
INTRODUCTION TO REAL ANALYSIS II

MATH 4332–BLECHER NOTES

You will be expected to reread and digest these typed notes after class, line by

line, trying to follow why the line is true, for example how it follows from previous

lines. I suggest you add a check mark after you have read and understood the line,

add extra explanation or pictures to yourself if needed. Add a question mark next

to any line you cannot follow, and ask me or the TA about it. That is why I have

given wide margins on every page. Also memorize ‘definitions’ as you read. The

best advice I can give to ensure success in this class is to do this reading properly.

In my experience, the class becomes much much more difficult if you do not do it.

This kind of detailed reading is not without pain, but it will help reconfigure your

brain to internalize the kind of logic and proofs that are needed in this subject (and

in other math ‘proof’ courses). The way I will monitor if you are doing all this, and

this is the first semester I’ve tried this, is to collect your notes occasionally to see

how much you have scribbled on them as above. There will also be an ‘easy-quiz’

from time to time, named as such because it will be easy for anyone who has been

reading the notes as suggested.

The problems marked * do not have to be turned in by the undergraduates in

the class.

Chapter 0. Series of numbers

In this course/these notes we will write N for the natural numbers N = {1, 2, 3, · · · },
and N0 for the whole numbers N0 = {0, 1, 2, 3, · · · }, and Z for the integers Z =

{· · · ,−2,−1, 0, 1, 2, 3, · · · }. We usually reserve the symbols n,m for natural num-

bers or integers. The rational numbers are Q = {m/n : m,n ∈ Z, n 6= 0}. The real

numbers are written as R, and R+ = {x ∈ R : x ≥ 0}.
The notation A ⊆ B or A ⊂ B means that A is a subset of set B, (that is,

x ∈ A ⇒ x ∈ B). Of course A = B if A ⊂ B and B ⊂ A (that is, x ∈ A ⇔ x ∈ B).

Complement: Ac = {x : x /∈ A}. We say that sets A and B are disjoint if A∩B = ∅
(no common elements).

Functions: f : A → B means that f is a function from domain A into the

codomain B. Image: if C ⊆ A, and f : A → B, then f(C) = {f(x) : x ∈ C}.
This is a subset of the codomain of f , called the image of C under f . Pre-image:

If f : A → B, and D ⊆ B, then f−1(D) = {x ∈ A : f(x) ∈ D}. This is called the

pre-image of D under f . We say that f : A→ B is surjective, or onto if f(A) = B.
1



2 INTRODUCTION TO REAL ANALYSIS II MATH 4332–BLECHER NOTES

We say that f : A → B is injective, or one-to-one if f(x1) = f(x2) ⇒ x1 = x2.

We say that f : A→ B is bijective if it is one-to-one and onto. In this case there is

an inverse function f−1 : B → A with f−1(y) = x iff f(x) = y, for x ∈ A, y ∈ B.

1. Limsup and liminf

See wikipedia for more detail.

Definition. The limit superior of a sequence (sn), is the number

limsupn sn = lim
n→∞

{sup{sk : k ≥ n}}.

Sometimes this is written as limn sn. The limit inferior is

liminfn sn = lim
n→∞

{inf{sk : k ≥ n}}.

Sometimes this is written as limn sn.

Ex. Find the limsup and liminf of (sn) where sn = (−1)n + 1
n .

Solution. Make a table of the terms in the sequence:

0,
3

2
,−2

3
,

5

4
,−4

5
,

7

6
,−6

7
,

9

8
, · · · .

Procedure: explained in class to get the new row in the table

3

2
,

3

2
,

5

4
,

5

4
,

7

6
,

7

6
,

9

8
, · · · .

(Each entry in this row is the supremum of the numbers above and to the right of

it in the original row.)

Note that this new row is a decreasing sequence. Every decreasing sequence has

a limit (which is possibly ±∞). In our example, this limit is 1. This limit is exactly

limsupn sn. So in our example, limsupn sn = 1.

Similarly to find the liminf, make a third row of the table

−1,−1,−1,−1,−1, · · · .

(Each entry in this row is the infimum of the numbers above and to the right of it

in the original row.)

Note that this third row is always an increasing sequence. Every increasing

sequence has a limit (which is possibly ±∞). In our example, this limit is −1. This

limit is exactly liminfn sn. So in our example, liminfn sn = −1.

Ex. Find the limsup and liminf of (sn) where sn = 6n+4
7n−3 .

Solution. Do this as an exercise.

What the limsup and liminf are good for:
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• First, they always exist, unlike the limit. For example, in the first example

above, limn sn does not exist. But we were able to compute the limsup

and liminf. They always exist because as we saw in the example, they are

limits of monotone sequences, which we know always exist.

• They behave similarly to the limit. That is, they obey laws analogous to

the rules we saw in Calculus II and 3333 for limits. We will write down

some of these laws momentarily.

• They can be used to check if the limit exists. In fact limn sn exists iff

liminfn sn = limsupn sn. So if liminfn sn 6= limsupn sn then we may con-

clude that limn sn does not exist.

