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Homework 11.

As usual, exercises marked with * are to be turned in by the graduate students in the class.

(0) Prove that if we have a sequence of Riemann integrable functions h, h1, h2, h3, · · · which are Riemann integrable

on [a, b], and if hn → h in 2-norm on [a, b], and a ≤ c < d ≤ b, then
∫ d
c
hn dx →

∫ d
c
h dx. [Hint: use the Cauchy-

Schwarz inequality for integrals.]

(1) Suppose f is a real valued differentiable 2π-periodic function with f ′ Riemann integrable on [−π, π]. Prove that
the sum of the Fourier coefficients of f is absolutely convergent, and the Fourier series of f converges uniformly to f
on [−π, π]. [Hint: deduce this from (or by a modification of the proof of) the ‘complex case’ of the same result done
in class.]

(2) Prove that the convolution on [−π, π] satisfies f ∗ g = g ∗ f (here as in the notes, f, g are 2π-periodic functions
which are Riemann integrable on [−π, π]).

(3) Show that (a) x = π − 2
∑∞
n=1

sinnx
n if 0 < x < 2π.

(b) Deduce from (a) that x2

2 = πx− π2

3 + 2
∑∞
n=1

cosnx
n2 if 0 ≤ x ≤ 2π. You may use the fact that

∑∞
n=1

1
n2 = π2

6 .

(c) π
4 =

∑∞
n=1

sin((2n−1)x)
2n−1 if 0 < x < π.

(d) cosx = 8
π

∑∞
n=1

n sin(2nx)
4n2−1 if 0 < x < π.

(e) Deduce from (c) that π2

8 =
∑∞
k=1

1
(2n−1)2 , and that π

4 (π2 − x) =
∑∞
k=1

cos((2n−1)x)
(2n−1)2 for 0 ≤ x ≤ π.

(4) Suppose that f : R → R is continuous and 2π-periodic. Suppose also that
∑∞
k=1 k(|ak| + |bk|) < ∞ (in the

complex case
∑∞
k=−∞ |k ck| < ∞), where ak, bk, ck are the Fourier coefficients of f . Prove that f is differentiable,

and that the Fourier series for f converges uniformly to f .

(5*) On Cesaro sums (see e.g. Homework 5 Question 7 for notation): Graduate students only: look up a proof of
the following Fact: if a sequence (sn) is Cesáro summable and its Cesáro sum is s, and if (n(sn−sn−1)) is a bounded
sequence then sn → s as n→∞. Print out and attach the proof, or write it in your own words.

(6) Show that if a function is differentiable at a point x then it satisfies the Lipschitz condition at x mentioned above

Theorem 4.4 in the classnotes. (Hint: look at the ε-δ definition of limy→x
f(y)−f(x)

y−x = f ′(x), with ε = 1.)
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