
INTRODUCTION TO REAL ANALYSIS II

MATH 4332–BLECHER NOTES

1. As in earlier classnotes

2. As in earlier classnotes (Fourier series)

3. Fourier series (continued)

(NOTE: UNDERGRADS IN THE CLASS ARE NOT RESPONSIBLE FOR

KNOWING LARGE SECTIONS OF THE FOLLOWING NOTES, AS EXPLAINED

ON PAGE 3 BELOW.)

... As in earlier classnotes ...

Last time we proved:

Theorem If f is Riemann integrable on [−π, π] then the Fourier series of f

converges to f in 2-norm. That is, ‖sN (f)− f‖2 → 0 as N →∞, where sN (f) as

usual is the Nth partial sum of the Fourier series. Also,

‖f‖22 = π(2a20 +

∞∑
n=1

(a2n + b2n))

(in complex case ‖f‖22 = 2π
∑∞
n=−∞ |cn|2). Here an, bn, cn are the Fourier coeffi-

cients for f .

This formula is also called Parseval’s identity.

Corollary 1 If f and g are two continuous scalar valued functions on [−π, π]

with the same Fourier series (or equivalently, each Fourier coefficient for f is the

same as the matching Fourier coefficient for g), then f = g on [−π, π].

Proof. Let h = f − g. Every Fourier coefficient for h is the difference between the-

Fourier coefficient for f and the matching Fourier coefficient for g, by the linearity

of the integral in the formula for the Fourier coefficient, and so is 0. For example,

the nth complex Fourier coefficient of h is

1

2π

∫ π

−π
he−inx dx =

1

2π

∫ π

−π
(f−g) e−inx dx =

1

2π

∫ π

−π
f e−inx dx− 1

2π

∫ π

−π
g e−inx dx.

This is the difference between the nth Fourier coefficient for f and the nth Fourier

coefficient for g, which is 0. By the formula above this Corollary, the Parseval
1
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identity, we get that ‖h‖22 =
∫
|h(x)|2 dx = 0. Since h is continuous, by 3333 we

get that |h(x)|2 = 0 at every x, so that f(x) = g(x) at every x. �

Corollary 2 (The Riemann-Lebesgue lemma) If f is Riemann integrable on

[−π, π] then the nth Fourier coefficients for f converge to zero as n→∞.

Proof. By the formula above Corollary 1, or (better) by Bessels inequality, the sum

of the squares of the Fourier coefficients converge (in the complex case
∑∞
n=−∞ |cn|2 <

∞). So by the Divergence Test in Section 2 of Chapter 0, the Fourier coefficients

converge to zero. �

Corollary 3 If f is Riemann integrable on [−π, π] and the sum of the Fourier

coefficients of f is absolutely convergent, then the Fourier series of f converges

uniformly to a continuous function g on [−π, π], and ‖f − g‖2 = 0.

Proof. By the proof of Homework 10 Question 3, it is only necessary to do the

complex case (the real Fourier series equals the complex Fourier series). Since

|ckeikx| ≤ |ck|, if
∑∞
k=−∞ |ck| < ∞ then by the Weierstrass M -test the Fourier

series
∑∞
k=−∞ ck e

ikx of f converges uniformly to a function g on [−π, π], and

by the theorem on continuity of infinite sum functions, g is continuous. (Strictly

speaking, these results were phrased for series
∑∞
k=1 rather than

∑∞
k=−∞, but

the latter can easily be rewritten as the former). So sN (f) → g in 2-norm by

Homework 10 Question 5. Then by the triangle inequality and the Theorem before

these Corollaries, we have

‖f − g‖2 = ‖f − sN (f) + sN (f)− g‖2 ≤ ‖f − sN (f)‖2 + ‖sN (f)− g‖2 → 0,

so that ‖f − g‖2 = 0. �

Negligible sets: One measure of when a set E of numbers is ‘small’ or ‘negli-

gible’ is the concept of Lebesgue measure zero . This means that given any ε > 0

there exist intervals I1, I2, · · · whose union contains E but the sum of the lengths

of these intervals is smaller than ε. Lebesgue proved that a bounded scalar valued

function h on [a, b] is Riemann integrable iff it is continuous except on a set of

Lebesgue measure zero. One can also show that such h satisfies ‖h‖2 = 0 iff h = 0

on [a, b] except on a set of Lebesgue measure zero. In this language, Corollary 3 says

that if f is Riemann integrable on [−π, π] and the sum of the Fourier coefficients

of f is absolutely convergent, then the Fourier series of f converges uniformly to a

continuous function g on [−π, π], and g is the same as f except on a set of Lebesgue

measure zero.