• Recall that in Calculus II there were certain tests which involve the limit

of a sequence, such as the ratio and root test, limit comparison test, and

the ‘fundamental fact about power series’. We shall see that one can im-

prove these tests by using the limsup and liminf instead of the limit. For

example, the ‘fundamental fact about power series’ states that a power

series
∑∞
k=0 ckx

k converges absolutely for all points in a certain interval

(−R,R), and it diverges whenever x < −R or x > R. The number R is

called the radius of convergence, and in Calculus II you are given the for-

mula R = 1
limn→∞ n

√
cn

. But you were not told in Calculus II what to do if

this limit does not exist. In fact one should use the formulaR = 1
limsupn

n
√
cn

.

This always exists, as we remarked above, and now the test always works.

Theorem 1.1. Let (sn) and (tn) be sequences of real numbers.

(1) liminfn sn ≤ limsupn sn; and limn sn exists iff liminfn sn = limsupn sn.

(2) liminfn (−sn) = −limsupn sn.

(3) If sn ≤ tn for all n, then limsupn sn ≤ limsupn tn, and liminfn sn ≤
liminfn tn.

(4) limsupn (Ksn) = K limsupn sn, and liminfn (Ksn) = K liminfn sn, if K ≥
0.

(5) limsupn (sn+tn) ≤ limsupn sn+limsupn tn, and liminfn (sn+tn) ≥ liminfn sn+

liminfn tn. These inequalities are equalities if (tn) converges.

(6) If a = limsupn sn is finite, and if ε > 0, then there exists an N ≥ 1 such

that sn < a + ε for all n ≥ N . Also for every N ≥ 1 there exists a

k > N with sk > a − ε. That is, there are infinitely many terms in the

sequence which are greater than a − ε. (We remark that these properties

actually characterize limsupn sn; and variants of these statements are easily

formulated for liminfs.)

(7) If a = limsupn sn then a subsequence of (sn) converges to a. Similarly for

liminf.
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Proof. (1) Clearly inf{sk : k ≥ n} ≤ sup{sk : k ≥ n}, and so limn→∞ inf{sk : k ≥
n} ≤ limn→∞ sup{sk : k ≥ n}. We also see from this that if these numbers are

finite then liminfn sn = limsupn sn iff

0 = limsupn sn − liminfn sn = lim
n→∞

(sup{sk : k ≥ n} − inf{sk : k ≥ n}).

By the definition of limit, this happens iff given ε > 0 there exists an N such that

sup{sk : k ≥ n} − inf{sk : k ≥ n} ≤ ε, n ≥ N.

But the latter is equivalent to

|sm − sn| ≤ ε, m, n ≥ N.

This is saying (sn) is Cauchy, which is equivalent to saying that limn sn exists. If

liminfn sn = limsupn sn =∞, then since inf{sk : k ≥ n} ≤ sn we see limn sn =∞.

Similarly for the −∞ case.

(2) From 3333 we have inf{−sk : k ≥ n} = − sup{sk : k ≥ n}. Taking the limit

of these as n→∞ we get liminfn (−sn) = −limsupn sn.

(3) sup{sk : k ≥ n} ≤ sup{tk : k ≥ n}. Taking the limit of these as n → ∞ we

get limsupn sn ≤ limsupn tn.

(4) From 3333 we have sup{Ksk : k ≥ n} = K sup{sk : k ≥ n}. Taking the limit

of these as n→∞ we get limsupn (Ksn) = K limsupn sn.

(5) From 3333 we have sup{sk+ tk : k ≥ n} ≤ sup{sk : k ≥ n}+sup{tk : k ≥ n}.
Taking the limit of these as n → ∞ we get limsupn (sn + tn) ≤ limsupn sn +

limsupn tn. Similarly for the liminf case. If (tn) converges to t ∈ R then given ε > 0

there exists an N ≥ 1 such that tn > t− ε for all n ≥ N . Then

sup{sk + tk : k ≥ n} ≥ sup{sk + t− ε : k ≥ n} = sup{sk : k ≥ n}+ t− ε, i

for n ≥ N. Taking the limit of these as n → ∞ we get limsupn (sn + tn) ≥
limsupn sn+limn tn−ε, for all ε > 0. So limsupn (sn+tn) = limsupn sn+limsupn tn.

(6) If a = limsupn sn = limn→∞ sup{sk : k ≥ n} is finite then from 3333 given

ε > 0 there exists an N ≥ 1 such that a−ε < sup{sk : k ≥ n} < a+ε for all n ≥ N .

So sn ≤ sup{sk : k ≥ n} < a + ε for all n ≥ N . This proves the first assertion.

Similarly, sup{sk : k ≥ n} > a − ε for all n ≥ N , which means that there must

exists a k > n with sk > a− ε.
(7) If we take ε = 1

n in the argument in (6), we see that given any m ≥ N we

have a− 1
n < sup{sk : k ≥ m} < a+ 1

n . So given any m ≥ N there exists a k ≥ m
with |sk − a| < 1

n . Applying this with n = 1,m = N , choose n1 with |sn1
− a| < 1.

Applying this with n = 2 and m > n1, choose n2 > n1 with |sn2
−a| < 1

2 . Applying

this again with n = 3 and m > n2, choose n3 > n2 with |sn3
− a| < 1

3 . Continuing

in this way produces a subsequence of (sn) converging to a.

