Department of Mathematics, University of Houston
 Math 4332. Intro to Real Analysis. David Blecher, Spring 2015
 Homework 7 Key

(1) See e.g. page 1 of the notes for this chapter, or note $\left|f_{n}(x)-f(x)\right| \leq\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$, for each x.
(2) Notes Problem 1.8: This is similar to Example 1.4 in the notes: By Calculus 2, $x^{\frac{1}{n}} \rightarrow 1$ if $x \in(0,1]$. Then $s_{n}=\left\|f_{n}-f\right\|_{\infty} \geq \sup \left\{\left|x^{\frac{1}{n}}-1\right|: x \in(0,1]\right\}=1 \nrightarrow 0$. So $f_{n} \nrightarrow f$ uniformly on $[0,1]$.
[3 points]
1.9: Follows immediately from Dini.
[1 point]
1.23: Recall that if $\vec{a}=\left(a_{i}\right) \in \mathbb{R}^{k}$ then

$$
\left|a_{j}\right| \leq\|\vec{a}\|=\sqrt{\sum_{i=1}^{k}\left|a_{i}\right|^{2}} \leq \sqrt{n} \max _{i}\left|a_{i}\right|
$$

Hence

$$
\left|f_{j, n}(x)-g_{j}(x)\right| \leq\left\|f_{n}(x)-g(x)\right\| \leq \sqrt{n} \max _{i}\left\{\left|f_{i, n}(x)-g_{i}(x)\right|\right\}, \quad x \in X
$$

so that in the ' γ ' notation of $1.20 / 1.21$ in the notes,

$$
\left\|f_{j, n}-g_{j}\right\|_{\infty} \leq \gamma\left(f_{n}, g\right) \leq \sqrt{n} \max _{i}\left\|f_{i, n}-g_{i}\right\|_{\infty}
$$

Thus $\gamma\left(f_{n}, g\right) \rightarrow 0$ as $n \rightarrow \infty$ iff $\left\|f_{i, n}-g_{i}\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$ for every $i=1, \cdots, k$. This is saying $f_{n} \rightarrow g$ uniformly iff $f_{i, n} \rightarrow g_{i}$ uniformly for every $i=1, \cdots, k$.
[3 points for completion only]
(3) Here $f_{n}(x)=n^{c} x\left(1-x^{2}\right)^{n} \rightarrow 0$ pointwise on [0,1$]$ since by Calculus, $n^{c} \delta^{n} \rightarrow 0$ for $\delta \in[0,1)$. By the Calculus I technique, f_{n} has a maximum value of $\frac{n^{c}}{\sqrt{2 n+1}}\left(\frac{2 n}{2 n+1}\right)^{n}$ (achieved when $x=\frac{1}{\sqrt{2 n+1}}$). Hence if $c<\frac{1}{2}$ then $\left\|f_{n}-0\right\|_{\infty} \leq$ $\frac{n^{c}}{\sqrt{2 n+1}} \rightarrow 0$ as $n \rightarrow \infty$, so $f_{n} \rightarrow 0$ uniformly on $[0,1]$. If $c \geq \frac{1}{2}$ then $\left\|f_{n}-0\right\|_{\infty} \geq \frac{\sqrt{n}}{\sqrt{2 n+1}}\left(\frac{2 n}{2 n+1}\right)^{n} \nrightarrow 0$. So $f_{n} \nrightarrow f$ uniformly on [0, 1]. Finally, $\int_{0}^{1} f_{n}(x) d x=\frac{n^{c}}{2(n+1)} \rightarrow \int_{0}^{1} f d x=0$ iff $c<1$.
[$1+8+3$ points $]$
(4) We use notation from Q 5 below. If each f_{n} is bounded then f is bounded since

$$
|f(x)| \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)\right| \leq\left\|f-f_{n}\right\|_{\infty}+\left\|f_{n}\right\|_{\infty} .
$$

Suppose that $\left\|f_{n}-f\right\|_{\infty}<1$ for $n \geq N$. Since $f_{n}=\left(f_{n}-f\right)+f$, by the triangle inequality we have

$$
\left\|f_{n}\right\|_{\infty} \leq\left\|f_{n}-f\right\|_{\infty}+\|f\|_{\infty}<1+\|f\|_{\infty}, \quad n \geq N .
$$