INTRODUCTION TO REAL ANALYSIS II MATH 4332–BLECHER NOTES 3

Corollary 4 If f is continuous and 2π-periodic and the sum of the Fourier

coefficients of f is absolutely convergent, then the Fourier series of f converges

uniformly to f on [−π, π].

Proof. By the last result the Fourier series of f converges uniformly to a continuous

function g on [−π, π] and ‖f − g‖2 = 0. As we have said before (see e.g. at the

end of the proof of the Corollary 1 above), this implies that f = g. So the Fourier

series of f converges uniformly to f . �

Corollary 5 If f is a differentiable 2π-periodic function with f ′ Riemann in-

tegrable on [−π, π], then the sum of the Fourier coefficients of f is absolutely con-

vergent, and the Fourier series of f converges uniformly to f on [−π, π].

Proof. By the proof of Homework 10 Question 3, it is only necessary to do the

complex case (the real Fourier series equals the complex Fourier series). Suppose

that
∑∞
n=−∞ dn e

inx is the Fourier series for f ′ on [−π, π]. Then

dn =
1

2π

∫ π

−π
f ′(t) e−intdt =

1

2π
f(t) e−int]π−π +

in

2π

∫ π

−π
f e−inxdx = incn,

using integration by parts, since d
dx (e−int) = −ine−int. By Parseval or (better)

Bessel’s applied to f ′,
∑∞
n=−∞ |incn|2 =

∑∞
n=−∞ n2|cn|2 <∞ (note |i|2 = 1). We

recall the Cauchy Schwartz inequality for scalars

|
n∑
k=1

zk wk| ≤

√√√√ n∑
k=1

|zk|2

√√√√ n∑
k=1

|wk|2.

One may also take n =∞ in this formula if the right side is then finite. It follows

that
∑∞
n=1 |cn| =

∑∞
n=1

1
|n| |n cn| ≤

√∑∞
n=1

1
|n|2

√∑∞
n=1 |n|2|cn|2 < ∞, by the

Cauchy Schwartz inequality. Similarly,
∑−1
n=−∞ |cn| <∞. So

∑∞
n=−∞ |cn| <∞.

Note f is continuous since it is differentiable. So by the last paragraph and

Corollary 4, the complex Fourier series
∑∞
n=−∞ cne

inx converges uniformly to f(x).

�

4. Pointwise convergence of Fourier series

We remark that there are continuous scalar valued functions on [−π, π] whose

Fourier series diverges at infinitely many points. An incredibly deep result of Car-

leson implies that if f is a Riemann integrable function on [−π, π] then the Fourier

series converges to f(x) for all x except for a set of points of Lebesgue measure

zero. We will not say anything about the proof of this result!!

In the results in this section, undergraduates are not responsible for any proofs

longer than 5 typed lines below, or for knowing the statements of Lemma’s (however

those undergraduates planning to go to grad school or who might need Fourier
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analysis or signals processing are encouraged to read these carefully and understand

everything).

Below, we will work with complex numbers throughout, so be sure that you

know the basic rules for multiplying and dividing complex numbers z = a+ ib and

w = c+ id, etc, like

zw = ac−bd+i(ad+bc), |w|2 = ww̄ = c2+d2,
z

w
=

(a+ ib)w

ww̄
=

(ac+ bd) + i(bc− ad)

c2 + d2
.

