Answers, Review Questions, Exam 9 3

Part I. Techniques of Integration

1. $\int \frac{1}{x^2 \sqrt{1-x^2}} dx$ Answer: $-\frac{\sqrt{1-x^2}}{x} + C$ 2. $\int \frac{1}{x^4 - 16} dx$ Answer: $\frac{1}{32} \ln |x-2| - \frac{1}{32} \ln |x+2| + \frac{1}{16} \tan^{-1}(x/2) + C$ 3. $\int \frac{x^2 + 8x - 3}{x^3 + 3x^2} dx$ Answer: $\frac{1}{x} + 3 \ln |x| - 2 \ln |x+3| + C$ 4. $\int \frac{x}{\sqrt{4+x^2}} dx$ Answer: $\sqrt{4+x^2} + C$ 5. $\int_0^1 \frac{x^2}{(4-x^2)^{3/2}} dx =$ Answer: $\frac{1}{\sqrt{3}} - \frac{\pi}{6}$ 6. $\int \frac{x^2 + 2x - 4}{x^3 - 4x} dx$

Answer: $\ln|x| + \frac{1}{2}\ln|x-2| - \frac{1}{2}\ln|x+2| + C$

Part II. Numerical Integration

Set $f(x) = x^2 + 1$ on [0, 4].

1. Use the midpoint rule with n = 4 to approximate $\int_0^4 f(x) dx$.

Answer: 25

2. Use the trapezoidal rule with
$$n = 4$$
 to approximate $\int_0^4 f(x) dx$.

Answer: 26

3. Use Simpson's rule with
$$n = 2$$
 to approximate $\int_0^4 f(x) dx$.

Answer:
$$\frac{76}{3}$$

4. Determine the smallest integer n such that the trapezoidal approximation T_n approximates $\int_0^4 f(x) dx$ with error less than 0.0075.

Answer: 38

5. Determine the error if S_4 is used to estimate $\int_0^2 e^x dx$. (Use $e \approx 3$)

Answer: 0.0042

Part III. Polar Coordinates

1. Give the rectangular coordinates of the point with polar coordinates $[-2, 8\pi/3]$.

Answer: $(1, -\sqrt{3})$

2. Give all possible polar coordinates for the point with rectangular coordinates $(-4\sqrt{3}, 4)$.

Answer: $[8, \frac{5}{6}\pi + 2n\pi], [-8, \frac{11}{6}\pi + 2n\pi]$

3. Sketch the graph of $r = 1 + 2\cos\theta$, $0 \le \theta \le 4\pi/3$.

The graphs of C_1 : $r = 2 - \cos \theta$ and C_2 : $r = 1 + \cos \theta$ are shown in the figure.

4. Calculate the area of the region inside C_2 and outside C_1 .

Answer: $3\sqrt{3} - \pi$

5. Calculate the area of the region common to C_1 and C_2 .

Answer: $\frac{5}{2}\pi - 3\sqrt{3}$

6. Find the polar equation for

$$(x^2 + y^2)^2 = 4xy$$

Answer: $r^2 = 2 \sin 2\theta$

7. Write the equation $r = 4 \sin \theta$ in rectangular coordinates.

Answer: $x^2 + (y-2)^2 = 4$; a circle: center (0,2), radius 2

Part IV. Parametric Equations

1. Express the curve $x = 2 + \sin t$, $y = -1 + \cos t$ by an equation in x and y.

Answer: $(x-2)^2 + (y+1)^2 = 1$; circle: center (2, -1), radius 1

2. Find a parametrization of the line segment from (-2,3) to (1,5).

Answer: x = -2 + 3t, y = 3 + 2t, $0 \le t \le 1$

3. Find a parametrization for the curve $y^3 = x^2$ from (1,1) to (8,4).

Answer: x = t, $y = t^{3/2}$, $1 \le t \le 8$

4. Give an equation for the normal line to the graph of $x = \sin t$, $y = 2 + \cos 2t$ at the point where $t = \pi/6$.

Answer: $y - \frac{5}{2} = \frac{1}{2}(x - \frac{1}{2})$

5. Give an equation for the line tangent to the polar curve $r = 2\cos\theta$ at the point where $\theta = \pi/3$

Answer: $y - \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} \left(x - \frac{1}{2} \right)$

6. Find the points (x, y) at which the curve $x = t^2 - 2t$, $y = \frac{1}{3}t^3 - 3t^2 + 8t$ has (a) a horizontal tangent, (b) a vertical tangent.

