Department of Mathematics, University of Houston
 Math 4332. Intro to Real Analysis. David Blecher, Spring 2015
 Homework 10.

As usual, exercises marked with * are to be turned in by the graduate students in the class.
(1) If f is a continuous scalar valued function on \mathbb{R} which is of period 2π, prove that $\tilde{f}\left(e^{i \theta}\right)=f(\theta)$ for $\theta \in[0,2 \pi)$ defines a continuous function \tilde{f} on the unit circle $\{z \in \mathbb{C}:|z|=1\}$. The converse is much easier: show that if \tilde{f} is a continuous function on this unit circle then $f(\theta)=\tilde{f}\left(e^{i \theta}\right)$ is a continuous function on \mathbb{R} which is of period 2π.
(2) Prove that $\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i k x} d x= \begin{cases}1, & k=0 \\ 0, & k \neq 0\end{cases}$
(3) Prove that $f(x)=\sum_{k=-\infty}^{\infty} c_{k} e^{i k x}$ may be written as $a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x$. Conversely, show that $a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x$ can be written in the form $\sum_{k=-\infty}^{\infty} c_{k} e^{i k x}$.
(4) (i) Let $f(x)=|x|$ for $-\pi \leq x<\pi$, and periodic of period 2π. Find the Fourier series of f.
(ii) Now let $f(x)=x^{2}$ for $-\pi \leq x \leq \pi$, and periodic period 2π. Find the Fourier series of f.
(iii) Now let $f(x)=0$ on $[-\pi, 0)$, and $f(x)=1$ on $[0, \pi)$, and periodic of period 2π. Find the Fourier series of f.
(5) Show that if functions $f_{n} \rightarrow f$ uniformly on $[a, b]$ then $f_{n} \rightarrow f$ in 2-norm on $[a, b]$.
(6*) Prove the complex scalar case of the Theorem on Best Approximation.
(7) If f is Riemann integrable on $[-\pi, \pi]$ prove (using the Corollary labelled as 'Parseval') that the Fourier series of f converges to f in 2 -norm iff $\pi\left(2 a_{0}^{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)\right.$ (in complex case use $2 \pi \sum_{k=-\infty}^{\infty}\left|c_{k}\right|^{2}$) equals $\|f\|_{2}^{2}$. (Complex case needs to be done by graduate students only.)
(8) Prove that if f is Riemann integrable on $[a, b]$, and if $\left(\varphi_{k}\right)$ is an orthonormal sequence of functions on $[a, b]$ with $\sum_{k} b_{k} \varphi_{k}=f$ (convergence in 2-norm), then $b_{n}=\int_{a}^{b} f(x) \varphi_{n}(x) d x$ for each n (in the complex case we need a 'bar' over φ_{n}). Thus for example on $[a, b]=[-\pi, \pi]$ if $\sum_{k=-\infty}^{\infty} b_{k} e^{i k x}=f(x)$ (convergence in 2-norm) on $[-\pi, \pi]$ then $b_{n}=$ $\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i n x} d x$, so $\sum_{k=-\infty}^{\infty} b_{k} e^{i k x}$ is the Fourier series of f. Similarly, if $d_{0}+\sum_{k=1}^{\infty}\left(d_{k} \cos (k x)+r_{k} \sin (k x)\right)=f$ (convergence in 2-norm) on $[-\pi, \pi]$ then $d_{0}+\sum_{k=1}^{\infty}\left(d_{k} \cos (k x)+r_{k} \sin (k x)\right)$ is just the Fourier series, and the d_{k}, r_{k} are just the Fourier coefficients (prove these too).

