MATH 4389-SOME FUNDAMENTAL FACTS ABOUT POWER SERIES

A power series is an expression of the form

$$
\sum_{k=0}^{\infty} c_{k} x^{k}
$$

Here x and the c_{k} can be complex numbers if you wish, but in the discussion below we assume they are real. A power series centered at c is an expression of form $\sum_{k=0}^{+\infty} a_{k}(x-c)^{k}$. Any power series centered at c can be turned into a power series of the first type (centered at 0) by letting $u=x-c$. So we only consider power series $\sum_{k=0}^{\infty} c_{k} x^{k}$ below. The results for power series centered at c will be analogous, but for example the interval of convergence will be centered at c.

- Given a power series as above we set $A=\lim _{n \rightarrow+\infty} \sqrt[n]{\left|c_{n}\right|}=\lim _{n \rightarrow+\infty}\left|c_{n}\right|^{\frac{1}{n}}$. (For the sophisticated, if this limit does not exist set $A=\lim _{\sup _{n \rightarrow+\infty}}^{\sqrt[n]{\left|c_{n}\right|}}$.) Set $A=+\infty$ if these nth roots are unbounded. We set

$$
R= \begin{cases}+\infty, & A=0 \\ \frac{1}{A}, & 0<A<+\infty \\ 0, & A=+\infty\end{cases}
$$

and we call R the radius of convergence of the power series. The 'interval of convergence' is the set of numbers x for which the series $\sum_{k=0}^{\infty} c_{k} x^{k}$ converges.

- If $R=0$ the power series only converges at 0 , and then the interval of convergence is $\{0\}$. This is the 'trivial case'. So in all of the following items suppose that $R>0$.
- If $R>0$ then the power series converges (absolutely) if $|x|<R$ and diverges if $|x|>R$. [Picture drawn in class.] Thus the interval of convergence consists of the interval from $-R$ to R, with the possible (but not necessary) inclusion of one or more of the endpoints.
- Another formula for the number R above is $\lim _{n \rightarrow+\infty} \frac{\left|c_{n+1}\right|}{\left|c_{n}\right|}$. This sometimes does not exist, but when it does it equals $\lim _{n \rightarrow+\infty}\left|c_{n}\right|^{\frac{1}{n}}$.
- If a power series converges for a fixed real number d, and diverges at $-d$, then the radius of convergence is $|d|$ (so $R=|d|$), and the interval of convergence consists of the interval from $-d$ to d with d included but $-d$ excluded.
- The sum of the power series is a continuous function on its interval of convergence. Call it the 'sum function' and write it as $f(x)$, for x in the interval of convergence. In fact f is differentiable, and indeed infinitely many times differentiable, on $(-R, R)$. Also $f^{\prime}(x)=\sum_{k=1}^{\infty} k c_{k} x^{k-1}$ for $|x|<R$ (the latter series converges here, with sum $f(x))$. Similarly $f^{\prime \prime}(x)=$ $\sum_{k=2}^{\infty} k(k-1) c_{k} x^{k-2}$, and so on. All these new power series have the same radius of convergence R.
- It follows by setting $x=0$ that $c_{n}=\frac{f^{n}\left(x_{0}\right)}{n!}$, for all $n=0,1,2, \cdots$.
- Abel's theorem: suppose that a power series converges at one of the endpoints d of $(-R, R)$ (so d is R or $-R$ in this case). Let $f(x)$ be the sum function (set $f(d)=\infty$ if the power series converges to ∞ at d). Then $f(d)$ equals the one-sided limit of $f(x)$ as x approaches this endpoint. Moreover the power series converges uniformly to $f(x)$ on the compact interval with endpoints 0 and d.
- Do not confuse power series and Taylor series. This page is not about Taylor series. You can read up on e.g. wikipedia about those. However, if $R>0$ then the Taylor series of the 'sum function' $f(x)$ above is $\sum_{k=0}^{\infty} c_{k} x^{k}$. That is, the sum function $f(x)$ of a power series on its interval of convergence, has Taylor series equal to the original power series.
- Sums, products, equality, etc, of two power series (omitted).
- The integrated power series of $\sum_{k=0}^{\infty} c_{k} x^{k}$ is $\sum_{k=0}^{\infty} \frac{c_{k}}{k+1} x^{k+1}$. This has the same radius of convergence R.
- If $f(x)$ is the sum function of $\sum_{k=0}^{\infty} c_{k} x^{k}$, and if $F(x)$ is the sum function of the integrated power series, then $\int_{0}^{x} f(t) d t=F(x)$, for $|x|<R$.

