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Homework 9 Key.

(1) Using the definitions from class,
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If cosx = 0 has no real solution then (or equivalently, since cos(−x) = cosx, it has no positive solution), then by the
IVT cos is always strictly positive. So sin is always strictly increasing, and since sin 0 = 0 we have that sin is always
strictly positive. Fix x > 0. Then

(y − x) sinx ≤
∫ y

x

sin t dt = cosx− cos y ≤ 2, y > x,

since we saw cos2 + sin2 = 1. So y ≤ 2
sin x + x, so the latter constant is an upper bound for all y ∈ R. This is a

contradiction so cosx = 0 has a positive solution.
Since cos2 + sin2 = 1, and we saw cos decreases and sin increases strictly on [0, π2 ], and ei

π
2 = i, on that subinterval

γ traces out the first quadrant of the unit circle counterclockwise in a one-to-one fashion. On [π2 , π] we can use the
fact that
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π

2
],

to see that γ traces out the second quadrant of the unit circle on [π2 , π], counterclockwise and in a one-to-one fashion.
Similarly, since

ei(θ+π) = eiθeiπ = −eiθ = (− cos θ,− sin θ), θ ∈ [0, π],

we see that γ traces out the bottom half of the unit circle on [π, 2π], counterclockwise and in a one-to-one fashion.
So γ is one-to-one on [0, 2π). If γ([0, 2π)) omitted a point on the circle then it would be disconnected, which by a
Theorem from 4331 would give the contradiction that [0, 2π) is disconnected. [2+3+3+2 points]

(2) By the Weierstrass polynomial approximation theorem, there is a sequence of polynomials rn with rn
u→ f on

[a, b]. Then rn(a)→ f(a) = 0 so pn = rn − rn(a)
u→ f on [a, b]. [3 points]

(3) Problem 1.80: If M = 0 then f = 0 and this is obvious. So suppose that M > 0. Let rn be as above, then
‖rn‖∞ → ‖f‖∞ = M (if you like, because the norm is continuous: by the triangle inequality |‖rn‖∞ − ‖f‖∞| ≤
‖rn − f‖∞ → 0). So pn = Mrn/‖rn‖∞

u→ f and ‖pn‖∞ = M .

Problem 1.82*: This should probably be ‘starred’. As suggested we do this by induction on K. If K = 1, let rn be

as above, then rn(x1)→ f(x1) so pn = rn−rn(x1)+f(x1)
u→ f and pn(x1) = f(x1). Assume we have found a sequence

qn of polynomials with qn(xi) = f(xi) for all i = 1, · · · ,K−1, and qn
u→ f . Let h(x) = (x−x1)(x−x2) · · · (x−xK−1),

and set pn = qn + (f(xK)− qn(xK))h(x)/h(xK). This does the job (check it).

(4) We show that f ∗ g is uniformly continuous (grad students only). As we said in class, ‖f‖∞ ≤ M and f is
uniformly continuous on the compact interval it is supported on, and similarly for g. That is, given ε > 0 there is a
δ > 0 with |g(s)− g(t)| ≤ ε/K whenever |s− t| < δ. The constant K is chosen to equal

∫
|f(y)|dy (note this is really

an integral of a continuous function on a bounded interval containing the support of f , so is finite). So if |s− t| < δ
then

|(f ∗ g)(s)− (f ∗ g)(t)| = |
∫

f(y)g(s− y)dy −
∫

f(y)g(t− y)dy| = |
∫

f(y)(g(s− y)− g(t− y))dy|,

which is, since |(s− y)− (t− y)| = |s− t| < δ, is dominated by∫
|f(y)||g(s− y)− g(t− y)|dy ≤

∫
|f(y)| ε

K
dy = ε.

So f ∗ g is uniformly continuous. (grad students only).

Then [3 points:]

(f ∗ (g + ch))(x) =

∫
f(t)(g + ch)(x− t)dt =

∫
f(t)g(x− t)dt+ c

∫
f(t)h(x− t)dt = (f ∗ g + c(f ∗ h))(x).

(5) This was done in class–I just want you to say it in your own words.

(6) Problem 1.89: A satisfies all the conditions of the Stone-Weierstrass theorem. For example, we show that A
separates points of K: if ~z 6= ~y in K, then for some i we have zi 6= yi, so the polynomial ~x 7→ xi takes different values
at these two points. So A is dense.

The Stone-Weierstrass theorem implies the Weierstrass polynomial approximation theorem by taking A to be the
polonomials–these satisfy all the conditions of the Stone-Weierstrass theorem, so they are dense. [5+2 points]
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