The proofs of (3)–(7) above in the liminf cases are similar. �
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(The last theorem used to be Homework 1, due Thursday 22 January. The

grading scale was Q1 [2 points for first part, 9 for second part], Q2 [3 points],

Q4 [2 points], Q6 [6 points for first part, 3 for second part]. Total [25] points for

correctness, [5] points for completeness in Q 3, 5, 7.)

2. Infinite series of numbers

The following from Calculus II is almost all review, so we will move quickly. You

may need to read it carefully several times. You could also look up several of these

topics on wikipedia.

From Calculus II: An ‘infinite series’ is an expression of the form

∞∑
k=m

ak = am + am+1 + am+2 + · · · (∗)

Let us call this expression (*). The ak here are real (or complex) numbers.

What does expression (*) mean? In fact we shall see shortly that the expression

means two things.

Usually m = 0 or 1, that is, (*) usually is

a0 + a1 + a2 + · · ·

or

a1 + a2 + a3 + · · · .

We call the number ak the kth term in the series. Sometimes we will be sloppy and

write
∑
k ak when we mean (*).

The most important question about an infinite series, just as for an infinite

sequence, is 1) does the series converge? and 2) if it converges, what is its sum?

We will explain these in a minute.

In fact an expression like (*) has two meanings:

Meaning # 1: A ‘formal sum’. That is, it is a way to indicate that we are

thinking about adding up all these numbers in the expression (*), in the order

given. It does not mean that these numbers do add up.

Before we go to Meaning # 2, let me say how you ‘add up all the numbers in an

infinite series’. To do this, we define the nth partial sum sn to be the sum of the

first n terms in the series. In this way we get a sequence

s1, s2, s3, · · ·

called the sequence of partial sums. For example, for the series
∑∞
k=0 ak, we have

sn =
∑n−1
k=0 ak. We say the original series converges if the sequence {sn} converges.

If it does not converge then we say it diverges. We call lim
n→∞

sn the sum of the

series if this limit exists.
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Meaning # 2:
∑
k ak = lim

n→∞
sn if this limit exists.

• Cauchy test:
∑
k ak converges iff given ε > 0 there exists an N ≥ 0 such

that |an+1 + an+2 + · · ·+ am| < ε whenever m > n ≥ N .

[Proof: Since sm − sn = an+1 + an+2 + · · · + am, this is just saying that

the partial sums sn =
∑n
k=1 ak are a Cauchy sequence. And we know from

Math 3333 that a sequence converges iff it is a Cauchy sequence.]

• In a sum like
∑∞
k=1

1
(k+1)k , the k is a ‘dummy index’. That is, it is only

used internally inside the sum, and we can feel free to change its name, to∑∞
j=1

1
(j+1)j , for example,

• In a series
∑∞
k=m ak let us callm the ‘starting index’. Thus for example, the

starting index of
∑∞
k=2

k−1
k2 is 2. Any series can be ‘renumbered’ so that its

starting index is 0. That is, any infinite series may be rewritten as
∑∞
k=0 ak.

For example,
∑∞
k=m ak, which is the same as am + am+1 + am+2 + · · · ,

can be relabelled by letting j = k −m, or equivalently k = j + m. Then∑∞
k=m ak =

∑∞
j=0 aj+m.

Example: Rewrite
∑∞
k=2

k−1
k2 as a series

∑∞
k=0 ak.

Solution. Letting j = k − 2, so that k = j + 2, the sum becomes

∞∑
j=0

j + 2− 1

(j + 2)2
=

∞∑
j=0

j + 1

(j + 2)2

Of course j is ‘dummy’ so we can rewrite this as
∑∞
k=0

k+1
(k+2)2 .

There is no reason of course why we chose 0 for the starting index. One can

make all series begin with the starting index 1 if you wanted to, by a similar trick.

However it is convenient to fix one starting index, so it may as well be 0. Many of

the following results are therfore phrased in terms of series
∑∞
k=0 ak.

• Geometric series: This is a series of form c + cx + cx2 + cx3 + · · · , or∑∞
k=0 cx

k, for constants c and x. We call x the ‘constant ratio’ of the

geometric series. Note that if you divide any term in the series by the

previous term, you get x. We assume c 6= 0, otherwise this is the trivial

series with sum 0.

The MAIN FACT about geometric series, is that such a series converges

if and only if |x| < 1, and in that case its sum is c
1−x .
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[Proof: If c = 0 then the series is 0 + 0 + 0 + · · · and the result is obvious.

So we can assume that c 6= 0. The sum of the first n terms is

sn = c+ cx+ cx2 + · · ·+ cxn−1 = c(1 + x+ x2 + · · ·+ xn−1) .

There is a well known result in algebra which says that

(1 + x+ x2 + · · ·+ xn−1)(1− x) = 1− xn

(to prove it multiply out the parentheses and cancel). Thus if x 6= 1 then

1 + x+ x2 + · · ·+ xn−1 = 1−xn

1−x , so that

sn = c+ cx+ cx2 + · · ·+ cxn−1 = c
1− xn

1− x
.

This is the important formula for the sum of n terms of a geometric series.

