Department of Mathematics, University of Houston
 Math 4332. Intro to Real Analysis. David Blecher, Spring 2015
 Homework 12 Solutions

(1) Since f is C^{1}, by a theorem from class this will just be the Jacobian matrix for f, namely $\left[\begin{array}{cc}\cos x \cos y & -\sin x \sin y \\ \cos x \sin y & \sin x \cos y \\ -\sin x \cos y & -\cos x \sin y\end{array}\right]$.
(2) (i) $f^{\prime}=A$, since $\lim _{\vec{h} \rightarrow \overrightarrow{0}} \frac{f(\vec{x}+\vec{h})-f(\vec{x})-A \vec{h}}{\|\vec{h}\|_{2}}=\lim _{\vec{h} \rightarrow \overrightarrow{0}} \frac{A(\vec{x}+\vec{h})-A \vec{x}-A \vec{h}}{\|\vec{h}\|_{2}}=\lim _{\vec{h} \rightarrow \overrightarrow{0}} \frac{\overrightarrow{0}}{\|\vec{h}\|_{2}}=\overrightarrow{0}$.
(ii) $f(\vec{x})=\vec{b}\left(\vec{a}^{T} \vec{x}\right)=A \vec{x}$ where $A=\vec{b} \vec{a}^{T}$, so by (i) we have $f^{\prime}=A=\vec{b} \vec{a}^{T}$.
(iii) $f(\vec{x})=A \vec{x}$ where $A=I$, so by (i) we have $f^{\prime}=A=I$.
(3) (i) One can easily check (as e.g. in Q 4 below) $\frac{\partial f}{\partial x}(0,0)=0$ and $\frac{\partial f}{\partial y}(0,0)=0$, so either $f^{\prime}(0,0)=[00]$ or $f^{\prime}(0,0)$ does not exist, depending on whether $\lim _{\vec{h} \rightarrow \overrightarrow{0}} \frac{f(\vec{h})-f(\overrightarrow{0})-[00] \vec{h}}{\|\vec{h}\|_{2}}$ is zero or not. But this limit is $\lim _{\vec{h} \rightarrow \overrightarrow{0}} \frac{1}{\|\vec{h}\|_{2}}\left|h_{1}^{2} h_{2}^{2} \log \|\vec{h}\|_{2}\right|$, which is 0 , since

$$
\frac{1}{\|\vec{h}\|_{2}}\left|h_{1}^{2} h_{2}^{2} \log \|\vec{h}\|_{2}\right| \leq \frac{1}{\|\vec{h}\|_{2}}\|\vec{h}\|_{2}^{4}\left|\log \|\vec{h}\|_{2}\right|=2\|\vec{h}\|_{2}^{3}|\log \|\vec{h}\|| \rightarrow 0
$$

as $\vec{h} \rightarrow \overrightarrow{0}$.
(ii) Similarly as (i), $\frac{\partial f}{\partial x}(0,0)=0$ and $\frac{\partial f}{\partial y}(0,0)=0$, so either $f^{\prime}(0,0)=[00]$ or $f^{\prime}(0,0)$ does not exist, depending on whether $\lim _{\vec{h} \rightarrow \overrightarrow{0}} \frac{f(\vec{h})-f(\overrightarrow{0})-[00] \vec{h}}{\|\vec{h}\|_{2}}$ is zero or not. But this limit is $\lim _{\vec{h} \rightarrow \overrightarrow{0}} \frac{1}{\|\vec{h}\|_{2}} h_{1} h_{2} \sin \left(\frac{1}{\|\vec{h}\|_{2}^{2}}\right)$, which is 0 , since

$$
\frac{1}{\|\vec{h}\|_{2}}\left|h_{1} h_{2} \sin \left(\frac{1}{\|\vec{h}\|_{2}^{2}}\right)\right| \leq \frac{1}{\|\vec{h}\|_{2}}\|\vec{h}\|_{2}^{2}=\|\vec{h}\|_{2} \rightarrow 0
$$

