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Homework 7 Key

(1) See e.g. page 1 of the notes for this chapter, or note |fn(x)− f(x)| ≤ ‖fn − f‖∞ → 0, for each x.

(2) Notes Problem 1.8: This is similar to Example 1.4 in the notes: By Calculus 2, x
1
n → 1 if x ∈ (0, 1]. Then

sn = ‖fn − f‖∞ ≥ sup{|x 1
n − 1| : x ∈ (0, 1]} = 1 9 0. So fn 9 f uniformly on [0, 1]. [3 points]

1.9: Follows immediately from Dini. [1 point]

1.23: Recall that if ~a = (ai) ∈ Rk then

|aj | ≤ ‖~a‖ =

√√√√ k∑
i=1

|ai|2 ≤
√
n max

i
|ai|.

Hence

|fj,n(x)− gj(x)| ≤ ‖fn(x)− g(x)‖ ≤
√
n max

i
{|fi,n(x)− gi(x)|}, x ∈ X,

so that in the ‘γ’ notation of 1.20/1.21 in the notes,

‖fj,n − gj‖∞ ≤ γ(fn, g) ≤
√
nmax

i
‖fi,n − gi‖∞.

Thus γ(fn, g)→ 0 as n→∞ iff ‖fi,n − gi‖∞ → 0 as n→∞ for every i = 1, · · · , k. This is saying fn → g uniformly
iff fi,n → gi uniformly for every i = 1, · · · , k. [3 points for completion only]

(3) Here fn(x) = ncx(1− x2)n → 0 pointwise on [0, 1] since by Calculus, ncδn → 0 for δ ∈ [0, 1). By the Calculus I

technique, fn has a maximum value of nc
√
2n+1

( 2n
2n+1 )n (achieved when x = 1√

2n+1
). Hence if c < 1

2 then ‖fn− 0‖∞ ≤
nc

√
2n+1

→ 0 as n → ∞, so fn → 0 uniformly on [0, 1]. If c ≥ 1
2 then ‖fn − 0‖∞ ≥

√
n√

2n+1
( 2n
2n+1 )n 9 0. So fn 9 f

uniformly on [0, 1]. Finally,
∫ 1

0
fn(x) dx = nc

2(n+1) →
∫ 1

0
f dx = 0 iff c < 1. [1+8+3 points]

(4) We use notation from Q 5 below. If each fn is bounded then f is bounded since

|f(x)| ≤ |f(x)− fn(x)|+ |fn(x)| ≤ ‖f − fn‖∞ + ‖fn‖∞.

Suppose that ‖fn − f‖∞ < 1 for n ≥ N . Since fn = (fn − f) + f , by the triangle inequality we have

‖fn‖∞ ≤ ‖fn − f‖∞ + ‖f‖∞ < 1 + ‖f‖∞, n ≥ N.

So M = max{‖f1‖∞, · · · , ‖fN‖∞, 1 + ‖f‖∞} will work. [2+4 points]

(5) That d(f, g) = ‖f − g‖∞ = sup{|f(x) − g(x)| : x ∈ X} is a complete metric is the same as the proof in 1.21 in
the notes, except for why d(f, g) < ∞. The latter is because |f(x) − g(x)| ≤ |f(x)| + |g(x)| ≤ K + M if K and M
are upper bounds for |f | and |g|. If fn → f uniformly and gn → g uniformly then by the triangle inequality

‖fn + gn − (f + g)‖∞ ≤ ‖fn − f‖∞ + ‖gn − g‖∞ → 0.

So fn + gn → f + g uniformly on X. Also, writing fn · gn − f · g = fn · gn − f · gn + f · gn − f · g, and using Question
4 to get upper bounds K and M for |gn| and |f | respectively, we have

|fn(x)gn(x)− f(x)g(x)| ≤ |fn(x)− f(x)||gn(x)|+ |f(x)||gn(x)− g(x)| ≤ K‖fn − f‖∞ +M‖gn − g‖∞.

Thus ‖fn · gn− f · g‖∞ ≤ K‖fn− f‖∞+M‖gn− g‖∞ → 0, and so fn · gn → f · g uniformly on X. [2 + 2 + 3 points]

(6) This follows as in the last part of Q 5 above: If M is an upper bound for |h| then [2 points completion only]

|cn+h(x) gn(x)−(c+h(x) g(x))| ≤ |cn−c|+|h(x)gn(x)−h(x) g(x)| = |cn−c|+|h(x)||gn(x)−g(x)| ≤ |cn−c|+M‖gn−g‖∞.

(7) (⇐) This is exactly as in the last few lines of the proof of 1.21.

(⇒) If f
u→ f uniformly then given ε > 0 there exists N such that

|fn(x)− f(x)| ≤ ε

2
, x ∈ X,n ≥ N.

Hence [3 points completion only]

|fn(x)− fm(x)| ≤ |fn(x)− f(x)|+ |f(x)− fm(x)| ≤ ε

2
+
ε

2
= ε, x ∈ X,m, n ≥ N.

1



(8) Note that ‖fn − 0‖∞ ≤ 1
n → 0, so fn → 0 uniformly. Also, f ′n(x) = −2nxe−n

2x2 → 0 for all x ∈ R since

limn→∞ ne−n
2K = 0 by Calculus, if K > 0. However, f ′n( 1

n ) = −2e−1, so ‖f ′n − 0‖∞ ≥ 2e−1. Hence f ′n 9 0
uniformly (not even on any interval containing 0). [2 + 2 + 3 points]

(9) Let M be as in Q 4 above, then [4 points completion only]

|
∫ 1−1/n

0

fn(x) dx−
∫ 1

0

fn(x) dx| = |
∫ 1

1−1/n
fn(x) dx| ≤

∫ 1

1−1/n
|fn(x)|dx ≤

∫ 1

1−1/n
Mdx =

M

n
→ 0,

as n→∞. Also, by 1.14,
∫ 1

0
fn(x) dx→

∫ 1

0
f(x) dx. So by the triangle inequality,

|
∫ 1−1/n

0

fn(x) dx−
∫ 1

0

f(x) dx| ≤ |
∫ 1−1/n

0

fn(x) dx−
∫ 1

0

fn(x) dx|+ |
∫ 1

0

(fn(x)− f(x)) dx| → 0.


