Department of Mathematics, University of Houston Math 4332. Intro to Real Analysis. David Blecher, Spring 2015 Homework 12.

As usual, exercises marked with * are to be turned in by the graduate students in the class.
(1) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be defined by $f(x, y)=(\sin x \cos y, \sin x \sin y, \cos x \cos y)$. Find $f^{\prime}(x, y)$.
(2) If A is an $m \times n$ matrix, $\vec{b} \in \mathbb{R}^{m}$, and $\vec{a} \in \mathbb{R}^{n}$, then find $f^{\prime}(\vec{x})$ if
(i) $f(\vec{x})=A \vec{x}+\vec{b}$,
(ii) $f(\vec{x})=\left(\vec{a}^{T} \vec{x}\right) \vec{b}$,
(iii) $f(\vec{x})=\vec{x}$.
(3) Find $f^{\prime}(0,0)$ if it exists if
(i) $f(x, y)=x^{2} y^{2} \log \left(x^{2}+y^{2}\right)$ if $(x, y) \neq(0,0), f(0,0)=0$.
(ii) $f(x, y)=x y \sin \left(\frac{1}{x^{2}+y^{2}}\right)$ if $(x, y) \neq(0,0), f(0,0)=0$.
(iii) $f(x, y)=\frac{x^{2}+y^{2}}{\sin \left(\sqrt{x^{2}+y^{2}}\right)}$ if $(x, y) \neq(0,0), f(0,0)=0$.
(iv) $f(x, y)=\sqrt{|x y|}$.
(v) $f(\vec{x})=\|\vec{x}\|_{2}^{\alpha}$ for $\alpha \geq 1$.
(4) Compute $\frac{\partial f}{\partial x}$ and determine where it is continuous, where $f(x, y)=\frac{x^{4}+y^{4}}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0), f(0,0)=0$.
(5) Suppose $f: S \rightarrow \mathbb{R}$ is differentiable on an open set $S \subseteq \mathbb{R}^{n}$, and suppose f has a local maximum at $\vec{x} \in S$ (so $\exists \delta>0$ at $f(\vec{x}) \geq f(\vec{y})$ for all $\vec{y} \in B(\vec{x}, \delta))$. Prove $f^{\prime}(\vec{x})=\overrightarrow{0}$.
(6) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $g(x, y, z)=x^{2}+y^{2}+z^{2}$. Show that if $h=f \circ g$ then $\left\|h^{\prime}(x, y, z)\right\|^{2}=$ $4 g(x, y, z) f^{\prime}(g(x, y, z))^{2}$.
(7) Write out the Calculus III chain rule for $\frac{\partial h}{\partial x}$, using our chain rule if $h(x)=f(u(x, y, z), v(x, y), w(x))$.
(8) Let $f(u, v, w)=\left(e^{u-w}, \cos (v+u)+\sin (u+v+w)\right)$ and $g(x, y)=\left(e^{x}, \cos (y-x), e^{-y}\right)$. Calculate $(f \circ g)^{\prime}(0,0)$ using our chain rule.
(9) Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be given by $f(t)=(\cos t, \sin t)$. Show that f^{\prime} is continuous. Prove that there is no $z \in \mathbb{R}$ with $f(2 \pi)-f(0)=f^{\prime}(z)(2 \pi-0)$.