Here a, b, c, d are real. Recall also that the real part of z = a+ ib is Re(z) = a, and

the imaginary part is b, and clearly from the formula in the center above we have

|Re(z)| = |a| ≤
√
a2 + b2 = |z|. From the formula |w|2 = ww̄ above it is easy to

see that |wz| = |w||z|. We proved earlier that eix = e−ix for real numbers x, and

of course |eix| = 1 (because the unit circle has radius 1). The symbol sN (f)(x) will

denote the partial sum of the Fourier series of f , so sN (f)(x) =
∑N
k=−N ck e

ikx,

where ck = 1
2π

∫ π
−π f(t) e−ikt dt. By the proof of Homework 10 Question 3, it is

only necessary to do the complex case (the real Fourier series equals the complex

Fourier series, and the ‘real’ sN (f)(x) equals the ‘complex’ sN (f)(x)).

We define the Dirichlet kernel to be

DN (x) =

N∑
k=−N

eikx.

Note that D0 = 1.

Recall that we discussed the convolution earlier, and in Homework 9 Question 4.

Below we will use convolution on [−π, π], namely (f ∗ g)(x) =
∫ π
−π f(t) g(x− t) dt,

for 2π-periodic functions f and g. This has the same properties as the convolution

in Homework 9 Question 4, by the same proofs, and also f ∗ g = g ∗ f as before,

by essentially the same proof as before (see Notes February 26, and Homework 10

question 10).

Lemma 4.1. (1) DN (x) =
sin((N+ 1

2 )x)

sin( x
2 )

if x is not of form 2mπ for an integer

m, and otherwise DN (x) = 2N + 1.

(2) 1
2π

∫ π
−π DN (x) dx = 1.

(3) If f is a Riemann integrable function on [−π, π] then

sN (f)(x) =
1

2π

∫ π

−π
f(t)DN (x− t) dt.

That is sN (f) is the convolution f ∗ ( 1
2π DN ).

Proof. (1) Note
∑N
k=−N eikx is a geometric series:

DN (x) = e−iNx + e−iNx r + e−iNx r2 + · · ·+ e−iNx r2N

where r = eix. If r = 1, that is if x is of form 2mπ for an integer m, then

DN (x) = 2N + 1. If r 6= 1, that is if x is not of form 2mπ for an integer m, then
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the sum of this geometric series, by the geometric series formula, is

DN (x) = e−iNx
1− r2N+1

1− r
= r−N

1− r2N+1

1− r
=
rN+1 − r−N

r − 1
=
ei(N+1)x − e−iNx

eix − 1
,

so that

(eix − 1)DN (x) = ei(N+1)x − e−iNx.

Multiply both sides by e−ix/2:

(eix/2 − e−ix/2)DN (x) = ei(N+ 1
2 )x − e−i(N+ 1

2 )x.

Divide both sides by 2, and use a formula for sin from earlier, to get sin(x2 )DN (x) =

sin((N + 1
2 )x). Thus we see that DN (x) =

sin((N+ 1
2 )x)

sin( x
2 )

, if x 6= 2mπ.

(2) 1
2π

∫ π
−π DN (x) dx = 1

2π

∫ π
−π (

∑N
k=−N eikx)dx = 1

2π

∫ π
−π 1dx + 0 = 1 using

Homework 10 Question 2 (which gives that only the k = 0 term in the sum has a

nonzero integral).

(3) sN (f)(x) =
∑N
k=−N ( 1

2π

∫ π
−π f(t) e−ikt dt) eikx = 1

2π

∑N
k=−N (

∫ π
−π f(t) e−ikteikx dt).

Moving the sigma symbol inside the integral we see that

sN (f)(x) =
1

2π

∫ π

−π
f(t)(

N∑
k=−N

eik(x−t))dt =
1

2π

∫ π

−π
f(t)DN (x− t) dt.

So sN (f) = f ∗ ( 1
2π DN ). �

We define the Fejer kernel to be

KN (x) =
1

N + 1

N∑
k=0

Dk(x), N = 1, 2, · · · .

Lemma 4.2. (1) KN (x) = 1
N+1

(
1−cos((N+1)x)

1−cos(x))

)
if 0 < |x| ≤ π.

(2) KN (x) ≥ 0, for all x.

