NAME: _____

Recitation Instructor:

Part I. **Techniques of Integration**

1.	$\int \frac{1}{x^2 \sqrt{1-x^2}} dx$	Answer:	
2.	$\int \frac{1}{x^4 - 16} dx$	Answer:	
3.	$\int \frac{x^2 + 8x - 3}{x^3 + 3x^2} dx$	Answer:	
4.	$\int \frac{x}{\sqrt{4+x^2}} dx$	Answer:	
5.	$\int_0^1 \frac{x^2}{(4-x^2)^{3/2}} dx =$	Answer:	
6.	$\int \frac{x^2 + 2x - 4}{x^3 - 4x} dx$	Answer:	

Part II. Numerical Integration

Set $f(x) = x^2 + 1$ on [0, 4].

1. Use the midpoint rule with n = 4 to approximate $\int_{0}^{4} f(x) dx$.

Answer:

2. Use the trapezoidal rule with n = 4 to approximate $\int_0^4 f(x) dx$.

Answer:

3. Use Simpson's rule with
$$n = 2$$
 to approximate $\int_0^4 f(x) dx$.

Answer:

4. Determine the smallest integer n such that the trapezoidal approximation T_n approximates $\int_0^4 f(x) dx$ with error less than 0.0075.

5. Determine the error if S_4 is used to estimate $\int_0^2 e^x dx$. (Use $e \approx 3$)

Answer:

Part III. Polar Coordinates

1. Give the rectangular coordinates of the point with polar coordinates $[-2, 8\pi/3]$.

Answer:

2. Give all possible polar coordinates for the point with rectangular coordinates $(-4\sqrt{3}, 4)$.

Answer:

3. Sketch the graph of $r = 1 + 2\cos\theta$, $0 \le \theta \le 4\pi/3$.

Answer:

The graphs of C_1 : $r = 2 - \cos \theta$ and C_2 : $r = 1 + \cos \theta$ are shown in the figure.

4. Calculate the area of the region inside C_2 and outside C_1 .

Answer:

5. Calculate the area of the region common to C_1 and C_2 .

Answer:

6. Find the polar equation for $(x^2 + y^2)^2 = 4xy$.						
Answer:						
7. Write the equation $r = 4 \sin \theta$ in rectangular coordinates.						
Answer:						
Part IV. Parametric Equations						
1. Express the curve $x = 2 + \sin t$, $y = -1 + \cos t$ by an equation in x and y.						
Answer:						
2. Find a parametrization of the line segment from $(-2,3)$ to $(1,5)$.						
Answer:						
3. Find a parametrization for the curve $y^3 = x^2$ from $(1,1)$ to $(8,4)$.						
Answer:						
4. Give an equation for the normal line to the graph of $x = \sin t$, $y = 2 + \cos 2t$ at the point where $t = \pi/6$.						
Answer:						
5. Give an equation for the line tangent to the polar curve $r = 2\cos\theta$ at the point where $\theta = \pi/3$						
Answer:						
6. Find the points (x, y) at which the curve $x = t^2 - 2t$, $y = \frac{1}{3}t^3 - 3t^2 + 8t$ has (a) a horizontal tangent, (b) a vertical tangent.						
Answer: (a)						
Answer: (b)						

7. Find the length of the curve $C: x = t^2 + 1, y = \frac{4}{3}t^3 - 3, 0 \le t \le 2.$						
Answer:						
8. Find the length of the polar curve $r = 1 - \cos \theta$, $0 \le \theta \le 2\pi$.						
Answer:						
9. Find the length of the graph of $f(x) = \frac{1}{3}(x+2)^{3/2}, \ 0 \le x \le 2.$						
Answer:						
10. A particle moves along the curve $x = \frac{1}{3}t^3 - t$, $y = t^2 + 2$, $0 \le t \le 2$. (a) What is the speed of the particle at time t ? (b) What is the total distance traveled by the particle?						
Answer: (a)						
Answer: (b)						
Part IV. Sequences						

1. Determine a formula for a_n , the general term of the given sequence. Then determine whether the sequence converges and if it does, give the limit.

(a) 4, 1, $\frac{1}{4}$, $\frac{1}{16}$, (b) $\frac{2}{1}$, $\left(\frac{3}{2}\right)^2$, $\left(\frac{4}{3}\right)^3$, $\left(\frac{5}{4}\right)^4$, ...

Answer: (a)_____

Answer: (b) _____

2. Determine whether or not the given sequence is bounded above, bounded below, bounded. If it is bounded above or below, give the least upper and/or greatest lower bounds.

(a)	$\{\cos\left(n\pi/3\right)\}$	$(b) \left\{\frac{n^3+1}{n^2+2n+3}\right\}$	$(c) \left\{2 + \frac{(-1)^n}{n}\right\}$
-----	-------------------------------	--	--

 Answer:
 (a)______

 Answer:
 (b) ______

Answer: (c) _____

3. Determine the monotonicity of the given sequence.

(a) $\{(2/3)^n\}$	$(b) \left\{\frac{n^2}{n+2}\right\}$	$(c) \left\{\frac{n+(-1)^n}{n^2}\right\}$
Answer: (a)		-
Answer: (b)		_
Answer: (c)		_
4. Determine whether or n the limit.	ot the given sequence converges	or diverges. If it converges, give
(a) $\left\{\frac{n^2+1}{\sqrt{4n^4+2n^2+1}}\right\}$	$(b) \left\{\frac{\sin^2 n}{n}\right\}$	(c) $\left\{\frac{(-1)^n(2n)}{\sqrt{n^2+4}}\right\}$
Answer: (a)		-
Answer: (b)		-
Answer: (c)		_