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Homework 11 Key.

As usual, exercises marked with * are to be turned in by the graduate students in the class.

(0) This is now a Proposition towards the end of the online classnotes. It could be asked on Test 2.

(1) By the complex case done in class,
∑∞
k=−∞ |ck| < ∞. If n ∈ N then an = cn + c−n, and bn = i(cn − c−n), so

that
∑∞
k=1 (|an| + |bn|) ≤

∑∞
k=1 2(|cn| + |c−n|) < ∞. The rest follows as in the complex case, i.e. from Corollary 4

in that section. [6]

(2) The convolution on [−π, π] is (f ∗ g)(x) =
∫ π
−π f(y)g(x − y)dy. Let u = x − y for fixed x, then du = −dy, and

y = x− u, and the integral becomes

−
∫ x−π

x+π

f(x− u)g(u)dy =

∫ x+π

x−π
g(u)f(x− u)dy =

∫ π

−π
g(u)f(x− u)dy = (g ∗ f)(x).

In the last integral we have used the fact that g(u)f(x−u) is 2π-periodic, and for any c-periodic function h and any

real numbers d and b, we have
∫ d+c
d

hdt =
∫ b+c
b

hdt. [7]

(3) (a) Make the function x on [0, 2π) to be periodic of period 2π by just repeating it endlessly. Call this 2π-
periodic function f . So e.g. f(x) = x + 2π for −π < x < 0. The Fourier series on [−π, π] is easy to compute: it is
π−2

∑∞
n=1

sinnx
n . By one of the Theorems or Corollaries in the Pointwise Convergence Section of the notes, this series

converges pointwise to f(x) on (0, π] and on [−π, 0), hence by periodicity on [π, 2π). Thus x = π − 2
∑∞
n=1

sinnx
n if

0 < x < 2π.

(b) If 0 ≤ x ≤ 2π then integrate
∫ x
0

in (a). We have to use Question 0 to integrate the series in (a). We get

x2

2
= πx−

∫ x

0

(2

∞∑
n=1

sinnx

n
)dx = πx− 2

∞∑
n=1

∫ x

0

sinnx

n
dx = πx− 2

∞∑
n=1

(
cosnx

n2
− 1

n2
).

But
∑∞
n=1

1
n2 = π2

6 (this may be seen for example by applying the Parseval formula to the function in (a)). So
x2

2 = πx− π2

3 + 2
∑∞
n=1

cosnx
n2 if 0 ≤ x ≤ 2π.

(c) Multiplying by π
4 in Homework 10 Question 4 (iii) we get the Fourier series π

8 + 1
2

∑∞
k=1

sin((2k−1)x)
2k−1 . By one

of the Theorems or Corollaries in the Pointwise Convergence Section of the notes, this series converges pointwise to
π
4 if 0 < x < π. Then subtract π

8 and multiply by 2. [8]

(d) Let f(x) = cosx if 0 < x < π, and f(x) = − cosx if −π < x < 0. This is an odd function, and its Fourier

series on [−π, π] is easy to compute: it is 8
π

∑∞
n=1

n sin(2nx)
4n2−1 . By one of the Theorems or Corollaries in the Pointwise

Convergence Section of the notes, this series converges pointwise to cosx if 0 < x < π. [3] for completeness only

(e) 0 ≤ x ≤ π then integrate between x and π
2 in (c). If 0 ≤ x ≤ π

2 we get, using Question 0 to integrate the
series similarly to Question (b) above:

π

4
(
π

2
− x) =

∫ π
2

x

(

∞∑
n=1

sin((2n− 1)t)

2n− 1
)dt =

∞∑
n=1

∫ π
2

x

sin((2n− 1)t)

2n− 1
dt = −

∞∑
n=1

cos((2n− 1)t)

(2n− 1)2
]
π
2
x =

∞∑
n=1

cos((2n− 1)x)

(2n− 1)2
.

If π
2 ≤ x ≤ π we get similarly,

π

4
(x− π

2
) =

∞∑
n=1

∫ x

π
2

sin((2n− 1)t)

2n− 1
dt = −

∞∑
n=1

cos((2n− 1)t)

(2n− 1)2
]xπ
2

= −
∞∑
n=1

cos((2n− 1)x)

(2n− 1)2
.

Thus
π

4
(
π

2
− x) =

∞∑
n=1

cos((2n− 1)x)

(2n− 1)2
, 0 ≤ x ≤ π.

Setting x = 0 gives π2

8 =
∑∞
k=1

1
(2n−1)2 . [9]

(4) We just do the complex case, the real case is similar. Since |ikckeikx| ≤ |kck|, if
∑∞
k=−∞ |kck| <∞ then by the

Weierstrass M -test the series
∑∞
k=−∞ ikck e

ikx converges uniformly to a function g. (Strictly speaking, this result

was phrased for series
∑∞
k=1 rather than

∑∞
k=−∞, but the latter can easily be rewritten as the former). Similarly,

the sum of the Fourier coefficients of f converges absolutely by the Comparison Test, since |ck| ≤ |kck|. By Corollary
4 in the notes, the Fourier series for f converges uniformly to f . By the theorem on derivatives of series of functions,
f ′(x) =

∑∞
k=−∞ ikck e

ikx = g(x). [12]
1



(6) Indeed the ε-δ definition of limy→x
f(y)−f(x)

y−x = f ′(x), with ε = 1, says that there is a δ > 0 such that

|f(y)− f(x)

y − x
− f ′(x)| = |f(y)− f(x)− f ′(x)(y − x)

y − x
| < 1, |y − x| < δ.

Multiplying by |y − x| and using the triangle inequality shows that if |y − x| < δ,

|f(y)− f(x)| ≤ |f(y)− f(x)− f ′(x)(y − x)|+ |f ′(x)(y − x)| < |y − x|+ |f ′(x)(y − x)| = M |y − x|,
where M = 1 + |f ′(x)|.)


