Department of Mathematics, University of Houston

Math 4332. Intro to Real Analysis. David Blecher, Spring 2015 Homework 8 Key

(1) This is like the proof of the Alternating Series Test from Chapter 0, so follow along with that argument: Note that $g_{n+k}-g_{n+k+1} \geq 0$, so $g_{n}-g_{n+1}+g_{n+2}-g_{n+3}+\cdots \geq 0$. If $m>n$ then

$$
\left|s_{m}-s_{n}\right|=g_{n}-g_{n+1}+g_{n+2}-\cdots=g_{n}-\left(g_{n+1}-g_{n+2}\right)-\left(g_{n+3}-g_{n+4}\right)-\cdots \leq g_{n}
$$

since $g_{n+k+1} \leq g_{n+k}$. Thus $\left\|s_{m}-s_{n}\right\|_{\infty} \leq\left\|g_{n}\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$. It follows that $\left(s_{n}\right)$ is Cauchy, so convergent. That is, $\sum_{k=1}^{\infty}(-1)^{k+1} g_{k}$ converges uniformly. [3 points for completion only]
$\left(2^{*}\right)$ Suppose $\gamma:[0,1] \rightarrow[0,1] \times[0,1]$ is continuous, one-to-one, and onto. Then $g=\gamma^{-1}$ is well defined. If $E \subset[0,1]$ is closed then E is compact, so that $\gamma(E)$ is compact by 3.37 in Math 4331. Hence $g^{-1}(E)$ is closed. So g is continuous by the characterization of continuous functions in 4331 . Now $[0,1] \times[0,1] \backslash\left\{\gamma\left(\frac{1}{2}\right)\right\}$ is connected, so that $g\left([0,1] \times[0,1] \backslash\left\{\gamma\left(\frac{1}{2}\right)\right\}\right)=\left[0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right]$ is connected (by a result on connectedness in 4331), a contradiction. [5 points for grad students only]
(3) $\frac{1}{n^{2}} 2^{-x^{2} / n} \leq \frac{1}{n^{2}}$, and $\sum_{n} \frac{1}{n^{2}}<\infty$ so $\sum_{n=1}^{\infty} \frac{1}{n^{2}} 2^{-x^{2} / n}$ converges uniformly by the Weierstrass M-test, and is continuous by the theorem in class on continuity of infinite series. Problem 1.30 in the notes is similar, but notice by the Calculus I technique, f_{n} has a maximum value of $\frac{1}{2 n^{\frac{3}{2}}}$ (achieved when $x=\frac{1}{n^{\frac{3}{2}}}$. Thus $\left|f_{n}\right| \leq \frac{1}{2 n^{\frac{3}{2}}}$, and $\sum_{n} \frac{1}{2 n^{\frac{3}{2}}}<\infty$. The radius of convergence of $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ is 1 so this is continuous on $(-1,1)$. [3+2+2 points]
(4) When $x=0$ this diverges. If $x \neq 0$ then by the limit comparison test it converges (compare with $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$). If $r>0$ then $\sum_{n=1}^{\infty} \frac{1}{1+n^{2} x^{2}}$ converges uniformly on $(-\infty,-r] \cup[r, \infty)$ by the Weierstrass M-test since $\frac{1}{1+n^{2} x^{2}} \leq \frac{1}{1+n^{2} r^{2}}$, and $\sum_{n=1}^{\infty} \frac{1}{1+n^{2} r^{2}}$ converges as we said above. So by a theorem in class on continuity of infinite series, $f(x)$ is continuous on $(-\infty,-r] \cup[r, \infty)$, for all $r>0$, hence on $(-\infty, 0) \cup(0, \infty)$. So f is continuous whenever the series converges. If $1 \leq n \leq m$ and $x= \pm \frac{1}{m}$ then $\frac{1}{1+n^{2} x^{2}} \geq \frac{1}{1+m^{2} x^{2}}=\frac{1}{2}$, so that

$$
f(x) \geq \sum_{n=1}^{m} \frac{1}{1+n^{2} x^{2}} \geq \sum_{n=1}^{m} \frac{1}{2}=m / 2 .
$$

