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4. Sequences

4.1. Convergent sequences.

• A sequence (sn) converges to a real number s if ∀ε > 0, ∃Ns.t. |sn − s| < ε

∀n ≥ N . Saying that |sn−s| < ε is the same as saying that s−ε < sn < s+ε.

• If (sn) converges to s then we say that s is the limit of (sn) and write

s = limn sn, or s = limn→∞ sn, or sn → s as n→∞, or simply sn → s.

• If (sn) does not converge to any real number then we say that it diverges.

• A sequence (sn) is called bounded if the set {sn : n ∈ N} is a bounded set.

That is, there are numbers m and M such that m ≤ sn ≤M for all n ∈ N.

This is the same as saying that {sn : n ∈ N} ⊂ [m,M ]. It is easy to see

that this is equivalent to: there exists a number K ≥ 0 such that |sn| ≤ K
for all n ∈ N. (See the first lines of the last Section.)

Fact 1. Any convergent sequence is bounded.

Proof: Suppose that sn → s as n → ∞. Taking ε = 1 in the definition of

convergence gives that there exists a number N ∈ N such that |sn−s| < 1 whenever

n ≥ N . Thus

|sn| = |sn − s+ s| ≤ |sn − s|+ |s| < 1 + |s|

whenever n ≥ N . Now let M = max{|s1|, |s2|, · · · , |sN |, 1+ |s|}. We have |sn| ≤M
if n = 1, 2, · · · , N , and |sn| ≤M if n ≥ N . So (sn) is bounded.

• A sequence (an) is called nonnegative if an ≥ 0 for all n ∈ N. To say that

a nonnegative sequence converges to zero is simply to say that:

∀ε > 0, ∃Ns.t. an < ε ∀n ≥ N.

Fact 2. If (sn) is a general sequence then:

lim
n
sn = s ⇐⇒ lim

n
(sn − s) = 0 ⇐⇒ lim

n
|sn − s| = 0.

That is, the sequence (sn) converges to s if and only if the nonnegative sequence

(|sn − s|) converges to 0.

Fact 3. If (an) and (bn) are nonnegative sequences, with limn an = 0 and

limn bn = 0, and if C ≥ 0, then

lim
n
an + bn = lim

n
Can = 0.

Also, if limn an = 0 and if (bn) is any bounded sequence, then limn anbn = 0.

Fact 4. If (sn) and (tn) are sequences with sn ≤ tn for every n ≥ 1. If

limn sn = s and limn tn = t, then s ≤ t.

Fact 5: The ‘squeezing’ or ‘pinching rule’. Suppose that (sn), (xn), and

(tn) are sequences with sn ≤ xn ≤ tn, for every n ≥ 1. If limn sn = s and

limn tn = s, then limn xn = s.
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Fact 6, sometimes call ’squeezing’ too, since it is a corollary of Fact 5: Let

(sn) be a sequence, let s be a number, and suppose that |sn− s| ≤ an for all n ≥ 1,

where (an) is a sequence with limit 0. Then limn sn = s.

Proof: We have 0 ≤ |sn − s| ≤ an. Now an → 0 as n → ∞, so by ‘squeezing’

(Fact 5), limn |sn − s| = 0. By Fact 2, limn sn = s.

Fact 7: The limit of a sequence has nothing to do with its first few terms.

Fact 8: If limn tn = t, and if t 6= 0, then there exists a number N with |tn| > |t|
2

for all n ≥ N .

Fact 9: If limn sn = s and limn tn = t, then:

(1) limn sn + tn = s+ t;

(2) limn sn − tn = s− t;
(3) limn sntn = st;

(4) limn Csn = Cs, if C is a constant;

(5) limn
sn
tn

= s
t , if t 6= 0;

(6) limn |sn| = |s| ;

(7) limn

√
tn =

√
t, if tn ≥ 0 for all n ∈ N.