Answer: (a) $(8, \frac{16}{3}), (0, \frac{20}{3})$

Answer: (b) $(-1, \frac{16}{3})$

7. Find the length of the curve $C: x = t^2 + 1, y = \frac{4}{3}t^3 - 3, 0 \le t \le 2.$

Answer: $\frac{1}{6}(17)^{3/2} - \frac{1}{6}$

8. Find the length of the polar curve $r = 1 - \cos \theta$, $0 \le \theta \le 2\pi$.

Answer: 8

9. Find the length of the graph of $f(x) = \frac{1}{3}(x+2)^{3/2}, \ 0 \le x \le 2.$

Answer: $\frac{1}{3} \left[8^{3/2} - 6^{3/2} \right] = \frac{16}{3} \sqrt{2} - 2\sqrt{6}$

10. A particle moves along the curve $x = \frac{1}{3}t^3 - t$, $y = t^2 + 2$, $0 \le t \le 2$. (a) What is the speed of the particle at time t? (b) What is the total distance traveled by the particle?

Answer: (a) speed: $t^2 + 1$

Answer: (b) distance traveled: $\frac{14}{3}$

Part IV. Sequences

1. Determine a formula for a_n , the general term of the given sequence. Then determine whether the sequence converges and if it does, give the limit.

(a) 4, 1,
$$\frac{1}{4}$$
, $\frac{1}{16}$,
(b) $\frac{2}{1}$, $\left(\frac{3}{2}\right)^2$, $\left(\frac{4}{3}\right)^3$, $\left(\frac{5}{4}\right)^4$, ...

Answer: (a) $a_n = 4\left(\frac{1}{4}\right)^{n-1}; a_n \to 0$

Answer: (b)
$$a_n = \left(\frac{n+1}{n}\right)^n = \left(1 + \frac{1}{n}\right)^n$$

e

2. Determine whether or not the given sequence is bounded above, bounded below, bounded. If it is bounded above or below, give the least upper and/or greatest lower bounds.

(a)
$$\{\cos(n\pi/3)\}$$
 (b) $\left\{\frac{n^3+1}{n^2+2n+3}\right\}$
(c) $\left\{2+\frac{(-1)^n}{n}\right\}$

Answer: (a) bounded; glb = -1, lub = 1

- **Answer:** (b) not bounded above; bounded below, $glb = \frac{1}{3}$
- **Answer:** (c) bounded; glb = 1, $lub = \frac{5}{2}$
- **3.** Determine the monotonicity of the given sequence.

(a)
$$\{(2/3)^n\}$$
 (b) $\left\{\frac{n^2}{n+2}\right\}$
(c) $\left\{\frac{n+(-1)^n}{n^2}\right\}$

Answer: (a) decreasing

Answer: (b) increasing

Answer: (c) not monotone

4. Determine whether or not the given sequence converges or diverges. If it converges, give the limit. (1 + 2)

(a)
$$\left\{\frac{n^2+1}{\sqrt{4n^4+2n^2+1}}\right\}$$
 (b) $\left\{\frac{\sin^2 n}{n}\right\}$
(c) $\left\{\frac{(-1)^n(2n)}{\sqrt{n^2+4}}\right\}$

Answer: (a) converges, $a_n \to \frac{1}{2}$

Answer: (b) converges, $a_n \rightarrow 0$

Answer: (c) diverges