(3) 1
2π

∫ π
−π KN (x) dx = 1

π

∫ 0

−π KN (x) dx = 1
π

∫ π
0
KN (x) dx = 1.

(4) KN (x) ≤ 2
(N+1)(1−cos δ) if 0 < δ ≤ |x| ≤ π.

Proof. (1) By an earlier formula for Dk(x), we have

KN (x) =
1

N + 1

N∑
k=0

ei(k+1)x − e−ikx

eix − 1
.

Multiplying both sides by (N + 1)(eix − 1) (e−ix − 1) we get

(N + 1)KN (x)(eix − 1) (e−ix − 1) = (e−ix − 1)

N∑
k=0

(ei(k+1)x − e−ikx).

Carefully multiplying out the last expression, we get some kind of telescoping sum

which collapses to 2− ei(N+1)x − e−i(N+1)x = 2(1− cos((N + 1)x). Also,

(eix − 1) (e−ix − 1) = 2− eix − e−ix = 2(1− cosx).

Thus KN (x) = 1
N+1

(
1−cos((N+1)x)

1−cos(x))

)
.
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(2) This is obvious from (1), and the fact that Dk(0) = 2k + 1 ≥ 0 by Lemma

4.1 (1).

(3) We have using Lemma 4.1 (2) that

1

2π

∫ π

−π
KN (x) dx =

1

N + 1

1

2π

∫ π

−π
(

N∑
k=0

Dk(x)) dx =
1

N + 1

N∑
k=0

1

2π

∫ π

−π
Dk(x) dx =

N + 1

N + 1
= 1.

By (1) it is clear that KN is an even function, and by Calculus 1 for any even

function g(x) we have
∫ 0

−π g(x) dx =
∫ π
0
g(x) dx = 1

2

∫ π
−π g(x) dx.

(4) If 0 < δ ≤ |x| ≤ π then KN (x) = 1−cos((N+1)x)
(N+1)(1−cos(x)) ≤

2
(N+1)(1−cos(δ)) . �

We will use the last results first to give a direct proof of the periodic Weierstrass

approximation theorem.

Theorem 4.3. (The periodic Weierstrass approximation theorem) If f is a contin-

uous 2π-periodic function, and if ε > 0 is given, then there exists a trig polynomial

P on [−π, π] with |P (x)− f(x)| < ε for all x ∈ [−π, π].

Proof. Suppose that f is a continuous 2π-periodic function. We copy very closely

the direct proof of the polynomial Weierstrass approximation theorem in the class

notes for February 26, so follow along with those notes. Let ε > 0 be given. Choose

an upper bound M for |f |, and choose δ as in those class notes such that |f(x) −
f(y)| < ε/3 whenever |x−y| < δ. Note that the Dirichlet kernels are (complex) trig

polynomials by definition, and henceKN (x) = 1
N+1

∑N
k=0 Dk(x) is also a (complex)

trig polynomial. By Lemma 4.1 (3) we have f ∗Dk is a (complex) trig polynomial

(equal to 2π sk(f)). Hence f ∗KN = f ∗ ( 1
N+1

∑N
k=0 Dk) = 1

N+1

∑N
k=0 f ∗ Dk is

also a (complex) trig polynomial. Let PN = 1
2π f ∗KN . It is enough to show that

given ε > 0 there exists an N with |PN (x) − f(x)| < ε for all x ∈ [−π, π]. Now

PN (x)− f(x) = 1
2π (KN ∗ f)(x)− f(x), so (following the proof in the class notes at

the end of February 26),

|PN (x)−f(x)| = 1

2π
|
∫ π

−π
KN (t) f(x−t) dt−

∫ π

−π
KN (t) f(x)dt| ≤ 1

2π

∫ π

−π
KN (t) |f(x−t)−f(x)|dt.