The only thing that depends on n on the right hand side here is the xn,

which converges to 0 if |x| < 1, and diverges otherwise. If x = 1 then

sn = c + c + · · · + c (n times) which equals nc. Thus lim
n→∞

sn = c 1
1−x if

|x| < 1. If |x| ≥ 1 then {sn} diverges, so that the original series diverges.]

• FACT: If
∑∞
k=0 ak and

∑∞
k=0 bk both converge, and if c is a constant,

then:

•
∑∞
k=0 (ak + bk) converges, with sum

∑∞
k=0 ak +

∑∞
k=0 bk;

•
∑∞
k=0 (ak − bk) converges, with sum

∑∞
k=0 ak −

∑∞
k=0 bk;

•
∑∞
k=0 (cak) converges, with sum c

∑∞
k=0 ak.

[Proof: We just prove the first and third, the second is quite similar. The

nth partial sum of
∑∞
k=0 (ak + bk) is

∑n−1
k=0 (ak + bk) =

∑n−1
k=0 ak +∑n−1

k=0 bk. By a fact about sums of limits of sequences from 3333 or 4331,

this converges, as n→∞, to
∑∞
k=0 ak +

∑∞
k=0 bk.

Similarly the nth partial sum of
∑∞
k=0 (cak) is

∑n−1
k=0 (cak) = c

∑n−1
k=0 ak.

By 3333, this converges, as n→∞, to c
∑∞
k=0 ak.]

• For any positive integer m we can write
∑∞
k=0 ak = (a0+a1+ · · ·+am−1)+∑∞

k=m ak.

Indeed
∑∞
k=0 ak converges if and only if

∑∞
k=m ak converges. If these

series converge, then their sum also obeys the rule:

∞∑
k=0

ak = (a0 + a1 + · · ·+ am−1) +

∞∑
k=m

ak .

[This is because the nth partial sum of the
∑∞
k=0 ak series, and the nth

partial sum of the
∑∞
k=m ak series differ by a fixed constant, namely a0 +

a1 + · · ·+ am−1.]
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• From the last fact it follows that the ‘first few terms’ of a series, do not

affect whether the series converges or not. It will affect the sum though.

• The Divergence Test: If lim
k→∞

ak 6= 0 then the series
∑
k ak diverges.

A matching statement (the contrapositive): If
∑
k ak converges, then

lim
k→∞

ak = 0.

[Beware: If lim
k→∞

ak = 0 we cannot conclude that
∑
k ak converges.

[Proof: Suppose that
∑∞
k=0 ak = s. If sn is the nth partial sum then sn → s

as n → ∞. Clearly sn+1 → s too, as n → ∞. Thus an = sn+1 − sn →
s− s = 0.]

Homework 2 (due Tuesday 27 January).

(1) If
∑
k ak converges define the tail of the series to be the sequence whose

nth term is
∑∞
k=n ak. Prove the tail converges to 0 as n→∞.

(2) If y ∈ R write [y] = max{n ∈ Z : n ≤ y}. If x ∈ [0, 1) write a1 = [10x], a2 =

[100(x − a1
10 )], a3 = [1000(x − a1

10 −
a2
100 )], · · · . Prove that 0 ≤ ak ≤ 9 for

each k and that
∑∞
n=1

an
10n converges, Prove that x =

∑∞
n=1

an
10n . Prove

that there is no N such that ak = 9 for all k ≥ N .

(3) Continuing with the last question, if x =
∑∞
n=1

an
10n where an ∈ {0, 1, · · · , 9}

then we write x = 0.a1a2a3 · · · and call this a decimal expansion of x (or

base 10 expansion). Prove that the decimal expansion of x ∈ [0, 1) is unique

provided that we insist that there is no N such that ak = 9 for all k ≥ N .

(4) Prove that any nonzero real number may be written as ±
∑∞
n=N

an
10n for

some integer N , and with an ∈ {0, 1, · · · , 9} for all n, and aN 6= 0; and

that this representation is unique provided that we keep the ‘recurring 9

convention’ in question (2). [Remark: Questions 2–4 can be found in many

places on the internet under ‘decimal expansion’; or see e.g. the Appendix

B to Tao’s Analysis I. It can also be done for any ‘base’, not just base 10,

with almost identical proofs.]

(5)* Suppose X1, X2, . . . are metric spaces, suppose dn is the metric on Xn,

and that dn(x, y) ≤ 1 for all x, y ∈ Xn. On the product
∏∞
n=1Xn define

d({xn}, {yn}) =
∑∞
n=1 2−ndn(xn, yn), for {xn}, {yn} ∈

∏∞
n=1Xn.

(a) Prove that d is a metric on
∏∞
n=1Xn,

(b) Prove that if each Xn is complete, then so is
∏∞
n=1Xn (with the

metric d. )

3. Nonnegative Series, and tests for series convergence.

• A series
∑
k ak is called a nonnegative series if all the terms ak are ≥ 0.
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• For a nonnegative series, the sequence {sn} of the partial sums is a nonde-

creasing (or increasing) sequence. Indeed if sn = a0 + a1 + · · ·+ an−1 say,

then sn+1 = a0 + a1 + · · ·+ an−1 + an, so that sn+1 − sn = an ≥ 0.