Proof: By Fact 2, we have |sn − s| → 0, and |tn − t| → 0, as n→∞. To prove

(1), by Fact 6 it is enough to show that |(sn + tn)− (s+ t)| ≤ an, where an → 0 as

n→∞. But

|(sn + tn)− (s+ t)| = |(sn − s) + (tn − t)| ≤ |sn − s|+ |tn − t| → 0,

using the triangle inequality, and Fact 3 in the very last step. So we have proved

(1). The proof of (3) is similar, by Fact 6, it is enough to show that |sntn−st| ≤ an,

where an → 0, as n→∞. But

|sntn−st| = |sntn−snt+snt−st| ≤ |sntn−snt|+|snt−st| = |sn(tn−t)|+|t(sn−s)| = |sn||tn−t|+|t||sn−s|.

Now |sn − s| → 0, so |t||sn − s| → 0, as n → ∞, by Fact 3. On the other hand,

since (sn) is convergent, it is bounded, by Fact 1. Thus (|sn|) is bounded. By the

final assertion of Fact 3, |sn||tn − t| → 0 as n → ∞. By the first assertion of Fact

3, we now see that |sn||tn − t| + |t||sn − s| → 0 as n → ∞. Since |sntn − st| ≤
|sn||tn− t|+ |t||sn− s|, by Fact 6 we deduce that sntn → st as n→∞. So we have

proved (3).

(4) follows from (3), if we set tn = C for all n. Applying (4) with C = −1 shows

that limn(−tn) = −t. Using this with (1), gives

lim
n

(sn − tn) = lim
n

(sn + (−tn)) = lim
n
sn + lim

n
(−tn) = s− t.

This proves (2).
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For (5), we use a similar strategy to (1) and (3). Note that∣∣∣∣sntn − s

t

∣∣∣∣ =

∣∣∣∣snt− tnstnt

∣∣∣∣ =
|snt− st+ st− tns|

|tn||t|
≤ |snt− st|+ |st− tns|

|tn||t|
=
|sn − s||t|+ |s||t− tn|

|tn||t|
.

By Fact 8, ∃N s.t. |tn| > |t|/2 for n ≥ N . Thus for n ≥ N ,∣∣∣∣sntn − s

t

∣∣∣∣ ≤ |sn − s||t|+ |s||t− tn||tn||t|
≤ 2

|t|2
(|sn − s||t|+ |s||t− tn|).

Since |sn − s| → 0 and |t − tn| → 0, as n → ∞, by Fact 3 it follows that |sn −
s||t| + |s||t − tn| → 0 too. By Fact 3 again, 2

|t|2 (|sn − s||t| + |s||t − tn|) → 0 as

n→∞. Thus we conclude from Fact 6 (in conjunction with Fact 7), that sn
tn
→ s

t

as n→∞.

(6) follows by squeezing too, since we have using Theorem 3.3 (f) above, that

||sn| − |s|| ≤ |sn − s| → 0. So by Fact 6, |sn| → |s|. We omit (7).

Infinite limits. If (sn) is a sequence, then we write limn sn = +∞ if ∀M >

0, ∃N s.t. sn > M ∀n ≥ N . We write limn sn = −∞ if ∀M > 0, ∃N s.t.

sn < −M ∀n ≥ N . Such sequences must be unbounded, and hence divergent (by

the contrapositive to Fact 1).

Proposition 4.1. Suppose that (sn) and (tn) are sequences such that sn ≤ tn, ∀n.

(a) If limn sn = +∞, then limn tn = +∞.

(b) If limn tn = −∞, then limn sn = −∞.

Theorem 4.2. Let (sn) be a sequence of positive numbers (so sn > 0,∀n). Then

limn sn = +∞ ⇔ limn
1
sn

= 0.

Theorem 4.3. If S is a nonempty set in R then

(a) x ∈ S̄ iff there is a sequence (sn) in S with limit x.

(b) x ∈ S′ iff there is a sequence (sn) in S \ {x} with limit x.

(c) S is closed iff whenever (sn) is a sequence in S with limit x, then x ∈ S.

Proof. (a) (⇐) If (sn) is a sequence in S with limit x, and if ε > 0 is given, then

there exists an N with |sn − x| < ε if n ≥ N . Hence sN ∈ N(x, ε), and so N(x, ε)

contains a point of S. Thus x ∈ S̄ by Lemma 3.20.