As in the proof in the class notes at the end of February 26 we split the last

integral into
∫ −δ
−π +

∫ δ
−δ +

∫ π
δ

. In the first and third of these integrals KN (t) ≤
2

(N+1)(1−cos δ) by Lemma 4.2 (4), and so each of these two integrals is dominated

by 1
2π (π − δ) 2

(N+1)(1−cos δ) · 2M , which for large enough N is smaller than ε
3 . The

middle of the three integrals above is

1

2π

∫ δ

−δ
KN (t) |f(x− t)− f(x)|dt ≤ 1

2π

∫ δ

−δ
KN (t)

ε

3
dt ≤ 1

2π

ε

3

∫ π

−π
KN (t) dt =

ε

3
,

using facts from Lemma 4.2 (2) and (3). Thus, finally, we get

|PN (x)− f(x)| ≤ ε

3
+
ε

3
+
ε

3
= ε, x ∈ [−π, π],
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as desired. Note that if f is real valued, then so is PN = KN ∗ f by Lemma 4.2

(2). �

A function f (of the kind met in Calculus I) is said to satisfy a Lipschitz continuity

condition at a number x if there exists positive numbers M, δ > 0 such that

|f(y)− f(x)| ≤M |y − x|, whenever |y − x| < δ.

Theorem 4.4. Suppose that f is a 2π-periodic function which is Riemann inte-

grable on [−π, π] and satisfies a Lipschitz continuity condition at a number x. Then

the Fourier series of f converges to f(x) at x.

Proof. The Lipschitz condition at x may be rephrased as: |f(x− t)− f(x)| ≤M |t|
whenever |t| < δ. For simplicity assume x ∈ (−π, π), but it is easy to amend the

argument below if x is an endpoint. We are fixing such an x ∈ (−π, π) thoughout

the proof. Define g(t) to be f(x−t)−f(x)
sin(t/2) whenever t is not an even multiple of

2π, and is otherwise zero. By Lemma 4.1 (1) we have (f(x − t) − f(x))DN (t) =

g(t) sin((N + 1
2 )t), and so using Lemma 4.1 (2) and (3) we obtain a convenient

expression for sN (f)(x)− f(x), namely

1

2π

∫ π

−π
f(x− t)DN (t) dt− 1

2π

∫ π

−π
f(x)DN (t) dt =

1

2π

∫ π

−π
g(t) sin((N +

1

2
)t) dt.

Thus by the trig double angle formula we have

sN (f)(x)−f(x) =
1

2π

∫ π

−π
g(t) cos(t/2) sin(Nt) dt+

1

2π

∫ π

−π
g(t) sin(t/2) cos(Nt) dt.

We show using the Riemann-Lebesgue lemma in the previous section that both

of these last integrals have limit 0 as n → ∞. For the second integral note

that g(t) sin(t/2) = f(x − t) − f(x), which is Riemann integrable on [−π, π] so

that by the Riemann-Lebesgue lemma its Fourier coefficients converge to 0. Thus
1
2π

∫ π
−π g(t) sin(t/2) cos(Nt) dt → 0 as n → ∞. For the first integral, rewrite

g(t) cos(t/2) as a product h(t) k(t); where h(t) = f(x−t)−f(x)
t and k(t) = t

tan(t/2)

when t is not an even multiple of 2π, and are otherwise 0. On [−π, π] the function

k is Riemann integrable (a Calculus or Math 3333 exercise). Moreover, h is Rie-

mann integrable too as long as we stay away from t = 0. That is, h is Riemann

integrable on [−π,−ε] ∪ [ε, π] for any ε > 0. An easy Math 3333 exercise: if F is a

bounded function on [a, b] and F is Riemann integrable on h is Riemann integrable

[a+ε, b] for all ε > 0, then F is Riemann integrable on [a, b]. By this principle, since

the Lipschitz condition at x ensures that h is bounded (by M), we see that h is

Riemann integrable on [−π, π]. Hence by Math 3333/4331, g(t) cos(t/2) = h(t)k(t)

is Riemann integrable on [−π, π]. Thus, again by the Riemann-Lebesgue lemma

its Fourier coefficients converge to 0. Thus 1
2π

∫ π
−π g(t) cos(t/2) sin(Nt) dt → 0 as

n→∞. �
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Corollary 4.5. If f is a 2π-periodic function which is Riemann integrable on

[−π, π] and is differentiable at a point x, then the Fourier series of f converges to

f(x) at x.