So f is unbounded on $(-\infty, 0) \cup(0, \infty)$, and on any interval I with endpoint 0 . By Homework 7 Q 4, the series cannot converge uniformly on such an interval I. $[3+4+1+4$ points $]$
(5) (a) 1 , since $\lim _{n} n^{\frac{1}{2 n}}=1$. (b) 1 , since $\limsup _{n}\left|a_{n}\right|^{\frac{1}{n}}=1$ here. (c) ∞, since $\lim _{n}\left(\frac{1}{n^{n}}\right)^{\frac{1}{n}}=\lim _{n} \frac{1}{n}=0$. $[1+2+1$ points]
(6) $\lim \sup _{n}\left|a_{n}\right|^{\frac{1}{n}}=\frac{1}{2}$ here, so (a) $R=\frac{1}{\limsup _{n}\left|a_{n}^{3}\right|^{\frac{1}{n}}}=2^{3}=8 . \quad$ (b) $R=\frac{1}{\lim _{\sup _{n}\left|a_{n}\right|^{\frac{1}{3 n}}}}=2^{\frac{1}{3}}$. (c) $R=$ $\frac{1}{\lim \sup _{n}\left|a_{n}\right|^{\frac{1}{n^{2}}}}=1 .[2+2+2$ points $]$
(7^{*}) If $\left|z-z_{1}\right|<r-\left|z_{0}-z_{1}\right|$ then $\left|z-z_{0}\right|<r$, so that $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges absolutely. Also, $\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k}\left|z-z_{1}\right|^{k}\left|z_{1}-z_{0}\right|^{n-k}\right)=\sum_{n=0}^{\infty}\left(\left|z-z_{1}\right|+\left|z_{1}-z_{0}\right|\right)^{n}$ converges since $\left|z-z_{1}\right|+\left|z_{1}-z_{0}\right|<r$, hence
$f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{\infty} a_{n}\left(z-z_{1}+z_{1}-z_{0}\right)^{n}=\sum_{n=0}^{\infty} a_{n} \sum_{k=0}^{n}\binom{n}{k}\left(z-z_{1}\right)^{k}\left(z_{1}-z_{0}\right)^{n-k}=\sum_{k=0}^{\infty}\left(\sum_{n=k}^{\infty}\binom{n}{k} a_{n}\left(z_{1}-z_{0}\right)^{n-k}\right)\left(z-z_{1}\right)^{k}$,
since the latter may be viewed by Theorem 5.2 in Chapter 0 as an absolutely convergent double series which may be rewritten by Theorem 5.3 in Chapter 0 as the ordinary series $\sum_{n=0}^{\infty} a_{n} \sum_{k=0}^{n}\binom{n}{k}\left(z-z_{1}\right)^{k}\left(z_{1}-z_{0}\right)^{n-k}$. [5 points grad students only]
($\left.8^{*}\right)$ Let A be the set of limit points of E in $B(0, R)$, and let $B=B(0, R) \backslash A$. If $x \in B$ then there exists $\epsilon>0$ with $B(x, \epsilon) \cap E \subset\{x\}$. Any point in $B(x, \epsilon)$ is in B, so B is open. If $x \in A$ then by Question 7 we may write $f(z)=\sum_{n=0}^{\infty}\left(a_{n}-b_{n}\right) z^{n}=\sum_{n=0}^{\infty} d_{n}(z-x)^{n}$ valid if $|z-x|<R-|x|$. We claim $d_{n}=0$ for all n. Otherwise let $k=\min \left\{j: d_{j} \neq 0\right\}$. Then $f(z)=(z-x)^{k} g(z)$ where $g(z)=\sum_{m=0}^{\infty} d_{k+m}(z-x)^{m}$. Now g is continuous at x and $g(x) \neq 0$ so there is a $\delta>0$ with g never zero on $B(x, \delta)$. So f is never zero on $B(x, \delta)$ except at x, contradicting that x is a limit point of E. So $d_{n}=0$ for all n, so $f=0$ on $B(x, R-|x|)$, and so A is open. Since A is nonempty and $B(0, R)$ is connected we see $B=\emptyset$. Since f is continuous on $B(0, R)$ and zero on E, it is also zero on A. This implies that $A \subset E$, so $E=B(0, R)$. So $a_{n}=b_{n}$ for all n by a corollary to the theorem on differentiation on power series. [3 points for completeness grad students only]
(9) Note $\left|a_{k} x^{k}\right| \leq\left|a_{k}\right|$ and $\sum_{k}\left|a_{k}\right|<\infty$, so Problem 1.51 follows from the Weierstrass M-test. For Problem 1.66, consider $\sum_{n=0}^{\infty} a_{n} R_{n} z^{n}$, which has radius of convergence $\frac{1}{\lim \sup _{n}\left|a_{n} R^{n}\right|^{\frac{1}{n}}}=\frac{1}{\limsup _{n}\left|a_{n}\right|^{\frac{1}{n}} R}=1$. So the case we did prove, we have $\lim _{z \rightarrow 1^{-}} \sum_{n=0}^{\infty} a_{n} R^{n} z^{n}=\sum_{n=0}^{\infty} a_{n} R^{n}$. Letting $x=R z$, or $z=x / R$, we deduce that $\lim _{x \rightarrow R^{-}} \sum_{n=0}^{\infty} a_{n} x^{n}=\lim _{z \rightarrow 1^{-}} \sum_{n=0}^{\infty} a_{n} R^{n} z^{n}=\sum_{n=0}^{\infty} a_{n} R^{n}$. [3+6 points]

