lies between L(f, P) and U(f, P).

Fact I10: (The second fundamental theorem of Calculus) If f : [a,b] — R
is continuous, and is differentiable on (a,b), and if f’ is integrable on [a,b] (set
f'(a) = f'(b) = 0 if they are not already defined), then f; fldx = f()— f(a).

Proof: Suppose that P = {xg, 1, - ,z,} is a partition of [a, b]. By the MVT on
[zr_1, 2] there is a number ¢, € (zg_1, k) such that f(zp)— f(axp_1) = f'(tx) (2 —
Zg—1). Thus

Z flzr_1)) Zf (tr)(zh — Tp—1)-

k=1

On the other hand, we have by the fact above the theorem we are proving,
L(f,P) < f'(t)(wr — 1) <U(f, P),

k=1

and so

L(f',P) < f(b) = f(a) SU(f', P).
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Taking the supremum over partitions P we get

/b f'dr = L(f") = sup{L(f’, P) : partitions P} < f(b) — f(a).
Similarly, t;king the infimum over partitions P we get
f) = fla) U(f) = /ab f'da.
Thus [° f'dz = f(b) — f(a). O
Fact I11: (Integration by parts) If f” and ¢’ are continuous on an open interval
containing [a, b] then fab fg' dx= f(b)g) — f(a)g(a) — f; 1 gdzx.
Fact I12: (‘change of variable’/‘substitution’) If g is a differentiable function

defined on an open interval containing numbers ¢ < d, with ¢’ integrable on [c, d],

and if f is a continuous function on an open interval I containing the range of g,

then fcd flg(x) ¢'(z)dx = fgg(g) f(z) da.