Proof. It is well known and easy to see that differentiable at a point x implies the

Lipschitz condition at x. (Hint: look at the ε-δ definition of limy→x
f(y)−f(x)

y−x =

f ′(x), with ε = 1. See Homework 11 question 6.) So the result follows from

Theorem 4.4. �

Corollary 4.6. (Localization theorem) Suppose that f and g are 2π-periodic func-

tions which are Riemann integrable on [−π, π], and that f = g on an open interval

J . Then if x ∈ J then the Fourier series of f and g at x either both converge to

the same value, or both diverge.

Proof. Let h = f − g, then h = 0 on J . So by Corollary 4.5 the Fourier series of h

converges to 0 at any x ∈ J . But the Fourier series of h is the Fourier series of f

minus the Fourier series of g (see the proof of Corollary 1 in the last section). So

we are done (because for numbers zk, wk, if 0 =
∑
k (zk−wk) converges then either∑

k zk and
∑
k wk converge to the same value, or both diverge (Exercise)). �

This result says that the pointwise convergence or divergence of a Fourier series

of a function f at x only depends on values of f nearby x, where by ‘nearby’ we

mean in a (small) interval J containing x. Changing f outside of J does not effect

whether the Fourier series converges or diverges at x, or its limit if it converges, by

Corollary 4.6.

We recall from Chapter 0 that if sn is the nth partial sum of a series
∑∞
k=0 ak

of numbers, then the Cesáro means are the sequence (σn) defined by

σn =
1

n+ 1
(s0 + s1 + s2 + · · ·+ sn).

We said that
∑
k ak is Cesáro summable if the sequence (σn) converges, and in this

case limn σn is called the Cesáro sum of the series
∑
k ak. We proved in Chapter

0 that if
∑
k ak converges with sum s, then it is Cesáro summable and its Cesáro

sum is s.

We apply this notation to the nth partial sum sn(f)(x) of a Fourier series. Thus

we define

σN (f)(x) =
s0(f)(x) + s1(f)(x) + s2(f)(x) + · · ·+ sN (f)(x)

N + 1
.

We say that a Fourier series is Cesáro summable at x if the sequence (σN (f)(x))

converges as N →∞, and in this case limN→∞ σN (f)(x) is called the Cesáro sum

at x of the Fourier series. By the above fact from Chapter 0, if the Fourier series

converges pointwise at x with sum s, then it is Cesáro summable at x and its Cesáro

sum at x is s.
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Theorem 4.7. (Fejer’s theorem) If f is a 2π-periodic function which is Riemann

integrable on [−π, π], then at any point x where f(x−) and f(x+) exist, the Fourier

series of f is Cesáro summable at x, and its Cesáro sum at x is limn→∞ σn(f)(x) =
1
2 (f(x−) + f(x+)).

Proof. This proof is very similar to the proof of Theorem 4.3. In the proof of that

result, we said f ∗Dk = 2π sk(f), and hence

f ∗KN = f ∗( 1

N + 1

N∑
k=0

Dk) =
1

N + 1

N∑
k=0

f ∗Dk = 2π
1

N + 1

N∑
k=0

sk(f) = 2πσN (f).

Let x be a point such that f(x−) and f(x+) exist. Then

|σn(f)(x)− 1

2
(f(x−) + f(x+))| = | 1

2π

∫ π

−π
KN (t) f(x− t) dt− 1

2
(f(x−) + f(x+))|.

Write 1
2π

∫ π
−π KN (t) f(x−t) dt = 1

2π

∫ π
0
KN (t) f(x−t) dt+ 1

2π

∫ 0

−π KN (t) f(x−t) dt,
and write f(x−) = 1

π

∫ π
0
KN (t) f(x−) dt and f(x+) = 1

π

∫ 0

−π KN (t) f(x+) dt, using

Lemma 4.2 (3). So |σn(f)(x)− 1
2 (f(x−) + f(x+))| is dominated by

1

2π
|
∫ π

0

KN (t) f(x−t) dt−
∫ π

0

KN (t) f(x−) dt|+ 1

2π
|
∫ 0

−π
KN (t) f(x−t) dt−

∫ 0

−π
KN (t) f(x+) dt|.

