Department of Mathematics, University of Houston
 Math 4332. Intro to Real Analysis. David Blecher, Spring 2015
 Homework 11.

As usual, exercises marked with * are to be turned in by the graduate students in the class.
(0) Prove that if we have a sequence of Riemann integrable functions $h, h_{1}, h_{2}, h_{3}, \cdots$ which are Riemann integrable on [a,b], and if $h_{n} \rightarrow h$ in 2-norm on $[a, b]$, and $a \leq c<d \leq b$, then $\int_{c}^{d} h_{n} d x \rightarrow \int_{c}^{d} h d x$. [Hint: use the CauchySchwarz inequality for integrals.]
(1) Suppose f is a real valued differentiable 2π-periodic function with f^{\prime} Riemann integrable on $[-\pi, \pi]$. Prove that the sum of the Fourier coefficients of f is absolutely convergent, and the Fourier series of f converges uniformly to f on $[-\pi, \pi]$. [Hint: deduce this from (or by a modification of the proof of) the 'complex case' of the same result done in class.]
(2) Prove that the convolution on $[-\pi, \pi]$ satisfies $f * g=g * f$ (here as in the notes, f, g are 2π-periodic functions which are Riemann integrable on $[-\pi, \pi]$).
(3) Show that (a) $x=\pi-2 \sum_{n=1}^{\infty} \frac{\sin n x}{n}$ if $0<x<2 \pi$.
(b) Deduce from (a) that $\frac{x^{2}}{2}=\pi x-\frac{\pi^{2}}{3}+2 \sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}$ if $0 \leq x \leq 2 \pi$. You may use the fact that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.
(c) $\frac{\pi}{4}=\sum_{n=1}^{\infty} \frac{\sin ((2 n-1) x)}{2 n-1}$ if $0<x<\pi$.
(d) $\cos x=\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{n \sin (2 n x)}{4 n^{2}-1}$ if $0<x<\pi$.
(e) Deduce from (c) that $\frac{\pi^{2}}{8}=\sum_{k=1}^{\infty} \frac{1}{(2 n-1)^{2}}$, and that $\frac{\pi}{4}\left(\frac{\pi}{2}-x\right)=\sum_{k=1}^{\infty} \frac{\cos ((2 n-1) x)}{(2 n-1)^{2}}$ for $0 \leq x \leq \pi$.
(4) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and 2π-periodic. Suppose also that $\sum_{k=1}^{\infty} k\left(\left|a_{k}\right|+\left|b_{k}\right|\right)<\infty$ (in the complex case $\left.\sum_{k=-\infty}^{\infty}\left|k c_{k}\right|<\infty\right)$, where a_{k}, b_{k}, c_{k} are the Fourier coefficients of f. Prove that f is differentiable, and that the Fourier series for f converges uniformly to f.
$\left(5^{*}\right)$ On Cesaro sums (see e.g. Homework 5 Question 7 for notation): Graduate students only: look up a proof of the following Fact: if a sequence $\left(s_{n}\right)$ is Cesáro summable and its Cesáro sum is s, and if $\left(n\left(s_{n}-s_{n-1}\right)\right)$ is a bounded sequence then $s_{n} \rightarrow s$ as $n \rightarrow \infty$. Print out and attach the proof, or write it in your own words.
(6) Show that if a function is differentiable at a point x then it satisfies the Lipschitz condition at x mentioned above Theorem 4.4 in the classnotes. (Hint: look at the $\epsilon-\delta$ definition of $\lim _{y \rightarrow x} \frac{f(y)-f(x)}{y-x}=f^{\prime}(x)$, with $\epsilon=1$.)

