Department of Mathematics, University of Houston Math 4332. Intro to Real Analysis. David Blecher, Spring 2015 Homework 7

(1) Show that if $f_n \to f$ uniformly on X then $f_n \to f$ pointwise.

(2) Notes Problems 1.8 [3 points], 1.9 [1 point], 1.23 [3 points for completion only].

(3) Let $f_n(x) = n^c x (1-x^2)^n$ for $x \in [0,1]$. Prove that $f_n \to 0$ pointwise on [0,1] for every real c. For which c does $f_n \to 0$ uniformly on [0,1]? For which values of c is $\int_0^1 (\lim_{n\to\infty} f_n(x)) dx = \lim_{n\to\infty} \int_0^1 f_n(x) dx$? [1+8+3 points]

(4) Suppose that $f_n \to f$ uniformly on X. If each f_n is bounded, show that f is bounded, and show that (f_n) is uniformly bounded, that is, there is a constant M > 0 with $|f_n(x)| \le M$ for all $n \in \mathbb{N}$ and $x \in X$. [2+4 points]

(5) Show that $B(X) = \{f : X \to \mathbb{R}, f \text{ bounded}\}\$ is a metric space with metric $d(f,g) = ||f-g||_{\infty} = \sup\{|f(x)-g(x)|: x \in X\}$. Show that B(X) is complete. Show that if $f_n \to f$ uniformly and $g_n \to g$ uniformly then $f_n + g_n \to f + g$ uniformly on X and $f_n \cdot g_n \to f \cdot g$ uniformly on X. [2 + 2 + 3 points]

(6) If $g_n \to g$ uniformly on (a, b), and h is a continuous bounded function on (a, b), and if (c_n) is a sequence of constants with limit c, show that $c_n + h(x) g_n(x) \to c + h(x) g(x)$ uniformly on (a, b). [2 points completion only]

(7) Prove the Cauchy criterion for uniform convergence on X; namely that a sequence (f_n) of scalar valued functions on a set X converges uniformly iff for any $\epsilon > 0$ there exists N such that

$$|f_m(x) - f_n(x)| \le \epsilon, \qquad x \in X, m \ge N, n \ge N.$$

(The latter is saying $||f_m - f_n||_{\infty} \leq \epsilon$ whenever $m \geq N, n \geq N$.) [3 points completion only]

(8) Let $f_n(x) = \frac{1}{n}e^{-n^2x^2}$ for $x \in \mathbb{R}$. Prove that $f_n \to 0$ uniformly on \mathbb{R} , that $f'_n \to 0$ pointwise on \mathbb{R} , but $f'_n \neq 0$ uniformly on any interval containing 0. [2 + 2 + 3 points]

(9) Let $\{f_n\}$ be a sequence of real valued bounded functions on [0,1], and $f_n \to f$ uniformly on [0,1]. Prove that $\lim_{n\to\infty} \int_0^{1-1/n} f_n(x) dx = \int_0^1 f(x) dx$. [4 points completion only]