(⇒) If x ∈ S̄, and n ∈ N, then by Lemma 3.20, N(x, 1
n ) contains a point of

S. Call this point sn. Since |sn − x| < 1/n → 0, it follows by Fact 6 in 4.1 that

sn → x.

(c) (⇐) Suppose that the condition in (c) about sequences holds. Let x ∈ S̄.

By (a), there is a sequence sn → x with sn ∈ S for all n ∈ N. By hypothesis, x ∈ S.

So S̄ ⊂ S, therefore S̄ = S, and so S is closed by Corollary 3.24.

(⇒) Suppose that S is closed, and that (sn) is a sequence in S with sn → x.

By (a), we have x ∈ S̄ = S (using Corollary 3.24). �
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4.2. Monotone sequences and Cauchy sequences. Recall from Calculus II

that a sequence (sn) is increasing if sn ≤ sn+1, ∀n ∈ N. A sequence (sn) is de-

creasing if sn ≥ sn+1, ∀n ∈ N. We say strictly increasing (resp. strictly decreasing)

if the ≤ here (resp. ge) is replaced by < (resp. >). A sequence (sn) is monotone if

it is increasing or decreasing (or both, which happens for constant sequences).

Theorem 4.4. A monotone sequence is convergent iff it is bounded.

Proof. (⇒) Every convergent sequence is bounded (by Fact 1).

(⇐) Suppose that (sn) is a bounded increasing sequence (the decreasing case is

similar). Let S = {sn : n ∈ N}. This is bounded above, and let s = supS. Claim:

limn sn = s. Let ε > 0 be given. Then s − ε is not an upper bound for S. Thus

∃N s.t. sN > s− ε. Hence

s− ε < sN ≤ sn ≤ s < s+ ε

for all n ≥ N . We’ve shown that ∀ε > 0 ∃N s.t. |sn − s| < ε for all n ≥ N . Thus,

the sequence (sn) converges to s. �

Remark. The last proof shows that a bounded increasing (resp. decreasing)

sequenc converges to its supremum (resp. infimum).

Proposition 4.5. If (sn) is an unbounded increasing (resp. decreasing) sequence,

then limn sn = +∞ (resp. = −∞).

Definition: A sequence (sn) of real numbers is called a Cauchy sequence if

∀ε > 0 ∃N ∈ N s.t. |sn − sm| < ε, whenever m ≥ n ≥ N .

Lemma 4.6. Every convergent sequence is a Cauchy sequence.

Lemma 4.7. Every Cauchy sequence is bounded.

Theorem 4.8. (Cauchy test for convergence) A sequence in R is convergent iff it

is a Cauchy sequence.

4.3. Subsequences. A subsequence of a sequence (sn) is constructed from (sn) by

removing terms in the sequence. Associated with each subsequence is a strictly

increasing sequence of natural numbers (nk)∞k=1, namely the place numbers of the

terms that were kept from the original sequence to make the subsequence.

Summarizing: A subsequence of a sequence (sn)∞n=1 is a new sequence (tk)∞k=1,

where tk = snk
for all k, and where n1 < n2 < n3 < · · · are natural numbers.

Or for short: a subsequence of a sequence (sn)∞n=1 is a new sequence (snk
)∞k=1, for

natural numbers n1 < n2 < n3 < · · · .

Lemma 4.9. If n1 < n2 < n3 < · · · is a sequence of natural numbers then k ≤ nk
for all k ∈ N.
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To say that a subsequence (snk
)∞k=1 converges to a number s, means that

∀ε > 0, ∃K > 0 s.t. |snk
− s| < ε ∀k ≥ K.

Proposition 4.10. If a sequence (sn) converges to a number s, then every subse-

quence (snk
) also converges to s.

Proof. Given ε > 0 ∃N s.t. |sn − s| < ε ∀n ≥ N . If k ≥ N then by Lemma 4.9, we

have nk ≥ k ≥ N , and so |snk
− s| < ε. That is, snk

→ s. �

Theorem 4.11. (Bolzano-Weierstrass for sequences) Every bounded sequence has

a convergent subsequence.