Given ε > 0 there exists δ > 0 such that |f(y) − f(x+)| < ε
2 whenever x < y <

x+δ, and such that |f(y)−f(x−)| < ε
2 whenever x > y > x−δ. Since f is bounded

there is a constant M dominating |f |. By Lemma 4.2 (4), there exists N0 so that

KN (x) ≤ 2

(N + 1)(1− cos δ)
<

ε

4M
, 0 < δ ≤ |x| ≤ π, N ≥ N0.

Now 1
2π

∫ π
0
KN (t) |f(x− t)− f(x−)| dt is dominated by

1

2π

∫ δ

0

KN (t) |f(x− t)− f(x−)| dt+
1

2π

∫ π

δ

2M · ε

4M
dt <

1

2π

∫ δ

0

KN (t)
ε

2
dt+

ε

4

for N ≥ N0. Similarly,

1

2π

∫ 0

−π
KN (t) |f(x− t)− f(x+)| dt < 1

2π

∫ 0

−δ
KN (t)

ε

2
dt+

ε

4
, N ≥ N0,

so that finally,

|σn(f)(x)− 1

2
(f(x−) + f(x+))| ≤ 1

2π

∫ δ

−δ
KN (t)

ε

2
dt+

ε

4
+
ε

4
≤ ε

for N ≥ N0. �

Remark. It is known that a Riemann integrable function is continuous except

on a set of Lebesgue measure zero. Thus Fejer’s theorem implies that if f is a 2π-

periodic function which is Riemann integrable on [−π, π], then limn→∞ σn(f)(x) =

f(x) for all x outside a set of Lebesgue measure zero. Carleson’s theorem implies

that one can replace σn by sn in the last statement, but that is an incredibly deep

result.
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Corollary 4.8. If f is a continuous 2π-periodic function then σn(f) → f uni-

formly.

Proof. Notice that by Math 3333, f is uniformly continuous on [−π, π], so that in

the proof of Fejer’s theorem above f(x+) = f(x−) = f(x) and δ is independent

of x. The inequalities at the end of that proof then do not depend on x, so that

σn(f)(x)→ f uniformly. �

Corollary 4.9. If f is a 2π-periodic function which is Riemann integrable on

[−π, π], and if the Fourier series for f converges pointwise at a point x, and if

f(x−) and f(x+) exist, then the Fourier series for f converges pointwise at x to
1
2 (f(x−) + f(x+)).

Proof. This follows from Fejer’s theorem above together with the fact mentioned

before Fejer’s theorem that if the Fourier series converges pointwise at x with sum

s, then it is Cesáro summable at x and its Cesáro sum at x is s. However by

Fejer’s theorem its Cesáro sum at x is 1
2 (f(x−) + f(x+)), so the Fourier series for

f converges pointwise at x to 1
2 (f(x−) + f(x+)). �

Remark. Putting Corollary 4.9 together with Corollary 3 at the end of the last

section, one sees that if f is a 2π-periodic function which is Riemann integrable on

[−π, π], and if the sum of the Fourier coefficients for f converges absolutely, then

the Fourier series for f converges pointwise at x to 1
2 (f(x−) + f(x+)) for every x

for which f(x−) and f(x+) exist.

Corollary 4.10. If f is a 2π-periodic function which is Riemann integrable on

[−π, π], and if n times the nth Fourier coefficients of f (for all integers n) constitute

a bounded set, then the Fourier series for f converges pointwise at x to 1
2 (f(x−) +

f(x+)) for every x for which f(x−) and f(x+) exist.

Proof. Let s = 1
2 (f(x−) + f(x+)) for an x where these limits exist. Let sn =

sn(f)(x), then |n(sn − sn−1)| = n|cneinx + c−ne
−inx| ≤ n|cn| + n|c−n|, which is

bounded by hypothesis. By Fejer’s theorem (sn) is Cesáro summable with Cesáro

sum s. So by the Fact in Homework 11 Question 5, sn(f)(x)→ s as n→∞. �

A nice application of Corollary 4.10 is the following result, which we will not

prove for lack of time, although it is not hard to prove. Energetic graduate students

could try prove it as an exercise using Corollary 4.10, or look up its proof.

