Department of Mathematics, University of Houston
 Math 4332. Intro to Real Analysis. David Blecher, Spring 2015
 Homework 13.

As usual, exercises marked with * are to be turned in by the graduate students in the class.
(1) Let $f(u, v)=\left(u^{3}-v^{2}, \sin u-\ln v\right)$ and $\vec{x}_{0}=(-1,0)$. Show that f^{-1} exists and is differentiable on an open neighborhood of \vec{x}_{0}, and compute $\left(f^{-1}\right)^{\prime}\left(\vec{x}_{0}\right)$.
(2) Consider the system

$$
\left\{\begin{array}{l}
u=x+x y z \\
v=y+x y \\
w=z+2 x+3 z^{2}
\end{array}\right.
$$

(i) Show using the inverse function theorem that it is possible to solve for x, y, and z above explicitly in terms of u, v, w, in a neighborhood of the point $(x, y, z)=(0,0,0)$.
(ii) Using the inverse function theorem find the Jacobian matrix of derivatives of x, y, and z with respect to u, v, w, at the point $(0,0,0)$.
(iii) Find the first partial derivatives of x with respect to u, v, w, at the point where $(x, y, z)=(0,0,0)$.
(3) Let $f(x, y)=2 x^{3}-3 x^{2}+2 y^{3}+3 y^{2}$. Set $Z=\left\{(x, y) \in \mathbb{R}^{2}: f(x, y)=0\right\}$. Find those points of Z which have no neighborhoods in which the equation $f(x, y)=0$ can be solved explicitly for y in terms of x.
(4) Prove that there are functions $u(x, y), v(x, y)$, and $w(x, y)$, and an $r>0$ such that u, v, w are C^{1} on $B((1,1), r)$, satisfy $u(1,1)=1, v(1,1)=1, w(1,1)=-1$, and satisfy the equations

$$
\left\{\begin{array}{l}
u^{5}+x v^{2}-y+w=0 \\
v^{5}+y u^{2}-x+w=0 \\
w^{4}+y^{5}-x^{4}=1
\end{array}\right.
$$

(5) Define $f\left(x, y_{1}, y_{2}\right)=x^{2} y_{1}+e^{x}+y_{2}$. Show that $f(0,1,-1)=0$ and that there exists a differentiable function g in an open set containing $(1,-1)$ in \mathbb{R}^{2}, such that $g(1,-1)=0$ and $f\left(g\left(y_{1}, y_{2}\right), y_{1}, y_{2}\right)=0$. Find $g^{\prime}(1,-1)$.
(6*) If $S \subseteq \mathbb{R}^{n}$ is open, if $f: S \rightarrow \mathbb{R}$ has partial derivatives at all points in S, and if there is a constant $M>0$ with $\left|\frac{\partial f}{\partial x_{i}}(\vec{x})\right| \leq M$ for all $\vec{x} \in S, i=1, \ldots n$, then show f is continuous on S.
(7) For extra practice you could do some of Problems 2.30, 2.37 (see question 4 above), and 2.38, in Paulsen's notes.

