NAME: \qquad

Recitation Instructor:

\qquad

Part I. Techniques of Integration

1. $\int \frac{1}{x^{2} \sqrt{1-x^{2}}} d x$

Answer \qquad
2. $\int \frac{1}{x^{4}-16} d x$

Answer: \qquad
3. $\int \frac{x^{2}+8 x-3}{x^{3}+3 x^{2}} d x$

Answer: \qquad
4. $\int \frac{x}{\sqrt{4+x^{2}}} d x$

Answer: \qquad
5. $\int_{0}^{1} \frac{x^{2}}{\left(4-x^{2}\right)^{3 / 2}} d x=$

Answer: \qquad
6. $\int \frac{x^{2}+2 x-4}{x^{3}-4 x} d x$

Answer: \qquad

Part II. Numerical Integration

Set $f(x)=x^{2}+1$ on $[0,4]$.

1. Use the midpoint rule with $n=4$ to approximate $\int_{0}^{4} f(x) d x$.

Answer: \qquad
2. Use the trapezoidal rule with $n=4$ to approximate $\int_{0}^{4} f(x) d x$.

Answer: \qquad
3. Use Simpson's rule with $n=2$ to approximate $\int_{0}^{4} f(x) d x$.

Answer: \qquad
4. Determine the smallest integer n such that the trapezoidal approximation T_{n} approximates $\int_{0}^{4} f(x) d x$ with error less than 0.0075 .

Answer:

5. Determine the error if S_{4} is used to estimate $\int_{0}^{2} e^{x} d x$. (Use $e \approx 3$)

Answer:

\qquad

Part III. Polar Coordinates

1. Give the rectangular coordinates of the point with polar coordinates $[-2,8 \pi / 3]$.

Answer: \qquad
2. Give all possible polar coordinates for the point with rectangular coordinates $(-4 \sqrt{3}, 4)$.

Answer:

\qquad
3. Sketch the graph of $r=1+2 \cos \theta, \quad 0 \leq \theta \leq 4 \pi / 3$.

Answer:

\qquad

The graphs of $C_{1}: r=2-\cos \theta$ and $C_{2}: r=1+\cos \theta$ are shown in the figure.

4. Calculate the area of the region inside C_{2} and outside C_{1}.

Answer:
5. Calculate the area of the region common to C_{1} and C_{2}.

Answer:

6. Find the polar equation for $\left(x^{2}+y^{2}\right)^{2}=4 x y$.

Answer:

\qquad
7. Write the equation $r=4 \sin \theta$ in rectangular coordinates.

Answer:

Part IV. Parametric Equations

1. Express the curve $x=2+\sin t, y=-1+\cos t$ by an equation in x and y.

Answer:

2. Find a parametrization of the line segment from $(-2,3)$ to $(1,5)$.

Answer:

3. Find a parametrization for the curve $y^{3}=x^{2}$ from $(1,1)$ to $(8,4)$.

Answer:

4. Give an equation for the normal line to the graph of $x=\sin t, y=2+\cos 2 t$ at the point where $t=\pi / 6$.

Answer:

\qquad
5. Give an equation for the line tangent to the polar curve $r=2 \cos \theta$ at the point where $\theta=\pi / 3$

Answer:

\qquad
6. Find the points (x, y) at which the curve $x=t^{2}-2 t, y=\frac{1}{3} t^{3}-3 t^{2}+8 t$ has (a) a horizontal tangent, (b) a vertical tangent.

Answer: (a) \qquad

Answer: (b) \qquad
7. Find the length of the curve $C: x=t^{2}+1, y=\frac{4}{3} t^{3}-3,0 \leq t \leq 2$.

Answer:

8. Find the length of the polar curve $r=1-\cos \theta, 0 \leq \theta \leq 2 \pi$.

Answer:

\qquad
9. Find the length of the graph of $f(x)=\frac{1}{3}(x+2)^{3 / 2}, 0 \leq x \leq 2$.

Answer:

\qquad
10. A particle moves along the curve $x=\frac{1}{3} t^{3}-t, y=t^{2}+2,0 \leq t \leq 2$. (a) What is the speed of the particle at time t ? (b) What is the total distance traveled by the particle?

Answer: (a) \qquad

Answer: (b) \qquad

Part IV. Sequences

1. Determine a formula for a_{n}, the general term of the given sequence. Then determine whether the sequence converges and if it does, give the limit.
(a) $4,1, \frac{1}{4}, \frac{1}{16}, \ldots$
(b) $\frac{2}{1},\left(\frac{3}{2}\right)^{2},\left(\frac{4}{3}\right)^{3},\left(\frac{5}{4}\right)^{4}, \ldots$

Answer: (a) \qquad

Answer: (b) \qquad
2. Determine whether or not the given sequence is bounded above, bounded below, bounded. If it is bounded above or below, give the least upper and/or greatest lower bounds.
(a) $\{\cos (n \pi / 3)\}$
(b) $\left\{\frac{n^{3}+1}{n^{2}+2 n+3}\right\}$
(c) $\left\{2+\frac{(-1)^{n}}{n}\right\}$

Answer: (a) \qquad

Answer: (b) \qquad

Answer: (c)
3. Determine the monotonicity of the given sequence.
(a) $\left\{(2 / 3)^{n}\right\}$
(b) $\left\{\frac{n^{2}}{n+2}\right\}$
(c) $\left\{\frac{n+(-1)^{n}}{n^{2}}\right\}$

Answer: (a)

Answer: (b) \qquad

Answer: (c) \qquad
4. Determine whether or not the given sequence converges or diverges. If it converges, give the limit.
(a) $\left\{\frac{n^{2}+1}{\sqrt{4 n^{4}+2 n^{2}+1}}\right\}$
(b) $\left\{\frac{\sin ^{2} n}{n}\right\}$
(c) $\left\{\frac{(-1)^{n}(2 n)}{\sqrt{n^{2}+4}}\right\}$

Answer: (a) \qquad

Answer: (b) \qquad

Answer: (c)