Therefore, by a fact we saw in 3333 for monotone sequences, the sum

of the series equals the least upper bound of the sequence {sn} of partial

sums. Thus the sum of the series always exists, but may be ∞.

More importantly, a nonnegative series converges if and only if the {sn}
sequence is bounded above. The latter happens if and only if the sum of

the series is finite. Thus to indicate that a nonnegative series converges we

often simply write
∑
k ak <∞.

• Example: The HARMONIC SERIES is the important series

1 +
1

2
+

1

3
+

1

4
+ · · · =

∞∑
k=1

1

k
.

This is a nonnegative series, so to see if it converges we need only check

if the sequence {sn} is bounded above, where sn = 1 + 1
2 + 1

3 + · · · 1n . A

trick to do this is to look at
∫ n+1

1
1
x dx, interpreted as the shaded area in

the graph below [Picture drawn in class]. This shaded area is less than the

area of the n rectangles shown. Hence

1 + 1 · 1

2
+ 1 · 1

3
+ · · · 1 · 1

n
≥
∫ n+1

1

1

x
dx.

So sn ≥ ln(n+ 1)− ln(1) →∞ as n→∞.

Thus the harmonic series diverges; it has sum +∞.

• The trick used in the previous example can be used in the same way to

prove:

The Integral Test: If f(x) is a continuous decreasing positive function

defined on [1,∞) [Picture drawn in class], then
∑∞
k=1 f(k) converges if and

only if
∫∞
1

f(x) dx converges (i.e. is finite).

• p-series. An almost identical argument shows that
∑∞
k=1

1
kp converges if

and only if p > 1. These are called ‘p-series’.

• Basic Comparison Test: Suppose that 0 ≤ ak ≤ bk for all k.

1) If
∑
k bk converges, then

∑
k ak converges.

2) If
∑
k ak diverges, then

∑
k bk diverges.

[Proof: We have
∑n
k=1 ak ≤

∑n
k=1 bk. So for 1), if (

∑n
k=1 bk) is bounded

above then (
∑n
k=1 ak) is bounded above. That is, by the third ‘bullet’ in

this section, if
∑
k bk converges, then

∑
k ak converges.
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Note that 2) is the contrapositive to 1).]

• Limit Comparison Test: Suppose that
∑
k ak and

∑
k bk are nonnega-

tive series. If lim sup
k→∞

ak
bk
<∞, and if

∑
k bk converges then

∑
k ak converges.

If lim inf
k→∞

ak
bk
> 0 and

∑
k bk diverges then

∑
k ak diverges.

[Proof: Suppose that s = lim sup
k→∞

ak
bk

< ∞. By (6) in Homework 1 there

exists N with ak
bk
< s+ 1 for k ≥ N . So ak < (s+ 1)bk for k ≥ N . By the

Basic Comparison Test, if
∑
k bk converges then

∑
k ak converges.

If s > 0 then by the liminf variant of (6) in Homework 1 there exists N

with ak
bk

> s − s
2 = s

2 for k ≥ N . So ak >
s
2bk for k ≥ N . By the Basic

Comparison Test, if
∑
k bk diverges then

∑
k ak diverges.]

• Root Test: Suppose that
∑
k ak is a nonnegative series with lim sup

k→∞
(ak)

1
k =

r. If 0 ≤ r < 1 then
∑
k ak converges. If 1 < r ≤ ∞ then

∑
k ak diverges.

[Proof: Suppose that r < c < 1. By (6) in Homework 1 (with ε = c − r)
there exists N with a

1
k

k < c for k ≥ N . So ak < ck. Now
∑
k c

k converges

(geometric series), so by the Basic Comparison Test,
∑
k ak converges.

If 1 < c < r then by (6) in Homework 1 there are infinitely many k with

a
1
k

k > c, or equivalently, ak > ck > 1. So
∑
k ak diverges by the Divergence

Test.]

• Ratio Test: Suppose that
∑
k ak is a nonnegative series with lim sup

k→∞

ak+1

ak
=

R and lim inf
k→∞

ak+1

ak
= r. If 0 ≤ R < 1 then

∑
k ak converges. If 1 < r ≤ ∞

then
∑
k ak diverges.

[Proof: Suppose that R < c < 1. By (6) in Homework 1 (with ε = c − r)
there exists N with ak+1

ak
< c, for k ≥ N . So aN+1 < caN , aN+2 < caN+1 <

c2aN , etc. Generally aN+k < ckaN . Now
∑
k c

kaN converges (geometric

series), so by the Basic Comparison Test,
∑
k aN+k converges. So

∑
k ak

converges.

A similar argument does the case r > c > 1. By the liminf variant of

(6) in Homework 1 there exists N with ak+1

ak
> c for k ≥ N . In this case

aN+k > ckaN . Now ckaN → ∞ as k → ∞, so by the Divergence test,∑
k aN+k diverges. So

∑
k ak diverges.]

• From Homework 3 Question 3 (a) below it is easy to see that the root test

is more powerful theoretically than the ratio test. That is if the ratio test

works to prove convergence or divergence, then the root test would give the
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same conclusion. However the converse is not true (if the root test works,

the ration test might not). See Homework 3 Question 2.

