Department of Mathematics, University of Houston
 Math 4332. Intro to Real Analysis. David Blecher, Spring 2015 Homework 13 Key.

As usual, exercises marked with * are to be turned in by the graduate students in the class.
(1) $f(0,1)=(-1,0)$, and $f^{\prime}=\left[\begin{array}{cc}3 u^{2} & -2 v \\ \cos u & -1 / v\end{array}\right]$, which equals $\left[\begin{array}{cc}0 & -2 \\ 1 & -1\end{array}\right]$ at $(0,1)$. The determinant of this is $2 \neq 0$, so f^{-1} exists in a neighborhood of $(-1,0)$, and $\left(f^{-1}\right)^{\prime}(-1,0)=\left[\begin{array}{ll}0 & -2 \\ 1 & -1\end{array}\right]^{-1}$, which is easy to compute.
(2) (i) The Jacobian matrix at $(0,0,0)$ is $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right]$, which has nonzero determinant $(=1)$. Thus by the inverse function theorem, it is possible to solve for x, y, and z explicitly in terms of u, v, w, in a neighborhood of the point $(x, y, z)=(0,0,0)$.
(ii) The Jacobian matrix of derivatives of x, y, and z with respect to u, v, w, at $(0,0,0)$ is the inverse matrix of the matrix in (i), that is, $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$.
(iii) Reading the first row of the last matrix, we have $\frac{\partial x}{\partial u}=1, \frac{\partial x}{\partial v}=\frac{\partial x}{\partial w}=0$.
(3) $f^{\prime}=\left[\begin{array}{ll}6 x^{2}-6 x & 6 y^{2}+6 y\end{array}\right]$. Since we wish to solve for y in terms of x by the implicit function, we look at $A=6 y^{2}+6 y$, which is not invertible exactly iff $y=0$ or $y=-1$. Solving $f(x, 0)=0$ and $f(x,-1)=0$ gives points $(0,0),(3 / 2,0),(1,-1),(-1 / 2,-1)$ in Z. At all other points of Z there exists a neighborhood in which the equation $f(x, y)=0$ can be solved explicitly for y in terms of x by the implicit function theorem. We show at these four points above there is no local explicit solution to $f(x, y)=0$. Consider ($3 / 2,0$): for $x>3 / 2$ there is no y close to 0 with $f(x, y)=0$ since $2 y^{3}+3 y^{2}$ has local minimum 0 when $y=0$ and $2 x^{3}-3 x^{2}>0$ here. A similar argument works for $(-1 / 2,-1)$. The treatment of $(0,0)$ and $(1,-1)$ are similar so we just consider $(0,0)$. For x close to 0 there are two values y_{1}, y_{2} close to 0 with $f\left(x, y_{1}\right)=f\left(x, y_{2}\right)=0$ (look at the graphs of $2 x^{3}-3 x^{2}$ and of $2 y^{3}+3 y^{2}$). Hence there is no g with $[y=g(x)$ iff $f(x, y)=0$] (close to $(0,0)$).
(4) Let $f(x, y, u, v, w)=\left(u^{5}+x v^{2}-y+w, v^{5}+y u^{2}-x+w, w^{4}+y^{5}-x^{4}\right)$, and we want to solve for (u, v, w) in terms of (x, y), nearby the point $(x, y, u, v, w)=(1,1,1,1,-1)$. If $\vec{z}=(u, v, w)$ then $f_{\vec{z}}^{\prime}=\left[\begin{array}{ccc}5 u^{4} & 2 x v & 1 \\ 2 y u & 5 v^{4} & 1 \\ 0 & 0 & 4 w^{3}\end{array}\right]$, which equals $\left[\begin{array}{ccc}5 & 2 & 1 \\ 2 & 5 & 1 \\ 0 & 0 & -4\end{array}\right]$ at $(x, y, u, v, w)=(1,1,1,1,-1)$. The determinant of this is $-4(21) \neq 0$, so by the implicit function theorem it is possible to solve for \vec{z} explicitly in terms of x, y, in a neighborhood of the point $(x, y)=(1,1)$, and this solution is continuously differentiable.
(5) Clearly $f(0,1,-1)=0, f^{\prime}(0,1,-1)=\left[\begin{array}{ll}1 & 0 \\ 1\end{array}\right]$. Here the implicit function theorem tells us to look at the 'matrix' $A=1$ (similarly to the first lines of the solution to Q3 above, which is invertible. So by the implicit function theorem there does exist such a differentiable function g. Also by the implicit function theorem $g^{\prime}(1,-1)=-1^{-1}\left[\begin{array}{ll}0 & 1\end{array}\right]=$ $\left[\begin{array}{ll}0 & -1\end{array}\right]$.
(6*) This is similar in spirit to the related theorem from the notes. Fix $\vec{x} \in S$ and let $\epsilon>0$ be given. Choose $\delta>0$ with $B(\vec{x}, \delta) \subset S$ and $\delta<\frac{\epsilon}{M \sqrt{n}}$. Let $\vec{h} \in \mathbb{R}^{n}$ with $\|\vec{h}\|_{2}<\delta$, and set $v_{0}, v_{1}, \cdots, v_{n}$ be as in that theorem from the notes. Then $|f(\vec{x}+\vec{h})-f(\vec{x})|=\left|\sum_{k=1}^{m} f\left(\vec{x}+v_{k}\right)-f\left(\vec{x}+v_{k-1}\right)\right|=\left|\sum_{k=1}^{m} \frac{\partial f}{\partial x_{k}}\left(\xi_{k}\right) h_{k}\right|$, after applying the ordinary MVT to $g_{j}(t)=f\left(\vec{x}+v_{k-1}+t\left(v_{k}-v_{k-1}\right)\right)$. We obtain $|f(\vec{x}+\vec{h})-f(\vec{x})| \leq \sum_{k=1}^{m} M\left|h_{k}\right| \leq M \sqrt{n}\|\vec{h}\|_{2}<\epsilon$. Hence f is continuous on S.