as $\vec{h} \rightarrow \overrightarrow{0}$.
(iii) Here $\frac{\partial f}{\partial x}(0,0)=\lim _{h \rightarrow 0} \frac{h}{\sin |h|}$ which does not exist. So $f^{\prime}(0,0)$ does not exist.
(iv) One can easily check (as e.g. in Q 4 below) $\frac{\partial f}{\partial x}(0,0)=0$ and $\frac{\partial f}{\partial y}(0,0)=0$, so either $f^{\prime}(0,0)=[00]$ or $f^{\prime}(0,0)$ does not exist, depending on whether $\lim _{\vec{h} \rightarrow \overrightarrow{0}} \frac{f(\vec{h})-f(\overrightarrow{0})-[00] \vec{h}}{\|\vec{h}\|_{2}}$ is zero or not. But this limit is $\lim _{\vec{h} \rightarrow \overrightarrow{0}} \frac{\sqrt{\left|h_{1} h_{2}\right|}}{\sqrt{h_{1}^{2}+h_{2}^{2}}}$ which is not zero (for example if $h_{1}=h_{2}=t$ as $t \searrow 0$, then the limit is $\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}}}{\sqrt{2 t^{2}}}=\lim _{t \rightarrow 0} \frac{1}{\sqrt{2}} \neq 0$.)
(v) There are two cases $\alpha>1$ and $\alpha=1$. If $\alpha>1$ then one can easily check (as e.g. in Q 4 below) that $\frac{\partial f}{\partial x}(0,0)=0$ and $\frac{\partial f}{\partial y}(0,0)=0$, so either $f^{\prime}(0,0)=[00]$ or $f^{\prime}(0,0)$ does not exist, depending on whether $\lim _{\vec{h} \rightarrow \overrightarrow{0}} \frac{f(\vec{h})-f(\overrightarrow{0})-[00] \vec{h}}{\|\vec{h}\|_{2}}$ is zero or not. But this limit is $\lim _{\vec{h} \rightarrow \overrightarrow{0}} \frac{\|\vec{h}\|_{2}^{\alpha}}{\|\vec{h}\|_{2}}=\lim _{\vec{h} \rightarrow \overrightarrow{0}}\|\vec{h}\|_{2}^{\alpha-1}=0$. So $f^{\prime}(0,0)=[00]$. If $\alpha=1$ then one can easily check $\frac{\partial f}{\partial x}(0,0)$ does not exist. So $f^{\prime}(0,0)$ does not exist.
(4) Here $\frac{\partial f}{\partial x}(0,0)=\lim _{h \rightarrow 0} \frac{h^{2}-0}{h}=0$. We know the quotient of two continuous functions is continuous at any point at which the denominator is nonzero. So f is continuous except possibly at $(0,0)$. But it is also continuous at $(0,0)$ since $|f(x, y)-0| \leq 2 \frac{\|(x, y)\|_{2}^{4}}{\|(x, y)\|_{2}^{2}} \leq 2\|(x, y)\|_{2}^{2} \rightarrow 0$ as $(x, y) \rightarrow \overrightarrow{0}$.
(5) It is enough to prove that $\frac{\partial f}{\partial x_{k}}(\vec{x})=0$ for all k. We do this for $k=1$, the others are similar. The argument is as in 3333: Note $f\left(\vec{x}+h \vec{e}_{1}\right) \leq f(\vec{x})$ so that if $h>0$ then $\frac{f\left(\vec{x}+h \vec{e}_{1}\right)-f(\vec{x})}{h} \leq 0$, and so $\lim _{h \rightarrow 0^{+}} \frac{f\left(\vec{x}+h \vec{e}_{1}\right)-f(\vec{x})}{h} \leq 0$. If $h<0$ then $\frac{f\left(\vec{x}+h \vec{e}_{1}\right)-f(\vec{x})}{h} \geq 0$, and so $\lim _{h \rightarrow 0^{-}} \frac{f\left(\vec{x}+h \vec{e}_{1}\right)-f(\vec{x})}{h} \geq 0$. So $\frac{\partial f}{\partial x_{1}}(\vec{x})=\lim _{h \rightarrow 0} \frac{f\left(\vec{x}+h \vec{e}_{1}\right)-f(\vec{x})}{h}=0$.
(6) By the chain rule, $h^{\prime}(x, y, z)=f^{\prime}(g(x, y, z)) g^{\prime}(x, y, z)$. Now $g^{\prime}(x, y, z)=[2 x 2 y 2 z]$. Hence