Theorem 4.12. Every unbounded sequence contains a monotone subsequence with

limit +∞ or −∞.

Theorem 4.13. A nonempty set S of real numbers is compact iff every sequence

in S has a convergent subsequence with a limit in S.

The limsup and liminf

Definition. The limit superior of a sequence (sn), is the number

limsupn sn = lim
n→∞

{sup{sk : k ≥ n}}.

The limit inferior is

liminfn sn = lim
n→∞

{inf{sk : k ≥ n}}.

What the limsup and liminf are good for: First, they always exist, unlike

the limit. For example, in the Example above, limn sn does not exist. But we were

able to compute the limsup and liminf. They always exist because as we saw in

the example, they are limits of monotone sequences, which we know always exist.

They behave similarly to the limit. That is, they obey laws analogous to the rules

we saw in Section 4.1 above for limits. We will write down some of these laws

momentarily. They can be used to check if the limit exists. In fact limn sn exists

iff liminfn sn = limsupn sn. So if liminfn sn 6= limsupn sn then we may conclude

that limn sn does not exist. Finally, recall that in Calculus II there were certain

tests ... One can improve these tests by using the limsup and liminf instead of the

limit... .

Other properties of the limsup and liminf:

• In general, liminfn sn ≤ limsupn sn. If limn sn exists then liminfn sn =

limn sn = limsupn sn.

• liminfn (−sn) = −limsupn sn.

• If sn ≤ tn for all n then limsupn sn ≤ limsupn tn and liminfn sn ≤ liminfn tn.
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• limsupn (Ksn) = Klimsupn sn and liminfn (Ksn) = Kliminfn sn, if K ≥ 0.

• ...

Summary: any sequence (sn) has a limsup and a liminf (either a real number or

±∞), which behave like limits.

5. Limits and continuity of functions

5.1. Limits of functions. In this section f : D → R is a function with domain

D ⊂ R, and let c be an accumulation point of D. We recall from Calculus I:

Definition: lim
x→c

f(x) = L if ∀ε > 0 ∃δ > 0 s.t. |f(x)− L| < ε whenever x ∈ D
and 0 < |x− c| < δ.

In this case we say that L is the limit of f as x approaches c, and sometimes

write f(x)→ L as x→ c.

Definition: Now suppose that c ∈ D. We say that f is continuous at c if

∀ε > 0 ∃δ > 0 s.t. |f(x)− L| < ε whenever x ∈ D and |x− c| < δ.

Theorem 5.1. (Main theorem # 1/MT # 1/Main theorem on limits) limx→c f(x) =

L iff whenever xn → c, and xn 6= c for all n ∈ N, then f(xn) → L. Here (xn) is

any sequence in the domain of f .

Proof. (⇒) Suppose that limx→c f(x) = L, and that xn → c, xn 6= c for all n ∈ N.

So given ε > 0 there exists a δ > 0 such that |f(x)−L| < ε whenever 0 < |x−c| < δ.

Since xn → c there exists N such that |xn − c| < δ if n ≥ N . Also, 0 < |xn − c|
since xn 6= c. Thus if n ≥ N then |f(sn)− L| < ε. That is, f(sn)→ L.

(⇐) We prove the contrapositive. Suppose that limx→c f(x) 6= L. So there

exists ε > 0 such that for all δ > 0 there exists x with 0 < |x − c| < δ but

|f(x)− L| ≥ ε. Let δ = 1
n for n ∈ N, so there exists xn with 0 < |xn − c| < 1

n but

|f(xn) − L| ≥ ε. Since |xn − c| < 1
n → 0 as n → ∞, we have xn → c by Fact 6

for sequences. Since 0 < |xn − c|, we have xn 6= c. Since |f(xn)− L| ≥ ε for all n,

the sequence (f(xn)) does not converge to L. That is, we have found a sequence

xn → c, xn 6= c for all n ∈ N, but (f(xn)) does not converge to L. �

Theorem 5.2. (Limit laws) If limx→c f(x) = L and limx→c g(x) = M then

• limx→c (f(x) + g(x)) = L+M .

