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Homework 8 Key

(1) This is like the proof of the Alternating Series Test from Chapter 0, so follow along with that argument: Note
that gn+k − gn+k+1 ≥ 0, so gn − gn+1 + gn+2 − gn+3 + · · · ≥ 0. If m > n then

|sm − sn| = gn − gn+1 + gn+2 − · · · = gn − (gn+1 − gn+2)− (gn+3 − gn+4)− · · · ≤ gn,

since gn+k+1 ≤ gn+k. Thus ‖sm − sn‖∞ ≤ ‖gn‖∞ → 0 as n → ∞. It follows that (sn) is Cauchy, so convergent.
That is,

∑∞
k=1 (−1)k+1gk converges uniformly. [3 points for completion only]

(2*) Suppose γ : [0, 1]→ [0, 1]× [0, 1] is continuous, one-to-one, and onto. Then g = γ−1 is well defined. If E ⊂ [0, 1]
is closed then E is compact, so that γ(E) is compact by 3.37 in Math 4331. Hence g−1(E) is closed. So g is
continuous by the characterization of continuous functions in 4331. Now [0, 1]× [0, 1] \ {γ( 1

2 )} is connected, so that

g([0, 1] × [0, 1] \ {γ( 1
2 )}) = [0, 12 ) ∪ ( 1

2 , 1] is connected (by a result on connectedness in 4331), a contradiction. [5
points for grad students only]

(3) 1
n2 2−x

2/n ≤ 1
n2 , and

∑
n

1
n2 < ∞ so

∑∞
n=1

1
n2 2−x

2/n converges uniformly by the Weierstrass M-test, and is
continuous by the theorem in class on continuity of infinite series. Problem 1.30 in the notes is similar, but notice
by the Calculus I technique, fn has a maximum value of 1

2n
3
2

(achieved when x = 1

n
3
2

). Thus |fn| ≤ 1

2n
3
2

, and∑
n

1

2n
3
2
<∞. The radius of convergence of

∑∞
n=1

xn

n is 1 so this is continuous on (−1, 1). [3+2+2 points]

(4) When x = 0 this diverges. If x 6= 0 then by the limit comparison test it converges (compare with
∑∞

n=1
1
n2 ). If

r > 0 then
∑∞

n=1
1

1+n2x2 converges uniformly on (−∞,−r]∪ [r,∞) by the Weierstrass M-test since 1
1+n2x2 ≤ 1

1+n2r2 ,

and
∑∞

n=1
1

1+n2r2 converges as we said above. So by a theorem in class on continuity of infinite series, f(x) is

continuous on (−∞,−r] ∪ [r,∞), for all r > 0, hence on (−∞, 0) ∪ (0,∞). So f is continuous whenever the series
converges. If 1 ≤ n ≤ m and x = ± 1

m then 1
1+n2x2 ≥ 1

1+m2x2 = 1
2 , so that

f(x) ≥
m∑

n=1

1

1 + n2x2
≥

m∑
n=1

1

2
= m/2.

So f is unbounded on (−∞, 0) ∪ (0,∞), and on any interval I with endpoint 0. By Homework 7 Q 4, the series
cannot converge uniformly on such an interval I. [3+4+1+4 points]

(5) (a) 1, since limn n
1
2n = 1. (b) 1, since lim supn |an|

1
n = 1 here. (c) ∞, since limn ( 1

nn )
1
n = limn

1
n = 0. [1+2+1

points]

(6) lim supn |an|
1
n = 1

2 here, so (a) R = 1

lim supn |a3
n|

1
n

= 23 = 8. (b) R = 1

lim supn |an|
1
3n

= 2
1
3 . (c) R =

1

lim supn |an|
1
n2

= 1. [2+2+2 points]

(7*) If |z − z1| < r − |z0 − z1| then |z − z0| < r, so that f(z) =
∑∞

n=0 an(z − z0)n converges absolutely. Also,∑∞
n=0(

∑n
k=0

(
n
k

)
|z − z1|k|z1 − z0|n−k) =

∑∞
n=0(|z − z1|+ |z1 − z0|)n converges since |z − z1|+ |z1 − z0| < r, hence

f(z) =

∞∑
n=0

an(z−z0)n =

∞∑
n=0

an(z−z1+z1−z0)n =

∞∑
n=0

an

n∑
k=0

(
n

k

)
(z−z1)k(z1−z0)n−k =

∞∑
k=0

(

∞∑
n=k

(
n

k

)
an(z1−z0)n−k)(z−z1)k,

since the latter may be viewed by Theorem 5.2 in Chapter 0 as an absolutely convergent double series which may
be rewritten by Theorem 5.3 in Chapter 0 as the ordinary series

∑∞
n=0 an

∑n
k=0

(
n
k

)
(z − z1)k(z1 − z0)n−k. [5 points

grad students only]

(8*) Let A be the set of limit points of E in B(0, R), and let B = B(0, R) \ A. If x ∈ B then there exists ε > 0
with B(x, ε) ∩ E ⊂ {x}. Any point in B(x, ε) is in B, so B is open. If x ∈ A then by Question 7 we may write
f(z) =

∑∞
n=0(an − bn)zn =

∑∞
n=0 dn(z − x)n valid if |z − x| < R − |x|. We claim dn = 0 for all n. Otherwise let

k = min{j : dj 6= 0}. Then f(z) = (z − x)kg(z) where g(z) =
∑∞

m=0 dk+m(z − x)m. Now g is continuous at x and
g(x) 6= 0 so there is a δ > 0 with g never zero on B(x, δ). So f is never zero on B(x, δ) except at x, contradicting
that x is a limit point of E. So dn = 0 for all n, so f = 0 on B(x,R − |x|), and so A is open. Since A is nonempty
and B(0, R) is connected we see B = ∅. Since f is continuous on B(0, R) and zero on E, it is also zero on A. This
implies that A ⊂ E, so E = B(0, R). So an = bn for all n by a corollary to the theorem on differentiation on power
series. [3 points for completeness grad students only]

1



(9) Note |akxk| ≤ |ak| and
∑

k |ak| < ∞, so Problem 1.51 follows from the Weierstrass M-test. For Problem
1.66, consider

∑∞
n=0 anRnz

n, which has radius of convergence 1

lim supn |anRn|
1
n

= 1

lim supn |an|
1
n R

= 1. So the case

we did prove, we have limz→1−
∑∞

n=0 anR
nzn =

∑∞
n=0 anR

n. Letting x = Rz, or z = x/R, we deduce that
limx→R−

∑∞
n=0 anx

n = limz→1−
∑∞

n=0 anR
nzn =

∑∞
n=0 anR

n. [3+6 points]