• Condensation test Suppose that a0 ≥ a1 ≥ a2 ≥ · · · ≥ 0, and that

limk ak = 0. Then
∑
k ak converges iff

∑
k 2k a2k converges.

[Proof: Let sn =
∑n
k=0 ak and tn =

∑n
k=0 2k a2k . If n < 2k then

sn ≤ a1 + (a2 + a3) + (a4 + · · ·+ a7) + · · ·+ (a2k + a2k+1 + · · ·+ a2k+1−1)

≤ a1 + 2a2 + 4a4 + · · ·+ 2k a2k = tk.

Thus if (tk) is bounded then (sn) is bounded; and so by the fact in the

paragraph before the harmonic series a few pages back,
∑
k ak converges

if
∑
k 2k a2k converges. If n > 2k then

sn ≥ a1 + a2 + (a3 + a4) + · · ·+ (a2k−1+1 + · · ·+ a2k)

≥ 1

2
a1 + a2 + 2a4 + · · ·+ 2k−1a2k =

1

2
tk.

So tk ≤ 2sn. Thus if (sn) is bounded then (tk) is bounded; and so by

the fact in the paragraph before the harmonic series a few pages back,∑
k 2k a2k converges if

∑
k ak converges.

• As an application of the condensation test note that the harmonic series∑∞
n=1

1
n diverges because

∑
k 2k 1

2k
=
∑
k 1 =∞.

Homework 3 (due Thursday January 29).

(1) Test for convergence (giving reasons): (a)
∑∞
n=1

n3

2n , (b)
∑∞
n=2

1
(logn)2 ,

(c)
∑∞
n=1 n

−1− 1
n , (d)

∑∞
n=2

1
(logn)log n , (e)

∑∞
n=1(n

√
n− 1)n,

(f)
∑∞
n=1

√
1+n2−n√

n
.

(2) Suppose
∑∞
n=1 an is the series 1

2+ 1
3+ 1

22 + 1
32 + 1

23 +· · · . Find lim supn
an+1

an
, lim infn

an+1

an

and lim supn a
1
n
n . Can we conclude that

∑
n an converges using the ratio

test? Using the root test?

(3) (a*) Show (or look up) that

lim inf
n
|sn+1/sn| ≤ lim inf

n
|sn|1/n ≤ lim sup

n
|sn|1/n ≤ lim sup

n
|sn+1/sn|,

for any sequence {sn} in R \{0}.
(b) From (a) it is easy to see that the root test is more powerful theoretically

than the ratio test. For example, deduce that if {|sn+1/sn|} converges then

{|sn|1/n} converges to the same limit.

(c) Calculate limn→∞ (n!)1/n .
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4. Absolute and conditional convergence

A series
∑
k ak is called absolutely convergent if

∑
k |ak| converges. Recall that

ak here could be a complex number (you can view complex numbers as elements of

R2 here).

• Any absolutely convergent series is convergent.

[Proof: By the Cauchy test above, since
∑
k |ak| converges, given ε > 0

there exists an N ≥ 0 such that

|an+1 + an+2 + · · ·+ am| ≤ |an+1|+ |an+2|+ · · ·+ |am| < ε, m > n ≥ N.

By the Cauchy test again,
∑
k ak converges.]

• The converse is false, a series may be convergent, but not absolutely con-

vergent. Such a series is called conditionally convergent.

• The Alternating Series Test (a.k.a. Leibniz Test)/Alternating Se-

ries approximation: Suppose that a0 ≥ a1 ≥ a2 ≥ · · · , and that

limk ak = 0. Then a0 − a1 + a2 − a3 + · · · (which in sigma notation

is
∑∞
k=0 (−1)kak) converges, and moreover |sn −

∑∞
k=0 (−1)k ak| ≤ an for

all n, where sn is the nth partial sum
∑n−1
k=0 (−1)kak.

[Proof: We have noticed before that if m > n then sm − sn = bn + bn+1 +

· · · + bm−1, where bk is the kth term. Here bk = (−1)kak, where ak is as

above. Note that an+k−an+k+1 ≥ 0, so an−an+1 +an+2−an+3 + · · · ≥ 0.

Hence

|sm−sn| = an−an+1 +an+2−· · · = an− (an+1−an+2)− (an+3−an+4)−· · · ≤ an,

since an+k+1 ≤ an+k. It follows that (sn) is Cauchy, so convergent. That is,∑∞
k=0 (−1)kak converges. Letting m→∞ and using a fact about sequences

from the prerequisite, we have |
∑∞
k=0 (−1)kak − sn| ≤ an.]

• Example. Approximate the sum of
∑∞
k=1

(−1)k+1

k4 with an error of less than

0.001.

Solution. The error in using sn to approximate the sum is < |an+1| =
1

(n+1)4 (note the starting index of this series is 1, not 0, which means we

have to change the formula in the last result slightly). Now 1
(n+1)4 < 0.001

if (n + 1)4 > 1000. Choosing n = 5 will work. So an approximation with

an error of less than 0.001 is s5 =
∑5
k=1

(−1)k+1

k4 = 0.94754 (calculator).