• limx→c (f(x)− g(x)) = L−M .

• limx→c (f(x)g(x)) = LM .

• limx→c (Kf(x)) = KL, if K is a constant.

• limx→c
f(x)
g(x) = L

M if M 6= 0.

• If f(x) ≤ g(x) for all x in a deleted neighborhood of c, then L ≤M .
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• (Pinching/squeezing) If f(x) ≤ g(x) ≤ r(x) for all x in a deleted neigh-

borhood of c, and if limx→c r(x) = L, then L = M .

If limy→L h(y) = K, and if there is a deleted neighborhood N∗ of c such that

f(N∗) ⊂ E \ {L}, where E is the domain of h, then limx→c h(f(x)) = K.

Proof. All these proofs have the same proof technique, so we just do a few of them:

They all begin with the statement: If sn → c, sn 6= c for all n, then f(sn) → L

(by Main theorem # 1 (⇒)). Similarly, g(sn) → M . By Fact 9(1) from Section

4.1 above, f(sn) + g(sn) → L + M . By Main theorem # 1 (⇐) applied to f + g,

limx→c (f(x) + g(x)) = L+M . This proves the first bullet.

Similarly, f(sn)g(sn)
→ L

M by Fact 9(5) from Section 4.1 above. By Main theorem #

1 (⇐) applied to f/g, we limx→c
f(x)
g(x) = L/M , the fifth bullet.

Similarly, if f(x) ≤ g(x) as in the sixth bullet, then f(sn) ≤ g(sn). Since

f(sn)→ L and g(sn)→M , by Fact 4 in Section 4.1 above we have L ≤M .

Similarly, if f(x) ≤ g(x) ≤ r(x) as in the seventh bullet, then f(sn) ≤ g(sn) ≤
r(sn). Since f(sn) → L and r(sn) → L (by Main theorem # 1 (⇒) for f and for

r), by Fact 5 in Section 4.1 above we have g(sn) → L. But we said above that

g(sn)→M . So L = M .

Similarly, for the final assertion, if tn = f(sn)→ L then h(tn) = h(f(sn))→ K

by Main theorem # 1 (⇒) applied to h. So limx→c h(f(x)) = K by Main theorem

# 1 (⇐) applied to h ◦ f . �

• Using Main theorem # 1 to show limits do not exist: If you want to

show that limx→c f(x) does NOT exist, it is enough to either:

(a) Find a sequence xn → c, xn 6= c for all n ∈ N, but (f(xn)) does not converge;

or

(b) Find two sequences xn → c, yn → c, xn 6= c for all n ∈ N, and yn 6= c for all

n ∈ N, but limn→∞ f(xn) 6= limn→∞ f(yn).

Proposition 5.3. If limx→c f(x) = L > 0, then there is a deleted neighborhood

N∗ of c such that f(x) > L/2 for all x ∈ N∗.

Proof. By definition of the limit, if ε = L/2 > 0 then there exists a deleted neighbor-

hood N∗ of c such that |f(x)−L| < ε = L/2 for all x ∈ N∗. But if |f(x)−L| < L/2

then f(x) > L− L/2 = L/2 > 0. �

One-sided limits. If f : (a, b)→ R then we write lim
x→a+

f(x) = L if ∀ε > 0 ∃δ >
0 s.t. |f(x) − L| < ε whenever a < x < a + δ < b. This is called the right-hand

limit of f at a. Similarly for the left-hand limit lim
x→b−

f(x) = L, which means that

∀ε > 0 ∃δ > 0 s.t. |f(x)− L| < ε whenever a < b− δ < x < b.
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The results above for usual (two-sided) limits have variants for one-sided limits,

with essentially the same proofs. For example:

• Main theorem # 1 for right-hand limits: limx→a+ f(x) = L iff whenever

xn → a, xn > a for all n ∈ N, then f(xn) → L. Here (xn) is a sequence in

the domain of f .

