Department of Mathematics, University of Houston Math 4332. Intro to Real Analysis. David Blecher, Spring 2015 Homework 7 Key

(1) See e.g. page 1 of the notes for this chapter, or note $|f_n(x) - f(x)| \le ||f_n - f||_{\infty} \to 0$, for each x.

(2) Notes Problem 1.8: This is similar to Example 1.4 in the notes: By Calculus 2, $x^{\frac{1}{n}} \to 1$ if $x \in (0,1]$. Then $s_n = ||f_n - f||_{\infty} \ge \sup\{|x^{\frac{1}{n}} - 1| : x \in (0,1]\} = 1 \nrightarrow 0$. So $f_n \nrightarrow f$ uniformly on [0,1]. [3 points]

1.9: Follows immediately from Dini.

1.23: Recall that if $\vec{a} = (a_i) \in \mathbb{R}^k$ then

$$|a_j| \le \|\vec{a}\| = \sqrt{\sum_{i=1}^k |a_i|^2} \le \sqrt{n} \max_i |a_i|.$$

Hence

$$|f_{j,n}(x) - g_j(x)| \le ||f_n(x) - g(x)|| \le \sqrt{n} \max_i \{|f_{i,n}(x) - g_i(x)|\}, \quad x \in X,$$

so that in the ' γ ' notation of 1.20/1.21 in the notes,

$$\|f_{j,n} - g_j\|_{\infty} \le \gamma(f_n, g) \le \sqrt{n} \max_i \|f_{i,n} - g_i\|_{\infty}.$$

Thus $\gamma(f_n, g) \to 0$ as $n \to \infty$ iff $||f_{i,n} - g_i||_{\infty} \to 0$ as $n \to \infty$ for every $i = 1, \dots, k$. This is saying $f_n \to g$ uniformly iff $f_{i,n} \to g_i$ uniformly for every $i = 1, \dots, k$. [3 points for completion only]

(3) Here $f_n(x) = n^c x(1-x^2)^n \to 0$ pointwise on [0,1] since by Calculus, $n^c \delta^n \to 0$ for $\delta \in [0,1)$. By the Calculus I technique, f_n has a maximum value of $\frac{n^c}{\sqrt{2n+1}} (\frac{2n}{2n+1})^n$ (achieved when $x = \frac{1}{\sqrt{2n+1}}$). Hence if $c < \frac{1}{2}$ then $||f_n - 0||_{\infty} \le \frac{n^c}{\sqrt{2n+1}} \to 0$ as $n \to \infty$, so $f_n \to 0$ uniformly on [0,1]. If $c \ge \frac{1}{2}$ then $||f_n - 0||_{\infty} \ge \frac{\sqrt{n}}{\sqrt{2n+1}} (\frac{2n}{2n+1})^n \not\rightarrow 0$. So $f_n \not\rightarrow f$ uniformly on [0,1]. Finally, $\int_0^1 f_n(x) \, dx = \frac{n^c}{2(n+1)} \to \int_0^1 f \, dx = 0$ iff c < 1. [1+8+3 points]

(4) We use notation from Q 5 below. If each f_n is bounded then f is bounded since

 $|f(x)| \le |f(x) - f_n(x)| + |f_n(x)| \le ||f - f_n||_{\infty} + ||f_n||_{\infty}.$

Suppose that $||f_n - f||_{\infty} < 1$ for $n \ge N$. Since $f_n = (f_n - f) + f$, by the triangle inequality we have

$$\|f_n\|_{\infty} \le \|f_n - f\|_{\infty} + \|f\|_{\infty} < 1 + \|f\|_{\infty}, \qquad n \ge N.$$

$$\{\|f_1\|_{\infty}, \dots, \|f_N\|_{\infty}, 1 + \|f\|_{\infty}\} \text{ will work.} \qquad [2+4 \text{ points}]$$

So $M = \max\{\|f_1\|_{\infty}, \cdots, \|f_N\|_{\infty}, 1 + \|f\|_{\infty}\}$ will work.

