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Homework 12 Solutions

(1) Since f is C1, by a theorem from class this will just be the Jacobian matrix for f , namely

 cosx cos y − sinx sin y
cosx sin y sinx cos y
− sinx cos y − cosx sin y

.

(2) (i) f ′ = A, since lim~h→~0
f(~x+~h)−f(~x)−A~h

‖~h‖2
= lim~h→~0

A(~x+~h)−A~x−A~h
‖~h‖2

= lim~h→~0
~0

‖~h‖2
= ~0.

(ii) f(~x) = ~b (~aT~x) = A~x where A = ~b~aT , so by (i) we have f ′ = A = ~b~aT .

(iii) f(~x) = A~x where A = I, so by (i) we have f ′ = A = I.

(3) (i) One can easily check (as e.g. in Q 4 below) ∂f
∂x (0, 0) = 0 and ∂f

∂y (0, 0) = 0, so either f ′(0, 0) = [0 0] or f ′(0, 0)

does not exist, depending on whether lim~h→~0
f(~h)−f(~0)−[0 0]~h

‖~h‖2
is zero or not. But this limit is lim~h→~0

1

‖~h‖2
|h21h22 log ‖~h‖2|,

which is 0, since

1

‖~h‖2
|h21h22 log ‖~h‖2| ≤

1

‖~h‖2
‖~h‖42 | log ‖~h‖2| = 2‖~h‖32 | log ‖~h‖| → 0

as ~h→ ~0.

(ii) Similarly as (i), ∂f
∂x (0, 0) = 0 and ∂f

∂y (0, 0) = 0, so either f ′(0, 0) = [0 0] or f ′(0, 0) does not exist, depending on

whether lim~h→~0
f(~h)−f(~0)−[0 0]~h

‖~h‖2
is zero or not. But this limit is lim~h→~0

1

‖~h‖2
h1h2 sin( 1

‖~h‖22
), which is 0, since

1

‖~h‖2
|h1h2 sin(

1

‖~h‖22
)| ≤ 1

‖~h‖2
‖~h‖22 = ‖~h‖2 → 0

as ~h→ ~0.

(iii) Here ∂f
∂x (0, 0) = limh→0

h
sin |h| which does not exist. So f ′(0, 0) does not exist.

(iv) One can easily check (as e.g. in Q 4 below) ∂f
∂x (0, 0) = 0 and ∂f

∂y (0, 0) = 0, so either f ′(0, 0) = [0 0] or f ′(0, 0)

does not exist, depending on whether lim~h→~0
f(~h)−f(~0)−[0 0]~h

‖~h‖2
is zero or not. But this limit is lim~h→~0

√
|h1h2|√
h2
1+h

2
2

which

is not zero (for example if h1 = h2 = t as t↘ 0, then the limit is limt→0

√
t2√
2t2

= limt→0
1√
2
6= 0. )

(v) There are two cases α > 1 and α = 1. If α > 1 then one can easily check (as e.g. in Q 4 below) that ∂f
∂x (0, 0) = 0

and ∂f
∂y (0, 0) = 0, so either f ′(0, 0) = [0 0] or f ′(0, 0) does not exist, depending on whether lim~h→~0

f(~h)−f(~0)−[0 0]~h

‖~h‖2
is

zero or not. But this limit is lim~h→~0
‖~h‖α2
‖~h‖2

= lim~h→~0 ‖~h‖
α−1
2 = 0. So f ′(0, 0) = [0 0]. If α = 1 then one can easily

check ∂f
∂x (0, 0) does not exist. So f ′(0, 0) does not exist.

(4) Here ∂f
∂x (0, 0) = limh→0

h2−0
h = 0. We know the quotient of two continuous functions is continuous at any point

at which the denominator is nonzero. So f is continuous except possibly at (0, 0). But it is also continuous at (0, 0)

since |f(x, y)− 0| ≤ 2
‖(x,y)‖42
‖(x,y)‖22

≤ 2‖(x, y)‖22 → 0 as (x, y)→ ~0.

(5) It is enough to prove that ∂f
∂xk

(~x) = 0 for all k. We do this for k = 1, the others are similar. The argument is

as in 3333: Note f(~x + h~e1) ≤ f(~x) so that if h > 0 then f(~x+h~e1)−f(~x)
h ≤ 0, and so limh→0+

f(~x+h~e1)−f(~x)
h ≤ 0. If

h < 0 then f(~x+h~e1)−f(~x)
h ≥ 0, and so limh→0−

f(~x+h~e1)−f(~x)
h ≥ 0. So ∂f

∂x1
(~x) = limh→0

f(~x+h~e1)−f(~x)
h = 0.

(6) By the chain rule, h′(x, y, z) = f ′(g(x, y, z))g′(x, y, z). Now g′(x, y, z) = [2x 2y 2z]. Hence

‖h′(x, y, z)‖22 = (f ′(g(x, y, z)))2‖[2x 2y 2z]‖2 = 4f ′(g(x, y, z))2(x2 + y2 + z2) = 4g(x, y, z) f ′(g(x, y, z))2.

(7) The chain rule is ∂h
∂x = ∂f

∂u
∂u
∂x + ∂f

∂v
∂v
∂x + ∂f

∂w
dw
dx . For this we need h, f, u, v, w to be differentiable, The justification

goes as follows: let g(x, y, z) = (u(x, y, z), v(x, y), w(x)). Then the derivative of g is

g′(x, y, z) =

 ∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y 0

dw
dx 0 0

 .
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By the chain rule we have h′ = f ′(g(x, y, z)) g′(x, y, z). That is,

[
∂h

∂x

∂h

∂y

∂h

∂z
] = [

∂f

∂u

∂f

∂v

∂f

∂w
]

 ∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y 0

dw
dx 0 0

 .
Multiplying these matrices, and looking at the 1-1 entry, we see ∂h

∂x = ∂f
∂u

∂u
∂x + ∂f

∂v
∂v
∂x + ∂f

∂w
dw
dx as desired.

(8) We have

f ′ =

[
eu−w 0 −eu−w

− sin(v + u) + cos(u+ v + w) − sin(v + u) + cos(u+ v + w) cos(u+ v + w)

]
and

g′ =

 ex 0
sin(y − x) − sin(y − x)

0 −e−y

 .
Now g(0, 0) = (1, 1, 1) and

g′(0, 0) =

 1 0
0 0
0 −1

 ,
f ′(g(0, 0)) = f ′(1, 1, 1) =

[
1 0 −1

− sin(2) + cos(3) − sin(2) + cos(3) cos(3)

]
.

By the chain rule

D(f ◦ g)(0, 0) = f ′(g(0, 0)) g′(0, 0) =

[
1 1

− sin(2) + cos(3) − cos(3)

]
.

(9) Note f ′ = (− sin t, cos t), which is continuous by 3334/4332. It is also never ~0, so the right side of the expession
is never zero. But the left side is 0 since f is 2π-periodic.