• If limx→a+ f(x) = L and limx→a+ g(x) = M and f(x) ≤ g(x) on (a, b)

then L ≤M .

Proposition 5.4. If f is defined on a deleted neighborhood of c then lim
x→c

f(x) = L

iff lim
x→c+

f(x) = lim
x→c−

f(x) = L.

5.2. Continuous functions. In this section f : D → R is a function with domain

D ⊂ R, and let c ∈ D. We recall from Calculus I:

Definition: We say that f is continuous at c if ∀ε > 0 ∃δ > 0 s.t. |f(x)−f(c)| <
ε whenever x ∈ D and |x− c| < δ.

We say that f is continuous on a set E inside its domain if f is continuous at

every point in E. We simply say that f is continuous, if f is continuous at every

point in its domain.

Theorem 5.5. (Main theorem # 2/MT # 2/Main theorem on continuity) For f

and c as above, the following are equivalent:

(a) f is continuous at c (that is, ∀ε > 0 ∃δ > 0 s.t. |f(x)− f(c)| < ε whenever

x ∈ D and |x− c| < δ).

(b) Whenever (xn) is a sequence in the domain of f with xn → c, then f(xn)→
f(c).

(c) For every neighborhood V of f(c), ∃ a neighborhood U of c s.t. f(U ∩D) ⊆
V .

If c ∈ D′ then these are also equivalent to:

(d) lim
x→c

f(x) = f(c).

Proof. (a) ⇒ (b) Suppose that f is continuous at c, and that xn → c. So given

ε > 0 there exists a δ > 0 such that |f(x) − f(c)| < ε whenever |x − c| < δ. Since

xn → c there exists N such that |xn − c| < δ if n ≥ N . Thus if n ≥ N then

|f(sn)− f(c)| < ε. That is, f(sn)→ f(c).

(b) ⇒ (a) We prove the contrapositive. Suppose that f is not continuous at c.

So there exists ε > 0 such that for all δ > 0 there exists x with |x − c| < δ but

|f(x) − f(c)| ≥ ε. Let δ = 1
n for n ∈ N, so there exists xn with |xn − c| < 1

n but

|f(xn) − f(c)| ≥ ε. Since |xn − c| < 1
n → 0 as n → ∞, we have xn → c by Fact

6 for sequences. Since |f(xn) − f(c)| ≥ ε for all n, the sequence (f(xn)) does not
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converge to f(c). That is, we have found a sequence xn → c, but (f(xn)) does not

converge to f(c).

(a) ⇔ (d) Simply write down the ε-δ definitions of (a) and (d) and it is clear

that they are the same.

(a) ⇔ (c) Saying “For every neighborhood V of f(c)” is the same as saying that

”∀ε > 0, if V = (f(c)− ε, f(c) + ε) then”. Saying “∃ a neighborhood U of c s.t.” is

the same as saying that ”∃δ > 0 s.t. if U = (c−δ, c+δ) then”. Saying f(U∩D) ⊆ V
is the same as saying that f(x) ∈ V whenever x ∈ U ∩ D, which is the same as

saying that |f(x)− f(c)| < ε whenever x ∈ D and |x− c| < δ. So (c) is just saying

that ∀ε > 0 ∃δ > 0 s.t. |f(x)− f(c)| < ε whenever x ∈ D and |x− c| < δ, which is

(a). �

Theorem 5.6. (Continuity laws) If f and g are both continuous at c then

• f(x)± g(x) are continuous at c.

• f(x)g(x) is continuous at c.

• Kf(x) is continuous at c, if K is a constant.

• f(x)
g(x) is continuous at c, if g(c) 6= 0.

If h is a function which is continuous at f(c), and if there is a neighborhood N of

c such that f(N) ⊂ E, where E is the domain of h, then h ◦ f is continuous at c.

Proof. All these proofs have the same proof techniques as in Theorem 5.2, and so

we just do a few of them: If sn → c, then f(sn)→ f(c) and g(sn)→ g(c) (by Main

theorem # 2 (b)). By Fact 9(1) from Section 4.1 above, f(sn)+g(sn)→ f(c)+g(c).