(5) That $d(f,g) = ||f - g||_{\infty} = \sup\{|f(x) - g(x)| : x \in X\}$ is a complete metric is the same as the proof in 1.21 in the notes, except for why $d(f,g) < \infty$. The latter is because $|f(x) - g(x)| \le |f(x)| + |g(x)| \le K + M$ if K and M are upper bounds for |f| and |g|. If $f_n \to f$ uniformly and $g_n \to g$ uniformly then by the triangle inequality

$$||f_n + g_n - (f + g)||_{\infty} \le ||f_n - f||_{\infty} + ||g_n - g||_{\infty} \to 0.$$

So $f_n + g_n \to f + g$ uniformly on X. Also, writing $f_n \cdot g_n - f \cdot g = f_n \cdot g_n - f \cdot g_n + f \cdot g_n - f \cdot g$, and using Question 4 to get upper bounds K and M for $|g_n|$ and |f| respectively, we have

$$|f_n(x)g_n(x) - f(x)g(x)| \le |f_n(x) - f(x)||g_n(x)| + |f(x)||g_n(x) - g(x)| \le K ||f_n - f||_{\infty} + M ||g_n - g||_{\infty}$$

Thus $||f_n \cdot g_n - f \cdot g||_{\infty} \le K ||f_n - f||_{\infty} + M ||g_n - g||_{\infty} \to 0$, and so $f_n \cdot g_n \to f \cdot g$ uniformly on X. [2 + 2 + 3 points]

(6) This follows as in the last part of Q 5 above: If M is an upper bound for |h| then [2 points completion only] $|c_n+h(x)g_n(x)-(c+h(x)g(x))| \le |c_n-c|+|h(x)g_n(x)-h(x)g(x)| = |c_n-c|+|h(x)||g_n(x)-g(x)| \le |c_n-c|+M||g_n-g||_{\infty}$.

(7) (\Leftarrow) This is exactly as in the last few lines of the proof of 1.21.

 (\Rightarrow) If $f \stackrel{u}{\to} f$ uniformly then given $\epsilon > 0$ there exists N such that

$$|f_n(x) - f(x)| \le \frac{\epsilon}{2}, \qquad x \in X, n \ge N$$

Hence

$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon, \qquad x \in X, m, n \ge N.$$

[1 point]

(8) Note that $||f_n - 0||_{\infty} \leq \frac{1}{n} \to 0$, so $f_n \to 0$ uniformly. Also, $f'_n(x) = -2nxe^{-n^2x^2} \to 0$ for all $x \in \mathbb{R}$ since $\lim_{n\to\infty} ne^{-n^2K} = 0$ by Calculus, if K > 0. However, $f'_n(\frac{1}{n}) = -2e^{-1}$, so $||f'_n - 0||_{\infty} \geq 2e^{-1}$. Hence $f'_n \to 0$ uniformly (not even on any interval containing 0). [2 + 2 + 3 points]

(9) Let M be as in Q 4 above, then

[4 points completion only]

$$\left|\int_{0}^{1-1/n} f_n(x) \, dx - \int_{0}^{1} f_n(x) \, dx\right| = \left|\int_{1-1/n}^{1} f_n(x) \, dx\right| \le \int_{1-1/n}^{1} |f_n(x)| \, dx \le \int_{1-1/n}^{1} M \, dx = \frac{M}{n} \to 0,$$

as $n \to \infty$. Also, by 1.14, $\int_0^1 f_n(x) dx \to \int_0^1 f(x) dx$. So by the triangle inequality,

$$\left|\int_{0}^{1-1/n} f_n(x) \, dx - \int_{0}^{1} f(x) \, dx\right| \le \left|\int_{0}^{1-1/n} f_n(x) \, dx - \int_{0}^{1} f_n(x) \, dx\right| + \left|\int_{0}^{1} (f_n(x) - f(x)) \, dx\right| \to 0.$$