Department of Mathematics, University of Houston
 Math 4332. Intro to Real Analysis. David Blecher, Spring 2015 Homework 11 Key.

As usual, exercises marked with * are to be turned in by the graduate students in the class.
(0) This is now a Proposition towards the end of the online classnotes. It could be asked on Test 2.
(1) By the complex case done in class, $\sum_{k=-\infty}^{\infty}\left|c_{k}\right|<\infty$. If $n \in \mathbb{N}$ then $a_{n}=c_{n}+c_{-n}$, and $b_{n}=i\left(c_{n}-c_{-n}\right)$, so that $\sum_{k=1}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \leq \sum_{k=1}^{\infty} 2\left(\left|c_{n}\right|+\left|c_{-n}\right|\right)<\infty$. The rest follows as in the complex case, i.e. from Corollary 4 in that section.
(2) The convolution on $[-\pi, \pi]$ is $(f * g)(x)=\int_{-\pi}^{\pi} f(y) g(x-y) d y$. Let $u=x-y$ for fixed x, then $d u=-d y$, and $y=x-u$, and the integral becomes

$$
-\int_{x+\pi}^{x-\pi} f(x-u) g(u) d y=\int_{x-\pi}^{x+\pi} g(u) f(x-u) d y=\int_{-\pi}^{\pi} g(u) f(x-u) d y=(g * f)(x) .
$$

In the last integral we have used the fact that $g(u) f(x-u)$ is 2π-periodic, and for any c-periodic function h and any real numbers d and b, we have $\int_{d}^{d+c} h d t=\int_{b}^{b+c} h d t$.
(3) (a) Make the function x on $[0,2 \pi)$ to be periodic of period 2π by just repeating it endlessly. Call this 2π periodic function f. So e.g. $f(x)=x+2 \pi$ for $-\pi<x<0$. The Fourier series on $[-\pi, \pi]$ is easy to compute: it is $\pi-2 \sum_{n=1}^{\infty} \frac{\sin n x}{n}$. By one of the Theorems or Corollaries in the Pointwise Convergence Section of the notes, this series converges pointwise to $f(x)$ on $(0, \pi]$ and on $[-\pi, 0)$, hence by periodicity on $[\pi, 2 \pi)$. Thus $x=\pi-2 \sum_{n=1}^{\infty} \frac{\sin n x}{n}$ if $0<x<2 \pi$.
(b) If $0 \leq x \leq 2 \pi$ then integrate \int_{0}^{x} in (a). We have to use Question 0 to integrate the series in (a). We get

$$
\frac{x^{2}}{2}=\pi x-\int_{0}^{x}\left(2 \sum_{n=1}^{\infty} \frac{\sin n x}{n}\right) d x=\pi x-2 \sum_{n=1}^{\infty} \int_{0}^{x} \frac{\sin n x}{n} d x=\pi x-2 \sum_{n=1}^{\infty}\left(\frac{\cos n x}{n^{2}}-\frac{1}{n^{2}}\right)
$$

