
Department of Mathematics, University of Houston
4332 - Intro to Real Analysis Second Semester - Blecher

Test 1 Key–Spring 2015

Intstructions: Put all your bags and papers on the side of the room. Answer question 0 and any

one question from questions 1–3, and any one question from questions 4–7. Besides these, do not

attempt parts of other questions (for example if you attempt parts of 0, 2, 4, 6, 7, only 0,2,6 will be

graded. SHOW ALL YOUR REASONING. Time: 85 minutes. You may quote freely any results

from the notes without proof, except those you are asked to prove.

0. (a) Suppose that 1 ≤ n1 < n2 < · · · are integers, and b1 =
∑n1

k=1 ak, b2 =
∑n2

k=n1+1 ak, b3 =∑n3
k=n2+1 ak, · · · . Let sn =

∑n
k=1 ak. Note that b1 = sn1 , b1 + b2 = sn2 , · · · , generally

b1 + b2 + · · · + bN = snN . So the partial sums of
∑∞

k=1 bk converge to
∑∞

k=1 ak, since

they are a subsequence of (sn), and subsequences of convergent sequences converge

with the same limit.

(b) No, because by the Hint,
∑∞

m=1
1

n2+m2 ≥
∑n

m=1
1

n2+m2 ≥
∑n

m=1
1

2n2 = 1
2n , so

∞∑
n,m=1

1

n2 +m2
=
∞∑
n=1

∞∑
m=1

1

n2 +m2
≥
∞∑
n=1

1

2n
= +∞.

(c) Dini’s theorem states that if X is a compact metric space and continuous real valued

functions fn → f pointwise on X, and f1 ≥ f2 ≥ f3 ≥ · · · , and f is continuous, then

fn → f converges uniformly on X.

Note that gn(x) = e
x
n → e0 = 1 pointwise on [0, 1] as n→∞. Also all these functions

are continuous and g1 ≥ g2 ≥ · · · , so by Dini gn → 1 uniformly on [0, 1].

(d) Note |akxk| ≤ |ak| and
∑

k |ak| <∞, so by the Weierstrass M-test
∑∞

k=1 akx
k converges

uniformly on [−1, 1]. Since each akx
k is continuous, by the theorem on continuity of

series
∑∞

k=1 akx
k is a continuous function on [−1, 1].

(e) Short proof: let g(x) =
∑∞

k=1
xk

kk
which is a power series with radius of convergence ∞,

so is continuous and differentiable everywhere. Note f(x) = g(ex), so by Calculus f

is continuous and differentiable everywhere, and f ′(x) = exg′(ex) = ex
∑∞

k=1
(ex)k−1

kk−1 =∑∞
k=1

(ex)k

kk−1 . Longer proof: If fk = ekx

kk
then f ′k = kekx

kk
. First fix any r > 0 and work

on the interval (−∞, r], here |f ′k| ≤
kekr

kk
. By the root test

∑∞
k=1

kekr

kk
converges since

(ke
kr

kk
)
1
k = k

1
k er

k → 0. So
∑

k f
′
k converges uniformly on (−∞, r] so by the theorem on

differentiation of a series,
∑

k fk converges uniformly on (−∞, r) to a (conts) differ-

entiable function f(x) and f ′(x) =
∑∞

k=1
kekr

kk
. Since this is true for all r > 0, f is

continuous and differentiable everywhere and its derivative is f ′(x) =
∑∞

k=1
kekr

kk
.

1. (a) The Cauchy test for series says that
∑

k ak converges iff given ε > 0 there exists an

N ≥ 0 such that |an+1 + an+2 + · · · + am| < ε whenever m > n ≥ N . Proof: Since
1



sm−sn = an+1+an+2+ · · ·+am, this is just saying that the partial sums sn =
∑n

k=1 ak

are a Cauchy sequence. And we know from Math 3333 that a sequence converges iff it

is a Cauchy sequence. series of real numbers.

(b) The nth partial sum of
∑∞

k=0 (ak + bk) is
∑n−1

k=0 (ak + bk) =
∑n−1

k=0 ak +
∑n−1

k=0 bk. By

a fact about sums of limits of sequences from 3333 or 4331, this converges, as n→∞,

to
∑∞

k=0 ak +
∑∞

k=0 bk.

(c) It is the sequence whose nth term is
∑∞

k=n ak, so it is just the difference between

the sum of the series and its partial sum. So if the series converges the partial sum

converges to the sum of the series, so this difference converges to 0.

(d) Complete the sentence: ”A nonnegative series converges iff the sequence *of partial

sums* is *bounded* above, and then the sum of the series equals the *least upper

bound*”.