Corollary 4.11. If f is a 2π-periodic function which is Riemann integrable on

[−π, π], and if f is of bounded variation on an interval [α, β], then the Fourier

series for f converges pointwise to 1
2 (f(x−) + f(x+)) for all x ∈ [α, β].
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The following is mostly in the homework (and also appears on the Mock test

2). It could very well be on the real test since it is homework (some parts are very

close to the homework).

In some of the homework, and in the example below, one might have to integrate

a Fourier series. This works because we saw in the first theorem stated in this pdf

that every Fourier series of a Riemann integrable function converges in 2-norm, and

because of the following:

Proposition 4.12. Suppose we have a sequence of functions h, h1, h2, h3, · · · which

are Riemann integrable on [a, b], and a ≤ c < d ≤ b, then. Then

(1) If hn → h in 2-norm on [a, b] then
∫ d
c
hn dx→

∫ d
c
h dx.

(2) If
∑∞
k=1 hk = h in 2-norm, then

∫ d
c
h dx =

∑∞
k=1

∫ d
c
hn dx.

Proof. (1) We have

|
∫ d

c

hn dx−
∫ d

c

h dx| ≤
∫ d

c

|hn − h| dx ≤
∫ b

a

1 · |hn − h| dx ≤ ‖1‖2‖hn − h‖2 → 0,

where we have used the Cauchy-Schwarz inequality for integrals.

(2) If sn =
∑n
k=1 hk then sn → h in 2-norm, so by (1) applied to sn we have∫ d

c
sn dx =

∑n
k=1

∫ d
c
hk dx→

∫ d
c
h dx. Thus

∑∞
k=1

∫ d
c
hn dx =

∫ d
c
h dx. �

Example.

(a) Show that x = π − 2
∑∞
n=1

sinnx
n if 0 < x < 2π.

(b) Using Parseval’s equation in (a) find
∑∞
n=1

1
n2 .

(c) Using (a) and (b) show that x2

2 = πx− π2

3 + 2
∑∞
n=1

cosnx
n2 if 0 ≤ x ≤ 2π.

(d) Using (c) find
∑∞
n=1

(−1)n
n2 .

Solution. (a) Make the function x on [0, 2π) to be periodic of period 2π by

just repeating it endlessly. Call this 2π-periodic function f . So e.g. f(x) = x +

2π for −π < x < 0. The Fourier series on [−π, π] is easy to compute: it is

π − 2
∑∞
n=1

sinnx
n . By one (or several) of the Theorems or Corollaries above (eg.

Corollary 4.5), this series converges pointwise to f(x) on (0, π] and on [−π, 0), hence

by periodicity on [π, 2π). Thus x = π − 2
∑∞
n=1

sinnx
n if 0 < x < 2π.

(b) By Parseval’s equation applied in (a),
∫ π
−π |f(x)|2 dx = π(2π2 + 4

∑∞
n=1

1
n2 .

That is,
∫ 2π

0
x2 dx = 8π3

3 = π(2π2 + 4
∑∞
n=1

1
n2 , so that

∑∞
n=1

1
n2 = π2

6 .

(c) If 0 ≤ x ≤ 2π then integrate
∫ x
0

in (a). We have to use the fact just above

the Example to integrate the series in (a). We get

x2

2
= πx−

∫ x

0

(2

∞∑
n=1

sinnx

n
)dx = πx−2

∞∑
n=1

∫ x

0

sinnx

n
dx = πx−2

∞∑
n=1

(
cosnx

n2
− 1

n2
).

But
∑∞
n=1

1
n2 = π2

6 . So x2

2 = πx− π2

3 + 2
∑∞
n=1

cosnx
n2 if 0 ≤ x ≤ 2π.
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(d) Set x = π in (c) to get π2

2 = π2− π2

3 +2
∑∞
n=1

(−1)n
n2 . So

∑∞
n=1

(−1)n
n2 = −π

2

12 .