By Main theorem # 2 ((b) ⇒ (a)) applied to f + g, f(x) + g(x) is continuous at c.

Similarly, f(sn)
g(sn)

→ f(c)
g(c) by Fact 9(5) from Section 4.1 above. By Main theorem

# 2 ((b) ⇒ (a)) applied to f/g, we have f(x)
g(x) , is continuous at c, the fourth bullet.

Similarly, for the final assertion, if tn = f(sn) → f(c) then h(tn) = h(f(sn)) →
h(f(c)) by Main theorem # 2 ((b)) applied to h. So h(f(x)) is continuous at c by

Main theorem # 2 ((b) ⇒ (a)) applied to h ◦ f . �

One can use Main theorem # 2 (b) to show that functions are not continuous:

Test: f : D → R is discontinuous at c ∈ D iff there exists a sequence (sn) in

the domain of f s.t. sn → c but f(sn) 6→ f(c).

Proposition 5.7. If f : (a, b) → R and a < c < b, and f(c) > 0, and f is

continuous at c, then there is a neighborhood U of c such that f(x) > f(c)/2 for all

x ∈ U .

Finally, if f and g are continuous at c, then so are the functions max{f(x), g(x)}
and min{f(x), g(x)}.
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5.3. The Min-Max theorem and the IVT. Definition. A function f : D → R
is called bounded if Range(f) = f(D) is a bounded set. This is equivalent to: there

are two constants m and M such that m ≤ f(x) ≤M for all x ∈ D. Equivalently,

there is a constant K such that |f(x)| ≤ K for all x ∈ D. Similarly we say that f

is bounded on a subset E ⊂ D if f(E) is a bounded set.

Theorem 5.8. (The Min-Max/Extreme Value Theorem) If C is a compact set

in R, and if f : C → R is continuous, then f(C) is compact. In particular, f is a

bounded function on C. Also, there exist x1, x2 ∈ C such that f(x1) ≤ f(x) ≤ f(x2)

for all x ∈ C.

Proof. We first use the criterion in Theorem 4.13 to show that f(C) is compact. So

let (yn) be a sequence in f(C). If yn = f(xn) then (xn) is a sequence in C, so by

Theorem 4.13, there is a convergent subsequence xnk
→ x ∈ C. By Main Theorem

# 2 (b), ynk
= f(xnk

) → f(x), and f(x) ∈ f(C). So by the criterion in Theorem

4.13 applied to S = f(C), f(C) is compact.

Any compact set in R is bounded. It also has a minimum and a maximum

element, by Proposition 3.26, say m and M . Thus there exist x1, x2 ∈ C such that

m = f(x1) ≤ f(x) ≤ f(x2) = M for all x ∈ C. �

The last theorem says that such functions have a global or absolute maximum

on C (note that f(x2) is the absolute maximum value of f on C and f(x1) is the

absolute minimum value of f on C). We said this in Calculus I.

Lemma 5.9. Let f : [a, b] → R be continuous and suppose that f(a) < 0 < f(b).

Then ∃c ∈ (a, b) s.t. f(c) = 0.

Theorem 5.10. (The intermediate value theorem IVT) If f : [a, b] → R is

continuous, and if z is a number strictly between f(a) and f(b) then there exists a

c ∈ (a, b) with f(c) = z.

Corollary 5.11. (Existence of roots of positive numbers) If K ≥ 0 and n ∈ N
then there exists c ≥ 0 with cn = K.

Proof. We just do the square root, nth roots are similar. If K = 0 or K = 1 the

result is obvious, so lets ignore these cases. Consider the function f(x) = x2. There

exists a positive number b such that b2 > K (indeed if K > 1 let b = K and if

K < 1 let b = 1). Thus f(0) = 0 < K and f(b) > K, so by the IVT, there exists

c > 0 with f(c) = c2 = K. �

Corollary 5.12. f : [a, b]→ R be continuous. Then f([a, b]) is a compact interval,

hence there exists numbers c, d with f([a, b]) = [c, d].