$$
\left\|h^{\prime}(x, y, z)\right\|_{2}^{2}=\left(f^{\prime}(g(x, y, z))\right)^{2}\|[2 x 2 y 2 z]\|_{2}=4 f^{\prime}(g(x, y, z))^{2}\left(x^{2}+y^{2}+z^{2}\right)=4 g(x, y, z) f^{\prime}(g(x, y, z))^{2} .
$$

(7) The chain rule is $\frac{\partial h}{\partial x}=\frac{\partial f}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial f}{\partial v} \frac{\partial v}{\partial x}+\frac{\partial f}{\partial w} \frac{d w}{d x}$. For this we need h, f, u, v, w to be differentiable, The justification goes as follows: let $g(x, y, z)=(u(x, y, z), v(x, y), w(x))$. Then the derivative of g is

$$
g^{\prime}(x, y, z)=\left[\begin{array}{ccc}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & 0 \\
\frac{d w}{d x} & 0 & 0 \\
1 & &
\end{array}\right]
$$

By the chain rule we have $h^{\prime}=f^{\prime}(g(x, y, z)) g^{\prime}(x, y, z)$. That is,

$$
\left[\frac{\partial h}{\partial x} \frac{\partial h}{\partial y} \frac{\partial h}{\partial z}\right]=\left[\frac{\partial f}{\partial u} \frac{\partial f}{\partial v} \frac{\partial f}{\partial w}\right]\left[\begin{array}{ccc}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & 0 \\
\frac{d w}{d x} & 0 & 0
\end{array}\right]
$$

Multiplying these matrices, and looking at the 1-1 entry, we see $\frac{\partial h}{\partial x}=\frac{\partial f}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial f}{\partial v} \frac{\partial v}{\partial x}+\frac{\partial f}{\partial w} \frac{d w}{d x}$ as desired.
(8) We have

$$
f^{\prime}=\left[\begin{array}{ccl}
e^{u-w} & 0 & -e^{u-w} \\
-\sin (v+u)+\cos (u+v+w) & -\sin (v+u)+\cos (u+v+w) & \cos (u+v+w)
\end{array}\right]
$$

and

$$
g^{\prime}=\left[\begin{array}{cl}
e^{x} & 0 \\
\sin (y-x) & -\sin (y-x) \\
0 & -e^{-y}
\end{array}\right]
$$

Now $g(0,0)=(1,1,1)$ and

$$
\begin{gathered}
g^{\prime}(0,0)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & -1
\end{array}\right] \\
f^{\prime}(g(0,0))=f^{\prime}(1,1,1)=\left[\begin{array}{ccl}
1 & 0 & -1 \\
-\sin (2)+\cos (3) & -\sin (2)+\cos (3) & \cos (3)
\end{array}\right] .
\end{gathered}
$$

By the chain rule

$$
D(f \circ g)(0,0)=f^{\prime}(g(0,0)) g^{\prime}(0,0)=\left[\begin{array}{cl}
1 & 1 \\
-\sin (2)+\cos (3) & -\cos (3)
\end{array}\right]
$$

(9) Note $f^{\prime}=(-\sin t, \cos t)$, which is continuous by $3334 / 4332$. It is also never $\overrightarrow{0}$, so the right side of the expession is never zero. But the left side is 0 since f is 2π-periodic.

