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Homework 13 Key.

As usual, exercises marked with * are to be turned in by the graduate students in the class.

(1) f(0, 1) = (−1, 0), and f ′ =

[
3u2 −2v

cosu −1/v

]
, which equals

[
0 −2
1 −1

]
at (0, 1). The determinant of this is 2 6= 0,

so f−1 exists in a neighborhood of (−1, 0), and (f−1)′(−1, 0) =

[
0 −2
1 −1

]−1
, which is easy to compute.

(2) (i) The Jacobian matrix at (0, 0, 0) is

 1 0 0
0 1 0
2 0 1

, which has nonzero determinant (= 1). Thus by the inverse

function theorem, it is possible to solve for x, y, and z explicitly in terms of u, v, w, in a neighborhood of the point
(x, y, z) = (0, 0, 0).

(ii) The Jacobian matrix of derivatives of x, y, and z with respect to u, v, w, at (0, 0, 0) is the inverse matrix of

the matrix in (i), that is,

 1 0 0
0 1 0
−2 0 1

.

(iii) Reading the first row of the last matrix, we have ∂x
∂u = 1, ∂x∂v = ∂x

∂w = 0.

(3) f ′ = [6x2 − 6x 6y2 + 6y]. Since we wish to solve for y in terms of x by the implicit function, we look at
A = 6y2 + 6y, which is not invertible exactly iff y = 0 or y = −1. Solving f(x, 0) = 0 and f(x,−1) = 0 gives points
(0, 0), (3/2, 0), (1,−1), (−1/2,−1) in Z. At all other points of Z there exists a neighborhood in which the equation
f(x, y) = 0 can be solved explicitly for y in terms of x by the implicit function theorem. We show at these four
points above there is no local explicit solution to f(x, y) = 0. Consider (3/2, 0): for x > 3/2 there is no y close to 0
with f(x, y) = 0 since 2y3 + 3y2 has local minimum 0 when y = 0 and 2x3− 3x2 > 0 here. A similar argument works
for (−1/2,−1). The treatment of (0,0) and (1,-1) are similar so we just consider (0,0). For x close to 0 there are two
values y1, y2 close to 0 with f(x, y1) = f(x, y2) = 0 (look at the graphs of 2x3 − 3x2 and of 2y3 + 3y2). Hence there
is no g with [y = g(x) iff f(x, y) = 0] (close to (0,0)).

(4) Let f(x, y, u, v, w) = (u5 +xv2−y+w, v5 +yu2−x+w,w4 +y5−x4), and we want to solve for (u, v, w) in terms

of (x, y), nearby the point (x, y, u, v, w) = (1, 1, 1, 1,−1). If ~z = (u, v, w) then f ′~z =

 5u4 2xv 1
2yu 5v4 1
0 0 4w3

, which

equals

 5 2 1
2 5 1
0 0 −4

 at (x, y, u, v, w) = (1, 1, 1, 1,−1). The determinant of this is −4(21) 6= 0, so by the implicit

function theorem it is possible to solve for ~z explicitly in terms of x, y, in a neighborhood of the point (x, y) = (1, 1),
and this solution is continuously differentiable.

(5) Clearly f(0, 1,−1) = 0, f ′(0, 1,−1) = [1 0 1]. Here the implicit function theorem tells us to look at the ‘matrix’
A = 1 (similarly to the first lines of the solution to Q3 above, which is invertible. So by the implicit function theorem
there does exist such a differentiable function g. Also by the implicit function theorem g′(1,−1) = −1−1[0 1] =
[0 − 1].

(6*) This is similar in spirit to the related theorem from the notes. Fix ~x ∈ S and let ε > 0 be given. Choose δ > 0

with B(~x, δ) ⊂ S and δ < ε
M
√
n

. Let ~h ∈ Rn with ‖~h‖2 < δ, and set v0, v1, · · · , vn be as in that theorem from the

notes. Then |f(~x + ~h) − f(~x)| = |
∑m
k=1 f(~x + vk) − f(~x + vk−1)| = |

∑m
k=1

∂f
∂xk

(ξk)hk|, after applying the ordinary

MVT to gj(t) = f(~x+ vk−1 + t(vk − vk−1)). We obtain |f(~x+ ~h)− f(~x)| ≤
∑m
k=1M |hk| ≤M

√
n‖~h‖2 < ε. Hence f

is continuous on S.
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