But $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$ (this may be seen for example by applying the Parseval formula to the function in (a)). So $\frac{x^{2}}{2}=\pi x-\frac{\pi^{2}}{3}+2 \sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}$ if $0 \leq x \leq 2 \pi$.
(c) Multiplying by $\frac{\pi}{4}$ in Homework 10 Question 4 (iii) we get the Fourier series $\frac{\pi}{8}+\frac{1}{2} \sum_{k=1}^{\infty} \frac{\sin ((2 k-1) x)}{2 k-1}$. By one of the Theorems or Corollaries in the Pointwise Convergence Section of the notes, this series converges pointwise to $\frac{\pi}{4}$ if $0<x<\pi$. Then subtract $\frac{\pi}{8}$ and multiply by 2 .
(d) Let $f(x)=\cos x$ if $0<x<\pi$, and $f(x)=-\cos x$ if $-\pi<x<0$. This is an odd function, and its Fourier series on $[-\pi, \pi]$ is easy to compute: it is $\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{n \sin (2 n x)}{4 n^{2}-1}$. By one of the Theorems or Corollaries in the Pointwise Convergence Section of the notes, this series converges pointwise to $\cos x$ if $0<x<\pi$. [3] for completeness only
(e) $0 \leq x \leq \pi$ then integrate between x and $\frac{\pi}{2}$ in (c). If $0 \leq x \leq \frac{\pi}{2}$ we get, using Question 0 to integrate the series similarly to Question (b) above:
$\left.\frac{\pi}{4}\left(\frac{\pi}{2}-x\right)=\int_{x}^{\frac{\pi}{2}}\left(\sum_{n=1}^{\infty} \frac{\sin ((2 n-1) t)}{2 n-1}\right) d t=\sum_{n=1}^{\infty} \int_{x}^{\frac{\pi}{2}} \frac{\sin ((2 n-1) t)}{2 n-1} d t=-\sum_{n=1}^{\infty} \frac{\cos ((2 n-1) t)}{(2 n-1)^{2}}\right]_{x}^{\frac{\pi}{2}}=\sum_{n=1}^{\infty} \frac{\cos ((2 n-1) x)}{(2 n-1)^{2}}$.
If $\frac{\pi}{2} \leq x \leq \pi$ we get similarly,

$$
\left.\frac{\pi}{4}\left(x-\frac{\pi}{2}\right)=\sum_{n=1}^{\infty} \int_{\frac{\pi}{2}}^{x} \frac{\sin ((2 n-1) t)}{2 n-1} d t=-\sum_{n=1}^{\infty} \frac{\cos ((2 n-1) t)}{(2 n-1)^{2}}\right]_{\frac{\pi}{2}}^{x}=-\sum_{n=1}^{\infty} \frac{\cos ((2 n-1) x)}{(2 n-1)^{2}}
$$

Thus

$$
\begin{equation*}
\frac{\pi}{4}\left(\frac{\pi}{2}-x\right)=\sum_{n=1}^{\infty} \frac{\cos ((2 n-1) x)}{(2 n-1)^{2}}, \quad 0 \leq x \leq \pi \tag{9}
\end{equation*}
$$

Setting $x=0$ gives $\frac{\pi^{2}}{8}=\sum_{k=1}^{\infty} \frac{1}{(2 n-1)^{2}}$.
(4) We just do the complex case, the real case is similar. Since $\left|i k c_{k} e^{i k x}\right| \leq\left|k c_{k}\right|$, if $\sum_{k=-\infty}^{\infty}\left|k c_{k}\right|<\infty$ then by the Weierstrass M-test the series $\sum_{k=-\infty}^{\infty} i k c_{k} e^{i k x}$ converges uniformly to a function g. (Strictly speaking, this result was phrased for series $\sum_{k=1}^{\infty}$ rather than $\sum_{k=-\infty}^{\infty}$, but the latter can easily be rewritten as the former). Similarly, the sum of the Fourier coefficients of f converges absolutely by the Comparison Test, since $\left|c_{k}\right| \leq\left|k c_{k}\right|$. By Corollary 4 in the notes, the Fourier series for f converges uniformly to f. By the theorem on derivatives of series of functions, $f^{\prime}(x)=\sum_{k=-\infty}^{\infty} i k c_{k} e^{i k x}=g(x)$.
(6) Indeed the $\epsilon-\delta$ definition of $\lim _{y \rightarrow x} \frac{f(y)-f(x)}{y-x}=f^{\prime}(x)$, with $\epsilon=1$, says that there is a $\delta>0$ such that

$$
\left|\frac{f(y)-f(x)}{y-x}-f^{\prime}(x)\right|=\left|\frac{f(y)-f(x)-f^{\prime}(x)(y-x)}{y-x}\right|<1, \quad|y-x|<\delta
$$

Multiplying by $|y-x|$ and using the triangle inequality shows that if $|y-x|<\delta$,

$$
|f(y)-f(x)| \leq\left|f(y)-f(x)-f^{\prime}(x)(y-x)\right|+\left|f^{\prime}(x)(y-x)\right|<|y-x|+\left|f^{\prime}(x)(y-x)\right|=M|y-x|
$$

where $M=1+\left|f^{\prime}(x)\right|$.)