So $M=\max \left\{\left\|f_{1}\right\|_{\infty}, \cdots,\left\|f_{N}\right\|_{\infty}, 1+\|f\|_{\infty}\right\}$ will work.
(5) That $d(f, g)=\|f-g\|_{\infty}=\sup \{|f(x)-g(x)|: x \in X\}$ is a complete metric is the same as the proof in 1.21 in the notes, except for why $d(f, g)<\infty$. The latter is because $|f(x)-g(x)| \leq|f(x)|+|g(x)| \leq K+M$ if K and M are upper bounds for $|f|$ and $|g|$. If $f_{n} \rightarrow f$ uniformly and $g_{n} \rightarrow g$ uniformly then by the triangle inequality

$$
\left\|f_{n}+g_{n}-(f+g)\right\|_{\infty} \leq\left\|f_{n}-f\right\|_{\infty}+\left\|g_{n}-g\right\|_{\infty} \rightarrow 0
$$

So $f_{n}+g_{n} \rightarrow f+g$ uniformly on X. Also, writing $f_{n} \cdot g_{n}-f \cdot g=f_{n} \cdot g_{n}-f \cdot g_{n}+f \cdot g_{n}-f \cdot g$, and using Question 4 to get upper bounds K and M for $\left|g_{n}\right|$ and $|f|$ respectively, we have

$$
\left|f_{n}(x) g_{n}(x)-f(x) g(x)\right| \leq\left|f_{n}(x)-f(x)\left\|g _ { n } (x) \left|+\left|f(x)\left\|g_{n}(x)-g(x) \mid \leq K\right\| f_{n}-f\left\|_{\infty}+M\right\| g_{n}-g \|_{\infty}\right.\right.\right.\right.
$$

Thus $\left\|f_{n} \cdot g_{n}-f \cdot g\right\|_{\infty} \leq K\left\|f_{n}-f\right\|_{\infty}+M\left\|g_{n}-g\right\|_{\infty} \rightarrow 0$, and so $f_{n} \cdot g_{n} \rightarrow f \cdot g$ uniformly on X. [2+2+3 points]
(6) This follows as in the last part of Q 5 above: If M is an upper bound for $|h|$ then [2 points completion only] $\left|c_{n}+h(x) g_{n}(x)-(c+h(x) g(x))\right| \leq\left|c_{n}-c\right|+\left|h(x) g_{n}(x)-h(x) g(x)\right|=\left|c_{n}-c\right|+|h(x)|\left|g_{n}(x)-g(x)\right| \leq\left|c_{n}-c\right|+M\left\|g_{n}-g\right\|_{\infty}$.
(7) (\Leftarrow) This is exactly as in the last few lines of the proof of 1.21 .
(\Rightarrow) If $f \xrightarrow{u} f$ uniformly then given $\epsilon>0$ there exists N such that

$$
\left|f_{n}(x)-f(x)\right| \leq \frac{\epsilon}{2}, \quad x \in X, n \geq N
$$

Hence
[3 points completion only]

$$
\left|f_{n}(x)-f_{m}(x)\right| \leq\left|f_{n}(x)-f(x)\right|+\left|f(x)-f_{m}(x)\right| \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon, \quad x \in X, m, n \geq N
$$

(8) Note that $\left\|f_{n}-0\right\|_{\infty} \leq \frac{1}{n} \rightarrow 0$, so $f_{n} \rightarrow 0$ uniformly. Also, $f_{n}^{\prime}(x)=-2 n x e^{-n^{2} x^{2}} \rightarrow 0$ for all $x \in \mathbb{R}$ since $\lim _{n \rightarrow \infty} n e^{-n^{2} K}=0$ by Calculus, if $K>0$. However, $f_{n}^{\prime}\left(\frac{1}{n}\right)=-2 e^{-1}$, so $\left\|f_{n}^{\prime}-0\right\|_{\infty} \geq 2 e^{-1}$. Hence $f_{n}^{\prime} \nrightarrow 0$ uniformly (not even on any interval containing 0).
[$2+2+3$ points]
(9) Let M be as in Q 4 above, then
[4 points completion only]

$$
\left|\int_{0}^{1-1 / n} f_{n}(x) d x-\int_{0}^{1} f_{n}(x) d x\right|=\left|\int_{1-1 / n}^{1} f_{n}(x) d x\right| \leq \int_{1-1 / n}^{1}\left|f_{n}(x)\right| d x \leq \int_{1-1 / n}^{1} M d x=\frac{M}{n} \rightarrow 0,
$$

as $n \rightarrow \infty$. Also, by 1.14, $\int_{0}^{1} f_{n}(x) d x \rightarrow \int_{0}^{1} f(x) d x$. So by the triangle inequality,

$$
\left|\int_{0}^{1-1 / n} f_{n}(x) d x-\int_{0}^{1} f(x) d x\right| \leq\left|\int_{0}^{1-1 / n} f_{n}(x) d x-\int_{0}^{1} f_{n}(x) d x\right|+\left|\int_{0}^{1}\left(f_{n}(x)-f(x)\right) d x\right| \rightarrow 0 .
$$