• Exercise. Test for convergence/absolute or conditional convergence:
∑∞
n=1

(−1)n2n
n! .
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• If
∑∞
k=1 ak converges absolutely then |

∑∞
k=1 ak| ≤

∑∞
k=1 |ak|.

[Proof. Take the limit as n → ∞ in the inequality, nd using a fact about

sequences from the prerequisite, we have |
∑n
k=1 ak| ≤

∑n
k=1 |ak|.]

• If
∑∞
k=1 ak is a series, and f : N → N is a bijection, then the series∑∞

k=1 af(k) is called a ‘rearrangement’ of
∑∞
k=1 ak. It is not hard to see

that a rearrangement of a convergent series need not converge.

Theorem Any ‘rearrangement’ of an absolutely convergent series is

convergent and has the same sum.

[Proof: Suppose that
∑∞
k=1 ak is absolutely convergent, and that ε > 0

is given. Then
∑∞
k=1 ak is convergent too, with sum s say, so sn → s

where sn =
∑n
k=1 ak. Choose N with

∑∞
k=N |ak| <

ε
2 (see HW 2 Q 1),

and |sn − s| < ε
2 for n ≥ N . Choose M ∈ N such that {1, 2, · · · , N} ⊂

{f(1), f(2), · · · , f(M)} (this is possible since f is bijective–why?). Let tn =∑n
k=1 af(k). If n > M we have that all the terms ak in sn =

∑n
k=1 ak with

k ≤ N cancel with terms af(j) in tn =
∑n
k=1 af(k). So (and also using the

triangle inequality),

|sn − tn| ≤ |aN+1|+ |aN+2|+ · · · <
ε

2
.

So

|tn − s| ≤ |tn − sn|+ |sn − s| <
ε

2
+
ε

2
= ε, n ≥M.

Hence tn → s. So the rearrangement is convergent and has the same sum.

]

• Dirichlet test: Let
∑
k ak be a series whose partial sums form a bounded se-

quence. Suppose (bn) is a decreasing sequence with limit 0. Then
∑
k akbk

converges.

• Abel’s test: Suppose that
∑
k ak converges and bn is a monotonic conver-

gent sequence. Then
∑
k akbk converges.

We will not prove the last two results (see e.g. Apostol’s text for proofs, they are

not hard).

Homework 4 (due Tuesday February 3).

(1) Let
∑∞
k=1 ak be a series, and suppose that 1 ≤ n1 < n2 < · · · are in-

tegers. Let b1 =
∑n1

k=1 ak, b2 =
∑n2

k=n1+1 ak, b3 =
∑n3

k=n2+1 ak, · · · . We

call
∑∞
k=1 bk a series obtained from

∑∞
k=1 ak by adding parentheses. Prove

that if
∑∞
k=1 ak converges then

∑∞
k=1 bk converges and has the same sum.
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Also: (a) If
∑∞
k=1 ak is a nonnegative series, prove that

∑∞
k=1 ak converges

iff
∑∞
k=1 bk converges. (b)* If the sequence (nk+1 − nk) is bounded and

limn an = 0, show that
∑∞
k=1 ak converges iff

∑∞
k=1 bk converges.

(2) Prove the ‘fundamental fact about power series’ in the last ‘bullet’ before

Homework 1.

(3) Suppose that zn = an + ibn, where an, bn ∈ R . Show that (a)
∑
zn is

convergent if and only if both
∑
an and

∑
bn are convergent; (b)

∑
zn

is absolutely convergent if and only if both
∑
an and

∑
bn are absolutely

convergent; (c)
∑∞
n=1

(
(−1)n√

n
+ i

n2

)
is convergent but not absolutely con-

vergent.

(4) If
∑
n an converges absolutely, show that

∑
n a

2
n and

∑
n

an
1+an

converge

absolutely (you may assume if you wish that that no an = −1). If
∑
n an

diverges show
∑
n nan diverges.

(5)* Prove or look up a proof of Riemann’s result that any conditionally conver-

gent series has the property that if a ∈ R is given, there is a rearrangement

of the series which has sum a. Show also that there is a rearrangement of

the series which diverges.

5. Double sums

This section is really about interchanging double sums: that is when
∑∞
n=1

∑∞
m=1

equals
∑∞
m=1

∑∞
n=1.

If we have numbers am,n ≥ 0 for all m,n ∈ N, define
∑∞
n,m=1 am,n to be the

supremum over all ‘partial sums’ SN =
∑N
n,m=1 am,n, for N ∈ N.

Theorem 5.1. If am,n ≥ 0 for all m,n ∈ N, then the following sums are equal:

∞∑
n=1

( ∞∑
m=1

am,n

)
=

∞∑
m=1

( ∞∑
n=1

am,n

)
=

∞∑
n,m=1

am,n.

Proof. We leave this an exercise in sups of positive numbers, using the fact that

the three double sums here are really just

sup{
N∑
n=1

sup{
M∑
m=1

am,n : M ∈ N} : N ∈ N},

sup{
M∑
m=1

sup{
N∑
n=1

am,n : N ∈ N} : M ∈ N},

and sup{
∑N
n=1

∑N
m=1 am,n : N ∈ N}. �

Next we allow the am,n to be negative as well as positive; or even complex.

