Department of Mathematics, University of Houston 4332 - Intro to Real Analysis Second Semester - Blecher Mock Exam for Test 1

Instructions: Put all your bags and papers on the side of the room. Answer question 0 and any two other questions. SHOW ALL YOUR REASONING. You may quote freely any results from the notes without proof, except those you are asked to prove.

- 0. (a) Suppose that $\sum_{k=1}^{\infty} a_k$ converges. Does $a_1 + a_2 + \cdots + a_{10} a_1 + a_{11} + a_{12} + \cdots + a_{20} a_2 + a_{21} + \cdots$ converge? If so, prove it, and find the sum; if not find a counterexample.
 - (b) Show that $g_n(x) = x^n(1-x^2)$ converges uniformly on [0, 1].
 - (c) Find the interval of convergence of $\sum_{k=1}^{\infty} 2^k x^{k^3}$.
 - (d) Let $f(x) = \sum_{k=1}^{\infty} \frac{\sin(2^k x)}{3^k}$, for all x where this series converges. Find where f is continuous, where it is differentiable, and calculate f'(0). (SHOW ALL REASONING).
 - (e) State the Weierstrass polynomial approximation theorem, and give two other equivalent formulations of it. Then show how it follows from the Stone-Weierstrass theorem.
- 1. (a) What does it mean for a series of real numbers to be convergent? Absolutely convergent?
 - (b) State the Cauchy criterion for convergence of a series of real numbers.
 - (c) Prove that an absolutely convergent series of real numbers converges and then $|\sum_{k=1}^{\infty} a_k| \leq \sum_{k=1}^{\infty} |a_k|$.
 - (d) Show that $\sum_{k=2}^{\infty} \frac{(-1)^k}{k(\log k)^2}$ converges, and converges absolutely.
- 2. (a) Define an infinite *double series* of real numbers $\sum_{n,m=1}^{\infty} a_{nm}$, and say what it means for such to converge.
 - (b) Prove that if $\sum_{n,m=1}^{\infty} a_{nm}$ and $\sum_{n,m=1}^{\infty} b_{nm}$ converge, then so does $\sum_{n,m=1}^{\infty} (a_{nm} + b_{nm})$.
 - (c) Prove that if both $\sum_{n=1}^{\infty} a_n$ and $\sum_{m=1}^{\infty} b_m$ converge, then so does $\sum_{n,m=1}^{\infty} a_n b_m$.
 - (d) Using the Cauchy product, prove that $e^{x+y} = e^x e^y$, if e^x is defined to be $\sum_{k=0}^{\infty} \frac{x^n}{n!}$.
- 3. (a) Define uniform convergence of a sequence of real valued functions on a subset S of \mathbb{R} .
 - (b) Show that if $f_n \to f$ uniformly on S , and if each f_n is uniformly continuous on S , then f is uniformly continuous on S .
 - (c) Show that $(\frac{x}{1+nx^2})$ converges uniformly on \mathbb{R} .
 - (d) State Dini's theorem.
- 4. (a) Define what it means for a sequence {f_n} of real valued functions defined on a set Ω to be uniformly Cauchy.

- (b) Prove that a uniformly Cauchy sequence of functions is uniformly convergent.
- (c) Prove that the set $B(\Omega)$ of bounded real-valued functions on a set Ω is a complete metric space with metric $d(f,g) = \sup\{|f(\omega) g(\omega)| : \omega \in \Omega\}$.
- (d) State some conditions which will ensure that $\sum_{k=1}^{\infty} (\int_a^b f_n(x) dx) = \int_a^b (\sum_{k=1}^{\infty} f_n(x)) dx.$
- 5. (a) Define uniform convergence of a series of real valued functions on a subset S of \mathbb{R} .
 - (b) State and prove the Weierstrass M-test.
 - (c) Show that $\sum_{n=0}^{\infty} \frac{x^n}{1+n^2x^2}$ is continuous on [-1,1].
 - (d) Give conditions ensuring that if $f_n \to f$ then f is differentiable and $\lim_{n\to\infty} f'_n = f'$.
- 6. Construct a curve $\gamma : [0,1] \to [0,1] \times [0,1]$ which is continuous and onto. Prove that any such curve cannot be 1-1.
- 7. (a) Define the radius of convergence of a power series.
 - (b) Show that a power series $f(x) = \sum_{n=0}^{\infty} a_n (x x_0)^n$ with positive radius of convergence r is differentiable on $(x_0 - r, x_0 + r)$, with $f'(x) = \sum_{n=1}^{\infty} na_n (x - x_0)^{n-1}$ here. Also show that if K is a compact subset of $(x_0 - r, x_0 + r)$, then this last series converges uniformly on K.
 - (c) Find where the series $\sum_{n=1}^{\infty} (x/n)^n$ is differentiable, and give a formula for the derivative here.