\qquad
\qquad

Department of Mathematics, University of Houston Math 3333-Intermediate Analysis - David Blecher Mock Test 1.

Instructions. Show all working and reasoning, the points are almost all for logical, complete reasoning. [Approximate point values are given, total ¿ 100 points].

1. What is the negation of the following statement: $\forall x \in A, \exists y \in B$ such that $x<y<1$. [5]
2. Prove by mathematical induction: $1+3+5+\cdots(2 n-1)=n^{2}$.
3. Prove that for real numbers, if $x<y+\epsilon \forall \epsilon>0$, then $x \leq y$.
4. (a) What does the Archimidean property state? Also state another fact which also goes by this name.
(b) Use the Archimidean property to show that $\sup \{n /(n+1): n \in \mathbb{N}\}=1$. Include all reasoning.
5. (a) What is a 'boundary point' of a set S ?
(b) Let S be the set $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}, \cdots, \frac{999}{1000}\right\}$. Is 1 a boundary point of S ? Prove it.
(c) Is the set S in (b) closed? Explain.
(d) Define in terms of boundary points what it means for a set to be open.
(e) Prove that a set is open (in the sense of (d)) if every number in S is an interior point of S.
6. (a) Give as many alternative descriptions as you can of compact sets.
(b) State the nested intervals theorem.
(c) Prove that if S is a nonempty set which is compact then S has a maximum.