Again we have ‘partial sums’ SN =
∑N
n,m=1 am,n, for N ∈ N. Now we say that
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n,m am,n converges if there is a number s such that for all ε > 0 there exists

K ≥ 1 such that

|s−
N∑
n=1

M∑
m=1

am,n| < ε

whenever N ≥ K, and M ≥ K. We write this number s as
∑∞
n,m=1 am,n, or

sometimes simply as
∑
n,m am,n.

We remark that if am,n ≥ 0 for all m,n ∈ N then saying that
∑
n,m am,n

converges is the same as saying that
∑∞
n,m=1 am,n (in the sense defined before

Theorem 5.1) is finite. See Exercises below.

Theorem 5.2. If am,n are real (or complex) for all m,n ∈ N, and if
∑∞
n,m=1 |am,n| <

∞, then
∑
n,m am,n converges, and all of the following sums are finite and we have:

∞∑
n=1

( ∞∑
m=1

am,n

)
=

∞∑
m=1

( ∞∑
n=1

am,n

)
=

∞∑
n,m=1

am,n = lim
N→∞

SN .

Proof. We leave this as an exercise for the graduate students in the class (note that

the last ‘=’ is almost immediate by taking N = M in the definition of the sum∑∞
n,m=1 am,n). �

Double series obey the same rules as ordinary series. For example,

∞∑
n,m=1

am,n +

∞∑
n,m=1

bm,n =

∞∑
n,m=1

(am,n + bm,n),

∞∑
n,m=1

cam,n = c

∞∑
n,m=1

am,n,

provided the first two double series converge, and c is a constant (scalar). The

proofs are the same as before.

We can write a convergent double series
∑∞
n,m=1 am,n as an ordinary series.

Indeed if g : N→ N×N is a bijective function set bk = ag(k) and consider
∑
k bk.

Theorem 5.3. If am,n are real (or complex) for all m,n ∈ N, and if
∑∞
n,m=1 |am,n| <

∞, and bk is as defined above, then
∑
k bk converges (absolutely), and equals∑∞

n,m=1 am,n.

Proof. We can think of SN =
∑N
n,m=1 am,n as the N -th partial sum of the series∑

k ck where c1 = a1,1, and

c2 = a1,2 + a2,2 + a2,1, c3 = a1,3 + a2,3 + a3,3 + a3,1 + a3,2, · · · .

The associated series

a1,1 + a1,2 + a2,2 + a2,1 + a1,3 + a2,3 + a3,3 + a3,1 + a3,2 + a1,4 + · · ·

(note inserting parentheses in this series gives
∑
k ck) converges absolutely since

|a1,1|+ |a1,2|+ |a2,2|+ |a2,1|+ |a1,3|+ · · ·
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has partial sums dominated by
∑∞
n,m=1 |am,n| <∞. So by Homework 4 Question

1,
∑
k ck converges. Moreover

∑
k bk is a rearrangement of the series in the

second last centered formula. So by our earlier theorem on rearrangement of series,∑
k bk converges (absolutely), and by Homework 4 Question 1 its sum equals∑
k ck = limN SN =

∑∞
n,m=1 am,n. We have also used here the fact about SN at

the start of the proof. The last ’=’ uses a formula from the previous theorem. �

The Cauchy product of two series
∑∞
n=0 an and

∑∞
n=0 bn is the series

∑∞
n=0 cn

where

cn =

n∑
k=0

ak bn−k.

A theorem of Mertens (see Apostol) says that if
∑∞
n=0 an converges absolutely

with sum s, and if
∑∞
n=0 bn converges with sum t, then the Cauchy product series

converges and has sum st. A special case of this is found in Homework 5 Question

6 below.

Homework 5 (due Thursday February 5).

(1) Discuss the convergence of
∑
n,m

nm
n2+m2 and

∑
n,m 2−(n

2+m2).

(2) Prove Theorem 5.1 in detail.

(3) If am,n ≥ 0 for allm,n ∈ N show that
∑
n,m am,n converges iff

∑∞
n,m=1 am,n

(in the sense defined before Theorem 5.1) is finite.

(4)* Prove Theorem 5.2.

(5) If
∑
n an and

∑
n bn are absolutely convergent series with sums s and

t respectively, show that
∑
n,m an bm is an absolutely convergent double

series whose sum is st.

(6) If
∑∞
n=0 an and

∑∞
n=0 bn both converge absolutely, show that the Cauchy

product series converges (absolutely) and has sum st. [Hint: This follows

from Homework 5 Question 5 and Theorem 5.3, and Homework 4 Ques-

tion 1, because the Cauchy product series is one of the kind considered in

Theorem 5.3, but then with parentheses added as in Homework 4 Question

1.]

(7) If sn is the nth partial sum of a series
∑
k ak, define the Cesáro means to

be the sequence (σn) defined by σn = 1
n (s1 + s2 + · · · + sn). We say that∑

k ak is Cesáro summable if the sequence (σn) converges, and in this case

limn σn is called the Cesáro sum of the series
∑
k ak. Prove that if

∑
k ak

converges with sum s then it is Cesáro summable and its Cesáro sum is s.

END OF CHAPTER 0