2. (a) Let s = sup{
∑N

n=1

∑M
m=1 am,n : N,M ∈ N}, which is easy to see equals sup{

∑N
n=1

∑N
m=1 am,n :

N ∈ N}. Then s <∞ iff for any ε > 0 there exists an K ∈ N with
∑K

n=1

∑K
m=1 am,n >

s − ε. This is equivalent to saying that
∑N

n=1

∑M
m=1 am,n > s − ε whenever N ≥ K

and M ≥ K. But saying that
∑N

n=1

∑M
m=1 am,n > s − ε is the same as saying

|s −
∑N

n=1

∑M
m=1 am,n| < ε. Thus the partial sums of

∑
n,m am,n are bounded above

iff the definition of
∑

n,m am,n converging (to s) holds.

(b) The Cauchy product of two series
∑∞

n=0 an and
∑∞

n=0 bn is the series
∑∞

n=0 cn where

cn =
∑n

k=0 ak bn−k.

(c) If
∑∞

n,m=1 |am,n| <∞, and g : N→ N× N is a bijective function set bk = ag(k). Then∑
k bk converges (absolutely), and equals

∑∞
n,m=1 am,n.

(d) By a homework question
∑

n,m an bm is absolutely convergent. By Theorem 5.3 and

its proof, its sum, which is st, is the same as the sum of the absolutely convergent

ordinary series

a0b0 + a0b1 + a1b0 + a0b2 + a1b1 + a2b0 + · · · .

By adding parentheses and using the result on adding parentheses, the latter has the

same sum as the series

a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0) + · · · ,

which is exactly the Cauchy product series. This is absolutely convergent since

|a0b0|+ |a0b1 + a1b0|+ |a0b2 + a1b1 + a2b0|+ · · · ≤ |a0b0|+ |a0b1|+ |a1b0|+ |a0b2|+ · · · ,

which we said was finite.



3. (a) If k ≥ n then sktk ≤ (sup{sk : k ≥ n})(sup{tk : k ≥ n}), so sup{sktk : k ≥ n} ≤
(sup{sk : k ≥ n})(sup{tk : k ≥ n}). Taking the limit of these as n → ∞ we get

limsupn (sntn) ≤ (limsupn sn)(limsupn tn). Suppose that (tn) converges to t. If t = 0

then from the previous lines 0 ≤ limsupn (sntn) ≤ (limsupn sn)(limsupn tn) = 0, so we

get equality. If t > 0, then given ε > 0 there exists an N ≥ 1 such that tn > t(1 − ε)
for all n ≥ N (if you wish you may use t− ε in place of t(1− ε) here). Then

sup{sktk : k ≥ n} ≥ sup{skt(1− ε) : k ≥ n} = t(1− ε) sup{sk : k ≥ n}

for n ≥ N. Taking the limit of these as n→∞ we get limsupn (sntn) ≥ (limsupn sn)(limn tn)(1−
ε), for all ε > 0. So limsupn (sntn) = (limsupn sn)(limsupn tn).

(b) If
∑∞

k=1 ak is a series, and f : N → N is a bijection, then the series
∑∞

k=1 af(k) is

called a ‘rearrangement’ of
∑∞

k=1 ak. Fill in the blanks: “Any ‘rearrangement’ of an

absolutely convergent series is *is convergent and has the same* sum.”

(c) Suppose that a0 ≥ a1 ≥ a2 ≥ · · · ≥ 0, and that limk ak = 0. Then
∑

k ak converges

iff
∑

k 2k a2k converges.

(d)
∑∞

n=2 2n 1
2n(n log 2)3

=
∑∞

n=2
1

n3(log 2)3
which converges by the p-series test. So by the

condensation test,
∑∞

n=2
1

n(logn)3
converges.

4. (a) fn → f uniformly on S if sup{|fn(x)−f(x)| : x ∈ S} → 0 (or if you like ‖fn−f‖∞ → 0)

as n→∞.

(b) See class notes.

(c) Note that fn = x
ne
− x

n converges pointwise to 0. We use the the Calculus I technique:

f ′n = 1
ne
− x

n − x
n2 e
− x

n = 0 when x = n, and fn(n) = e−1. So ‖fn − 0‖∞ = e−1, which

does not converge to 0.

(d) (fn) converges uniformly iff given ε > 0 there is an N with ‖fn − fm‖∞ ≤ ε when

m > n ≥ N . a sequence of functions.

5. (a)
∑∞

k=1 fk converges uniformly on S if the seguence sn =
∑∞

k=1 fk converges uniformly

on S in the sense of 4(a) above.

