Department of Mathematics, University of Houston
 Math 1432
 David Blecher, Some review questions for the Final

[Note that there is some duplication of questions below. For example, on the real final you'd have one of questions 8 and 9 , not both, and similarly for some of the other questions.]

1. Let $g(x)=5 x^{3}-4 x^{2}+x-2$. Find an equation for the normal line to the graph of g^{-1} at the point $(-2,0)$.
2. (i) Find $h^{\prime}(x)$ if $h(x)=x^{x}$, for $x>0$.
(ii) Find $\lim _{x \rightarrow \infty} x^{x}$ and $\lim _{x \rightarrow 0} x^{x}$.
(iii) What is $\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{x}$?
(iv) What is $\lim _{x \rightarrow 0} \frac{\sin x-x}{\cos x-1}$.
3. Differentiate each of the following functions:
(a) $\sec ^{-1}\left(x^{3}\right)$.
(b) $\ln (\cosh x)$.
(c) $\log _{4}\left(1+2^{x}\right)$.
(d) $\left(1-\frac{1}{x}\right)^{x}$.
4. Find the following integrals:
(a) $\int \frac{1}{(x-1)\left(x^{2}-1\right)} d x$.
(b) $\int_{0}^{1} \tan ^{-1} x d x$.
(c) $\int e^{2 x} \cos x d x$.
(d) $\int \frac{1}{\left(4+x^{2}\right)^{\frac{3}{2}}} d x$.
(e) $\int \frac{d x}{\left(4-x^{2}\right)^{3 / 2}}$.
(f) $\int_{0}^{1} \frac{x^{2}}{x^{6}+1} d x$.
5. Find the following integral $\int_{-1}^{1} \frac{5 x^{3}}{x^{2}+x-6} d x$.
6. $\int_{1}^{5} \frac{x}{\sqrt{x-1}} d x$. Does this converge? To what?
7. In each of the following write down if the series converges or diverges, giving reasons.
(a) $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k^{2}+1}}$.
(b) $\sum_{k=1}^{\infty} \frac{2^{k}}{k!}$.
(c) $\sum_{k=1}^{\infty}\left(\sqrt{k^{4}+1}-\sqrt{k^{4}-1}\right)$.
(d) $\sum_{k=1}^{\infty} \frac{k!}{k^{k}}$
(e) $\sum_{k=1}^{\infty} \frac{\sin k}{e^{k}}$
(f) $\sum_{k=1}^{\infty} \frac{(-1)^{k} \ln k}{k^{2}}$.
8. [Note that on the real final you'd probably only have to do (a) and (b) below.]
(a) Find the interval of convergence of $\sum_{k=0}^{\infty} \frac{(k+1) x^{k}}{2^{k}}$. Justify.
(b) Find the integrated power series of the series in (a).
(c) Show that the sum of the series in (b) is $\frac{2 x}{2-x}$.
(d) Set $f(x)=\sum_{k=0}^{\infty} \frac{(k+1) x^{k}}{2^{k}}$ for x in the interval of convergence from (a). Show by differentiating the expression in (c), that $f(x)=\frac{4}{(2-x)^{2}}$ for x in the interval of convergence.
(d) Setting $x=1$ in (d) find $\sum_{k=1}^{\infty} \frac{k}{2^{k}}$.
9. [Note that on the real final you'd probably only have to do (a) and (b) below.]
(a) For what values of x does the series $\sum_{k=0}^{\infty} \frac{x^{k}}{2^{k}}$ converge? For these values of x, what is the sum of the series?
(b) Consider the series $\sum_{k=0}^{\infty} \frac{x^{k+1}}{(k+1) 2^{k}}$. What is its radius of convergence?
(c) What is the sum of the series in (b), if $-1<x<1$? [Hint: integrate the expressions in (a).]
(d) What is $\sum_{k=0}^{\infty} \frac{1}{(k+1) 4^{k}}$? [Hint: choose x carefully in (c)].
10. Find the Taylor series for $f(x)=\ln (2-x)$. Write down the first four terms out in full.
11. Using the Lagrange formula, find a Taylor series approximation for $\sin (1)$ with error <0.001.
12. Give an equation of the tangent line to the curve given parametrically as $x(t)=\sin t, y(t)=\cos t$ at the point $(0,1)$.
13. Sketch the polar curve $r=1-\cos \theta$, for $0 \leq \theta \leq 2 \pi$.
14. Find the length of the curve in question 13.
