# Department of Mathematics, University of Houston <br> Math 4332. Intro to Real Analysis. David Blecher, Spring 2015 Homework 9 Key. 

(1) Using the definitions from class,

$$
e^{i z}=1+i z-\frac{z^{2}}{2!}-i \frac{z^{3}}{3!}+\frac{z^{4}}{4!}+i \frac{z^{5}}{5!}-\cdots=\left(1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\cdots\right)+i\left(z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots\right)=\cos z+i \sin z
$$

If $\cos x=0$ has no real solution then (or equivalently, since $\cos (-x)=\cos x$, it has no positive solution), then by the IVT $\cos$ is always strictly positive. So sin is always strictly increasing, and since $\sin 0=0$ we have that sin is always strictly positive. Fix $x>0$. Then

$$
(y-x) \sin x \leq \int_{x}^{y} \sin t d t=\cos x-\cos y \leq 2, \quad y>x
$$

since we saw $\cos ^{2}+\sin ^{2}=1$. So $y \leq \frac{2}{\sin x}+x$, so the latter constant is an upper bound for all $y \in \mathbb{R}$. This is a contradiction so $\cos x=0$ has a positive solution.

Since $\cos ^{2}+\sin ^{2}=1$, and we saw cos decreases and sin increases strictly on $\left[0, \frac{\pi}{2}\right]$, and $e^{i \frac{\pi}{2}}=i$, on that subinterval $\gamma$ traces out the first quadrant of the unit circle counterclockwise in a one-to-one fashion. On $\left[\frac{\pi}{2}, \pi\right]$ we can use the fact that

$$
e^{i\left(\theta+\frac{\pi}{2}\right)}=e^{i \theta} e^{i \frac{\pi}{2}}=i e^{i \theta}=(-\sin \theta, \cos \theta), \quad \theta \in\left[0, \frac{\pi}{2}\right]
$$

to see that $\gamma$ traces out the second quadrant of the unit circle on $\left[\frac{\pi}{2}, \pi\right]$, counterclockwise and in a one-to-one fashion. Similarly, since

$$
e^{i(\theta+\pi)}=e^{i \theta} e^{i \pi}=-e^{i \theta}=(-\cos \theta,-\sin \theta), \quad \theta \in[0, \pi]
$$

we see that $\gamma$ traces out the bottom half of the unit circle on $[\pi, 2 \pi]$, counterclockwise and in a one-to-one fashion. So $\gamma$ is one-to-one on $[0,2 \pi)$. If $\gamma([0,2 \pi))$ omitted a point on the circle then it would be disconnected, which by a Theorem from 4331 would give the contradiction that $[0,2 \pi)$ is disconnected.
$[2+3+3+2$ points $]$
(2) By the Weierstrass polynomial approximation theorem, there is a sequence of polynomials $r_{n}$ with $r_{n} \xrightarrow{u} f$ on $[a, b]$. Then $r_{n}(a) \rightarrow f(a)=0$ so $p_{n}=r_{n}-r_{n}(a) \xrightarrow{u} f$ on $[a, b]$.
[3 points]
(3) Problem 1.80: If $M=0$ then $f=0$ and this is obvious. So suppose that $M>0$. Let $r_{n}$ be as above, then $\left\|r_{n}\right\|_{\infty} \rightarrow\|f\|_{\infty}=M$ (if you like, because the norm is continuous: by the triangle inequality $\left\|\left\|r_{n}\right\|_{\infty}-\right\| f \|_{\infty} \mid \leq$ $\left\|r_{n}-f\right\|_{\infty} \rightarrow 0$ ). So $p_{n}=M r_{n} /\left\|r_{n}\right\|_{\infty} \xrightarrow{u} f$ and $\left\|p_{n}\right\|_{\infty}=M$.

Problem $1.82^{*}$ : This should probably be 'starred'. As suggested we do this by induction on $K$. If $K=1$, let $r_{n}$ be as above, then $r_{n}\left(x_{1}\right) \rightarrow f\left(x_{1}\right)$ so $p_{n}=r_{n}-r_{n}\left(x_{1}\right)+f\left(x_{1}\right) \xrightarrow{u} f$ and $p_{n}\left(x_{1}\right)=f\left(x_{1}\right)$. Assume we have found a sequence $q_{n}$ of polynomials with $q_{n}\left(x_{i}\right)=f\left(x_{i}\right)$ for all $i=1, \cdots, K-1$, and $q_{n} \xrightarrow{u} f$. Let $h(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{K-1}\right)$, and set $p_{n}=q_{n}+\left(f\left(x_{K}\right)-q_{n}\left(x_{K}\right)\right) h(x) / h\left(x_{K}\right)$. This does the job (check it).
(4) We show that $f * g$ is uniformly continuous (grad students only). As we said in class, $\|f\|_{\infty} \leq M$ and $f$ is uniformly continuous on the compact interval it is supported on, and similarly for $g$. That is, given $\epsilon>0$ there is a $\delta>0$ with $|g(s)-g(t)| \leq \epsilon / K$ whenever $|s-t|<\delta$. The constant $K$ is chosen to equal $\int|f(y)| d y$ (note this is really an integral of a continuous function on a bounded interval containing the support of $f$, so is finite). So if $|s-t|<\delta$ then

$$
|(f * g)(s)-(f * g)(t)|=\left|\int f(y) g(s-y) d y-\int f(y) g(t-y) d y\right|=\left|\int f(y)(g(s-y)-g(t-y)) d y\right|
$$

which is, since $|(s-y)-(t-y)|=|s-t|<\delta$, is dominated by

$$
\int|f(y)||g(s-y)-g(t-y)| d y \leq \int|f(y)| \frac{\epsilon}{K} d y=\epsilon
$$

So $f * g$ is uniformly continuous. (grad students only).
Then
[3 points:]

$$
(f *(g+c h))(x)=\int f(t)(g+c h)(x-t) d t=\int f(t) g(x-t) d t+c \int f(t) h(x-t) d t=(f * g+c(f * h))(x)
$$

(5) This was done in class-I just want you to say it in your own words.
(6) Problem 1.89: $\mathcal{A}$ satisfies all the conditions of the Stone-Weierstrass theorem. For example, we show that $\mathcal{A}$ separates points of $K$ : if $\vec{z} \neq \vec{y}$ in $K$, then for some $i$ we have $z_{i} \neq y_{i}$, so the polynomial $\vec{x} \mapsto x_{i}$ takes different values at these two points. So $\mathcal{A}$ is dense.

The Stone-Weierstrass theorem implies the Weierstrass polynomial approximation theorem by taking $\mathcal{A}$ to be the polonomials-these satisfy all the conditions of the Stone-Weierstrass theorem, so they are dense. [5+2 points]