(b) The Weierstrass M-test states that if ‖fn‖∞ ≤ Mn and
∑

nMn < ∞ (that is,
∑

nMn

converges), then
∑∞

k=1 fk converges uniformly . Proof: Since
∑

nMn converges its

partial sums are Cauchy so given ε > 0 there is an N with

‖fn+1 + fn+1 + · · ·+ fm‖∞ ≤Mn+1 +Mn+1 + · · ·+Mm ≤ ε, m > n ≥ N.

So
∑∞

k=1 fk satisfies the condition in the Cauchy test for uniform convergence of a

series from class, so it is uniformly convergent by that test. [Note this is different from

Paulsens notes version which some may give.]



(c) We use the the Calculus I technique: if fn = x
1+n4x2 then f ′n = 1+n4x2−2n4x2

(1+n4x2)2
= 0 when

x = ± 1
n2 . And |fn(± 1

n2 )| = 1
2n2 . So ‖f ′n‖∞ = 1

2n2 ; and
∑

n
1

2n2 converges by the p-series

test. So by the Weierstrass M-test
∑∞

n=1
x

1+n4x2 converges uniformly on R. Since fn is

continuous, the theorem on continuity of a series (Q 4b above),
∑

k fk is continuous

on R.

(d) If f ′n → g uniformly on (a, b) and (fn(x0)) converges for at least one point x0 ∈ (a, b)

then fn converges uniformly to a differentiable function f on (a, b), and f ′ = g on

(a, b). [Also acceptable: if fn → f pointwise on (a, b) and f ′n → g uniformly on (a, b),

then f is differentiable function on (a, b), and f ′ = g on (a, b).]

6. (a) The radius of convergence of
∑

k akx
k is 1/ lim supk |ak|

1
k where we interpret 1/0 as∞

and 1/∞ as 0.

(b) Here (ak) is the sequence 0, 3, 0, 32, 0, 33, · · · so lim supk |ak|
1
k =

√
3, so the radius of

convergence is 1/
√

3.

(c) The main theorem about the derivative of a power series f(x) =
∑∞

n=0 an(x − x0)n

with radius of convergence r > 0 states that the sum function f(x) is differentiable on

B(x0, r), and its derivative there equals
∑∞

n=1 nan(x− x0)n−1, which is a power series

with the same radius of convergence r. Proof in classnotes (sketch: lim supk |kak|
1
k =

lim supk |ak|
1
k since k

1
k → 1 (See Q 3a), so the two series have the same radius of

convergence r. So by the theorem about uniform convergence of power series from

class, the two series converge uniformly on B(x0, s) for any positive s < r. By the

series version of Q 5d from class, f ′(x) =
∑∞

n=1 nan(x − x0)
n−1 on B(x0, s) for all

s < r, and hence on B(x0, r).

(d) The radius of convergence is 1/(lim supk k
1
k ) = 1 so the series is differentiable on

(−1, 1) with derivative
∑∞

n=1 n
2xn−1 here.

7. (a) (f ∗ g)(x) =
∫∞
−∞ f(t)g(x − t)dt. If the support of f is contained in [a, b] then f(t)

and g(x − t) are continuous and hence bounded on [a, b], hence
∫∞
−∞ f(t)g(x − t)dt =∫ b

a f(t)g(x− t)dt exists.

(b) (f ∗ (g + ch))(x) =
∫
f(t)(g + ch)(x − t)dt =

∫
f(t)g(x − t)dt + c

∫
f(t)h(x − t)dt =

(f ∗ g + c(f ∗ h))(x).

(c) The (real scalar case of the) Stone-Weierstrass theorem: Suppose that K is a compact

metric space and A ⊂ C(K). Suppose that A contains constant functions, and f + g

and fg are in A whenever f, g ∈ A. Suppose also that A separates points of K. Then

A is dense in C(K). Two other equivalent formulations of the last line are 1) given

f ∈ C(K) and ε > 0, there is a g ∈ A with ‖f − g‖∞ < ε; and 2) given f ∈ C(K) there



is a sequence gn ∈ A which converges uniformly to f . To see that these are equivalent

apply in the metric space C(K) with metric ‖f − g‖∞ the principle from 4331 that a

set E being dense in a metric space (X, d) (that is, X = E) is equivalent to (1) every

element in X is the limit of a sequence from E, or to (2) given f ∈ X and ε > 0, there

is a g ∈ E with d(f, g) < ε (that is, B(f, ε) ∩ E 6= ∅).
(d) Let A be the polynomials in n variables viewed as functions on K. Then A satisfies

all the conditions of the Stone-Weierstrass theorem: the sum and product of two such

polynomials is another such polynomial, and constant functions are polynomials. To

see that A separates points of K: if ~z 6= ~y in K, then for some i we have zi 6= yi, so

the polynomial ~x 7→ xi takes different values at these two points. So A is dense.


